1324 Research Article Plasticity of lung development in the amphibian, Xenopus laevis Christopher S. Rose* and Brandon James James Madison University, Department of Biology, Biosciences 2028, Harrisonburg, VA 22807, USA *Author for correspondence (
[email protected]) Biology Open 2, 1324–1335 doi: 10.1242/bio.20133772 Received 26th November 2012 Accepted 26th September 2013 Summary Contrary to previous studies, we found that Xenopus laevis role of mechanical forces in lung development. Lung tadpoles raised in normoxic water without access to air can recovery in AR frogs was unpredictable and did not routinely complete metamorphosis with lungs that are either correlate with behavioral changes. Its low frequency of severely stunted and uninflated or absent altogether. This is occurrence could be attributed to developmental, physical the first demonstration that lung development in a tetrapod and behavioral changes, the effects of which increase with can be inhibited by environmental factors and that a tetrapod size and age. Plasticity of lung inflation at tadpole stages and that relies significantly on lung respiration under unstressed loss of plasticity at postmetamorphic stages offer new insights conditions can be raised to forego this function without into the role of developmental plasticity in amphibian lung adverse effects. This study compared lung development in loss and life history evolution. untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of ß 2013. Published by The Company of Biologists Ltd. This cell division and antibody staining of smooth muscle actin. is an Open Access article distributed under the terms of We also examined the relationship of swimming and the Creative Commons Attribution License (http:// breathing behaviors to lung recovery in AR animals.