The Genus Diellia and the Value of Characters in Determining Fern Affinities 1

Total Page:16

File Type:pdf, Size:1020Kb

The Genus Diellia and the Value of Characters in Determining Fern Affinities 1 THE GENUS DIELLIA AND THE VALUE OF CHARACTERS IN DETERMINING FERN AFFINITIES 1 Warren H. Wagner, Jr. IN THE CURRENT renaissance of fern taxonomy it occasion to suggest the relative value of certain would seem important to emphasize the nature and characters in the taxonomy of ferns, and to use as relative value of the characters which can be used as a specific example the genu3 Diellia of Hawaii. This evidence of relationship. Certain allegedly "con­ genus seems to be an ideal choice for a symposium servative" characters, especially features of the sori, on fern classification because it has been placed at the characteristic aggregations of sporangia-such one time or other in association with no less than as their position in relation to the veins and leaf four different assemblages of ferns-groups which margins, their outlines, and protective indusia­ are now interpreted as belonging to tour separate have frequently been used as absolute criteria of families. Such authors as Moore (1857), Hille­ affinities in the higher leptosporangiate ferns. An­ brand (18881, Christensen (1925), and Bower other character which has frequently been em­ (1928) regarded Diellia as being a relative of Lind­ ployed is leaf form-the outline of the blades and saea, the latter genus now construed to be a mem­ leafie.s, the venation pattern, and the degree of dis­ ber of the Pteridaceae. Hooker and Baker (1883) section. These are conspicuous charac.ers, easily and others associated Diellia with Dictyoxiphium, seen with the naked eye or under a hand lens. But, which Copeland (1947) has recently shown to he­ unfortunately for the superficial observer, the ferns long to the Aspidiaceae. Arbelaez (1928), Holttum show numerous and striking undoubted examples (1949), and others placed it with such genera as of parallel or convergent evolution in regard to Davallia and Nephrolepis, both of the Davalliaceae. these gross features. In the case of leaf form, the In 1929 Copeland adduced evidence that Diellia is well-known "reniform ferns," for ins.ance, all have actually related to the family Aspleniaceae. But in leaves which are nearly alike in appearance; but all except the last interpretation of its affinities, the these are entirely unrelated ferns, as illustrated by sorus of Diellia was the primary basis of cornpari­ such species as Adiantum renilorme, Pterozoniuni son. In this genus the sorus is located in the mar­ reniforme, Cardiomanes renijorme, and Lindsaea ginal position and the indusium opens outward to reniformis. The sorus, in spite of the fact that much the pinna margin, just as it does in Lindsaea and of our classification has been Iounded on it, is itself the genera related to that genus, as well as in Da­ equally liable to parallel or convergent evolutionary vallia and its immediate relatives, and also in cer­ changes. Indeed, at one time practically all ferns tain species of Nephrolepis. According to Bower. which posse5S round sori but no indusia were placed in the phylogeny of those ferns which he consid­ in "Polypodium"; and ferns in which the sporangia ered to be related to Diellia, the sorus occupied just covered the dorsal pinna surfaces were put in an such a marginal position originally; and along vari­ all-inclusive genus, "Aerostichum," but now it is ous lines of advancing evolution, the sorus was evident in case after case that this was an artificial considered to have "slid" to the dorsal laminar sur­ and unnatural disposition. Even so recently as 1928, face. Bower divided the ferns into a "marginal Bower considered the familiar genus Athyrium as series" and a "superficial series," and after a study being closely related to Asplenium because these of preserved material from Hawaii, he placed Diel­ two genera possess approximately the same soral lia among the marginal ferns, along with the lind­ type. However, information available now on such saeoid ferns and the davallioid ferns (1928). A varied characters as scale structure, stipe anatomy, fern genus which has been interpreted so variously sporangial features, and cytology in the respective as Diellia represents an obviously difficult taxonomic genera, rather firmly establishes the Iact that the problem, but similar situations are repeated in nu­ gross soral resemblance is probably only a coinci­ merous other genera, and these greatly need re­ dence, an example of convergent evolution. investigation. The disagreement which centered The purpose of this paper is to discuss and on around the interpretation of Diellia could onlv be 1 Received for publication September .3, 1952. resolved by an exhaustive examination of all its This manuscript was prepared at Harvard University characters that could be studied, and by looking at during the tenure of a Gray Herbarium Fellowship, and is the genus from the broadest possible standpoint. It based on a paper given in a joint Symposium of the Arner­ is now evident from the study of Diellia and from ican Society of Plant Taxonomists and the American Fern Society on the "Classification of Ferns" held at the 1950 comparing it with other cases that we do not ac­ meetings of the A.T.B.S. in Columbus, Ohio. Most of the tually know a priori what is "conservative" and factual information used here is drawn from investigations taxonomically dependable as evidence in any par­ made in the Department of Botany, University of Califor­ ticular line of evolution. It seems necessary and nia, Berkeley, and reported in a monograph of the genus obvious, therefore, to adopt a procedure involving Diellia (Wagner, 1952). It is a pleasure to express thanks for help and suggestions to Professors Lincoln Constance, a total comparison of all the available characters of E. B. Copeland. A. S. Foster, and Reed C. Rollins. ferns if we are accurately to determine their rei a- January, 1953] WAGNER-GENUS DIELLIA AND PHYLOGENETIC CHARACTERS 35 tionships. As Dr. Copeland has indicated, we are side of the exospore shallowly concave and the distal required to study and compare the whole plant. more strongly convex. The exospore itself is col­ When this viewpoint is adopted it becomes appar­ orless, smooth and hyaline, but it is surrounded by ent that many characters have been overlooked or a rugose, brown-pigmented perispore and has dark have not been exploited by workers of the past. The "perisporial spines." The presence of a perispore following discussion may serve to illustrate how by itself stands in sharp contrast to the ferns of valuable some characters can be as sources of the lindsaeoid affinity, for in the latter a perispore evidence. is entirely absent. In addition the lindsaeoid spores To the extent that they may be analyzed, the are tetrahedral in form. Such davallioid examples habitats of ferns may, in some instances, contribute as Davallia and N ephrolepis possess the elliptic at least an inkling, however small, to their complex spore outline as in Diellia, but the perispore is also comparative physiology. And whether it be taxo­ absent here, and the exposed exospore wall surface nomically revealing or not, their ecology should be is sculptured. Among the asplenioid ferns, and es­ investigated as a possible source of information. pecially in certain of the rock-spleenworts, the Some of our lack of information on habitat is ac­ spores almost exactly match those of Diellia in counted for by the lamentable practice of making structural details and pigmentation. collections entirely without ecological data. In the The study of the morphology of the fern gameto­ present problem, fortunately, there is a considerable phyte in laboratory cultures has recently been stim­ amount of information at hand. Diellia is a genus ulated by the new phylogenetic and taxonomic inves­ comprising species which occur always in dry, tigations of ferns. There is still too limited shaded, rocky situations, in wooded but arid knowledge of this generation to suffice for its broad gulches, and which apparently can tolerate but little evaluation as a character in taxonomy, although competition from other ground-story ferns and flow­ there is little question that contributions have been ering plants (Wagner, 1950). On the other hand, and will be made from studies of this generation, as Lindsaea and its relatives are ferns primarily of has already been indicated by the researches of the wet forest and damp stream banks. Such species Stokey (1951). The peculiarities of these simple, or relatives of Lindsaea as do occur in dry places usually haploid, plants which seem especially to of­ tend to be "sun-ferns," tolerant of more or less di­ fer sources of comparative evidence are the follow­ rect insolation (for instance, Lindsaea ensifolia and ing: (1) mode of germination, (2) cell plate for­ Sphenomeris chusanai . Davallia and related genera mation, (3) structure of gametangia, and (4) pres­ are obligate or facultative epiphytes, a condition ence and nature of the haploid trichomes. But to entirely unknown in any species of Diellia. While adopt the view of Orth (1936), that the system of the large and diverse genus Asplenium in the trop­ fern classification should be replaced by a "natural ics has a broad amplitude of ecological situations one" based on the gametophyte, is not warranted among its various species-groups, there is one of its and is inconsistent with the ideal of comprehensive groups, that of the "rock-spleenworts" so frequent total comparison as the basis for taxonomy. In the in temperate climates, that has habitat requirements study of Diellia there is at present a severe restric­ as a whole rather conspicuously similar to those of tion in the utilization of this character because of Diellia. Evidence drawn from the ecological pref­ the absence or paucity of studies of the gameto­ erence of these ferns could in this case be corre­ phytes of the other genera involved.
Recommended publications
  • Spores of Serpocaulon (Polypodiaceae): Morphometric and Phylogenetic Analyses
    Grana, 2016 http://dx.doi.org/10.1080/00173134.2016.1184307 Spores of Serpocaulon (Polypodiaceae): morphometric and phylogenetic analyses VALENTINA RAMÍREZ-VALENCIA1,2 & DAVID SANÍN 3 1Smithsonian Tropical Research Institute, Center of Tropical Paleocology and Arqueology, Grupo de Investigación en Agroecosistemas y Conservación de Bosques Amazonicos-GAIA, Ancón Panamá, Republic of Panama, 2Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 3Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia Caquetá, Colombia Abstract The morphometry and sculpture pattern of Serpocaulon spores was studied in a phylogenetic context. The species studied were those used in a published phylogenetic analysis based on chloroplast DNA regions. Four additional Polypodiaceae species were examined for comparative purposes. We used scanning electron microscopy to image 580 specimens of spores from 29 species of the 48 recognised taxa. Four discrete and ten continuous characters were scored for each species and optimised on to the previously published molecular tree. Canonical correspondence analysis (CCA) showed that verrucae width/verrucae length and verrucae width/spore length index and outline were the most important morphological characters. The first two axes explain, respectively, 56.3% and 20.5% of the total variance. Regular depressed and irregular prominent verrucae were present in derived species. However, the morphology does not support any molecular clades. According to our analyses, the evolutionary pathway of the ornamentation of the spores is represented by depressed irregularly verrucae to folded perispore to depressed regular verrucae to irregularly prominent verrucae. Keywords: character evolution, ferns, eupolypods I, canonical correspondence analysis useful in phylogenetic analyses of several other Serpocaulon is a fern genus restricted to the tropics groups of ferns (Wagner 1974; Pryer et al.
    [Show full text]
  • Morphological Features of the Anther Development in Tomato Plants with Non-Specific Male Sterility
    biology Article Morphological Features of the Anther Development in Tomato Plants with Non-Specific Male Sterility Inna A. Chaban 1, Neonila V. Kononenko 1 , Alexander A. Gulevich 1, Liliya R. Bogoutdinova 1, Marat R. Khaliluev 1,2,* and Ekaterina N. Baranova 1,* 1 All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; [email protected] (I.A.C.); [email protected] (N.V.K.); [email protected] (A.A.G.); [email protected] (L.R.B.) 2 Moscow Timiryazev Agricultural Academy, Agronomy and Biotechnology Faculty, Russian State Agrarian University, Timiryazevskaya 49, 127550 Moscow, Russia * Correspondence: [email protected] (M.R.K.); [email protected] (E.N.B.) Received: 3 January 2020; Accepted: 12 February 2020; Published: 17 February 2020 Abstract: The study was devoted to morphological and cytoembryological analysis of disorders in the anther and pollen development of transgenic tomato plants with a normal and abnormal phenotype, which is characterized by the impaired development of generative organs. Various abnormalities in the structural organization of anthers and microspores were revealed. Such abnormalities in microspores lead to the blocking of asymmetric cell division and, accordingly, the male gametophyte formation. Some of the non-degenerated microspores accumulate a large number of storage inclusions, forming sterile mononuclear pseudo-pollen, which is similar in size and appearance to fertile pollen grain (looks like pollen grain). It was discussed that the growth of tapetal cells in abnormal anthers by increasing the size and ploidy level of nuclei contributes to this process. It has been shown that in transgenic plants with a normal phenotype, individual disturbances are also observed in the development of both male and female gametophytes.
    [Show full text]
  • Growth of Fern Gametophytes After 20 Years of Storage in Liquid Nitrogen
    FERN GAZ. 20(8): 337-346. 2018 337 GROWTH OF FERN GAMETOPHYTES AFTER 20 YEARS OF STORAGE IN LIQUID NITROGEN V. C. Pence Center for Conservation and Research of Endangered Wildlife (CREW) Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA email: [email protected] Key words: cryopreservation, ex situ conservation, gametophyte; in vitro; long-term storage ABSTRACT In vitro grown gametophytes of six species of ferns, which had been cryopreserved using the encapsulation dehydration procedure, were evaluated for survival after 20 yrs of storage in liquid nitrogen. Tissues were rewarmed and transferred to a recovery medium with the same methods originally used to test pre-storage viability. All six species resumed growth. Post-storage viability was not consistently higher or lower than pre-storage viability of LN exposed tissues, likely reflecting the small sample sizes. However, these results demonstrate that long-term storage in liquid nitrogen is a viable option for preserving gametophytes of at least some fern species and could be utilized as an additional tool for preserving valuable gametophyte collections and for the ex situ conservation of fern biodiversity. INTRODUCTION For many species of ferns, gametophyte tissues have proven to be highly adaptable to growth in vitro (Table 1) . Most of these have been initiated through the aseptic germination of spores, although the aseptic germination of gemmae has also been demonstrated (Raine & Sheffield, 1997). As in vitro cultures, gametophytes can provide tissues for research and for propagation, both for ornamental ferns as well as for ferns of conservation concern. The ex situ conservation of ferns has traditionally relied on living collections and spore banks (Ballesteros, 2011).
    [Show full text]
  • Flora of New Zealand Ferns and Lycophytes Davalliaceae Pj
    FLORA OF NEW ZEALAND FERNS AND LYCOPHYTES DAVALLIACEAE P.J. BROWNSEY & L.R. PERRIE Fascicle 22 – OCTOBER 2018 © Landcare Research New Zealand Limited 2018. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: “Source: Manaaki Whenua – Landcare Research” Attribution if making an adaptation or derivative work: “Sourced from Manaaki Whenua – Landcare Research” See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Brownsey, P. J. (Patrick John), 1948– Flora of New Zealand : ferns and lycophytes. Fascicle 22, Davalliaceae / P.J. Brownsey and L.R. Perrie. -- Lincoln, N.Z.: Manaaki Whenua Press, 2018. 1 online resource ISBN 978-0-9 47525-44-6 (pdf) ISBN 978-0-478-34761-6 (set) 1.Ferns -- New Zealand – Identification. I. Perrie, L. R. (Leon Richard). II. Title. III. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.394.742(931) DC 587.30993 DOI: 10.7931/B15W42 This work should be cited as: Brownsey, P.J. & Perrie, L.R. 2018: Davalliaceae. In: Breitwieser, I.; Wilton, A.D. Flora of New Zealand – Ferns and Lycophytes. Fascicle 22. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B15W42 Cover image: Davallia griffithiana. Habit of plant, spreading by means of long-creeping rhizomes. Contents Introduction..............................................................................................................................................1
    [Show full text]
  • The Development Op the Sorus in Some Species Of
    THE DEVELOPMENT OP THE SORUS IN SOME SPECIES OF NEPHROLEPIS, TOGETHER WITH OBSERVATIONS ON POINTS OP ANATOMICAL INTEREST. * * * i|t * * ** * * * $ # $ ** * * * * ** * * * * * Thesis submitted by Isabella M. Case, M. A. , B. Sc. for The Degree of Ph.D. ProQuest Number: 13905578 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905578 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Introduction, Systematic position etc. Materials used Dev. of sorus of N, bis errata External appearance and habit of plant Origin of stolons Operation of size factor Detailed anatomy of stolon Anatomy of stem Pinna trace N • acuminata N. exaltata, etc. Comparative Discussion Summary Bibliography Description of figures THE DEVELOPMENT OP THE SORUS IN SOME SPECIES OP NEPHROLEPIS, TOGETHER WITH OBSERVATIONS ON POINTS OP ANATOMICAL INTEREST . Hooker in his "Species Filicum" (Vol. IV) describes six species of Nephrolepis, viz. N. tuberosa (Pr.), N. exaltata (Schott), N. acuta (Pr.), N. obliterata (Hook), N. floccigera (Moore) and N. davallioides (Kze.), the nomenclature being upheld by Christensen (Index Pilicum) In only two cases, viz. N.
    [Show full text]
  • RABBITFOOT FERN Davallia Fejeensis
    RABBITFOOT FERN Davallia fejeensis RABBITFOOT FERN Davallia fejeensis Rabbitfoot Ferns perform best in bright, indirect sunlight. The plants produce furry rhizomes that creep along the soil surface--hence the name Rabbitfoot Fiji and Micronesia Fern! Here it is planted in a matte-white ceramic pot. Check the soil for Medium Sunlight dampness once a week. If dry, add about a cup of water, keeping in mind that any excess will build up in the bottom and should be avoided. Pet-Friendly; Conversation Piece Moderate As houseplants, bright indirect or Keep evenly moist and mist to filtered light is best. increase humidity. Can be difficult to grow in low humidity. Needs a little extra care. Just Prefer warm and humid climates. be sure the plant has enough Keep above 60F. Grown outdoors, humidity and that it is not in too Rabbit Foot Ferns are hardy in much sunlight. USDA zones 10-11. Feed with a liquid, indoor plant Plant in well-draining organic-rich soil. fertilizer about once every 2 Plants are sensitive to chemicals, so weeks during the growing season. avoid using leaf shine or pesticides. Do not fertilize in winter. Tobacco smoke, scented candles, and air pollution can harm the plant. Older leaves will periodically die off Yes! Rabbit Foot Ferns are so prune back to stem or rhizome non-toxic to dogs and cats. for tidier appearance. Rabbit Foot Ferns can be propagated by cutting off rhizomes with leaves and repotting. Plants should not be separated unless very large..
    [Show full text]
  • Anther Institute of Lifelong Learning, University of Delhi Lesson
    Anther Lesson: Anther Author Name: Dr. Bharti Chaudhry and Dr. Anjana Rustagi College/ Department: Ramjas College, Gargi College, University of Delhi Institute of Lifelong Learning, University of Delhi Anther Table of contents Chapter: Anther • Introduction • Structure • Development of Anther and Pollen • Anther wall o Epidermis o Endothecium o Middle layers o Tapetum o Amoeboid Tapetum o Secretory Tapetum o Orbicules o Functions of Orbicules o Tapetal Membrane o Functions of Tapetum • Summary • Practice Questions • Glossary • Suggested Reading Introduction Stamens are the male reproductive organs of flowering plants. They consist of an anther, the site of pollen development and dispersal. The anther is borne on a stalk- like filament that transmits water and nutrients to the anther and also positions it to aid pollen dispersal. The anther dehisces at maturity in most of the angiosperms by a longitudinal slit, the stomium to release the pollen grains. The pollen grains represent the highly reduced male gametophytes of flowering plants that are formed within the sporophytic tissues of the anther. These microgametophytes or 1 Institute of Lifelong Learning, University of Delhi Anther pollen grains are the carriers of male gametes or sperm cells that play a central role in plant reproduction during the process of double fertilization. Figure 1. Diagram to show parts of a flower of an angiosperm Source: http://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Mature_flower_diagra m.svg/2000px-Mature_flower_diagram.svg.png Figure 2 2 Institute of Lifelong Learning, University of Delhi Anther a. Hibiscus flower; b. Hibiscus stamens showing monothecous anthers; c. Lilium flower showing dithecous anthers Source: a.
    [Show full text]
  • The SPOROCYTELESS Gene of Arabidopsis Is Required for Initiation of Sporogenesis and Encodes a Novel Nuclear Protein
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein Wei-Cai Yang,1 De Ye,1 Jian Xu, and Venkatesan Sundaresan2 The Institute of Molecular Agrobiology, National University of Singapore, Singapore 117604 The formation of haploid spores marks the initiation of the gametophytic phase of the life cycle of all vascular plants ranging from ferns to angiosperms. In angiosperms, this process is initiated by the differentiation of a subset of floral cells into sporocytes, which then undergo meiotic divisions to form microspores and megaspores. Currently, there is little information available regarding the genes and proteins that regulate this key step in plant reproduction. We report here the identification of a mutation, SPOROCYTELESS (SPL), which blocks sporocyte formation in Arabidopsis thaliana. Analysis of the SPL mutation suggests that development of the anther walls and the tapetum and microsporocyte formation are tightly coupled, and that nucellar development may be dependent on megasporocyte formation. Molecular cloning of the SPL gene showed that it encodes a novel nuclear protein related to MADS box transcription factors and that it is expressed during microsporogenesis and megasporogenesis. These data suggest that the SPL gene product is a transcriptional regulator of sporocyte development in Arabidopsis. [Key Words: Arabidopsis mutant; sporogenesis; sporocyte; SPL; nuclear protein] Received May 12, 1999; revised version accepted July 1, 1999. The life cycle of plants consists of an alternation be- 1994), although several sporophytic mutants that affect tween a diploid, sporophytic generation and a haploid, sporogenesis have been reported (Robinson-Beers et al.
    [Show full text]
  • Davallia Denticulata L 1101000110101001210 D
    J EDINBURGH UNIVERSITY LIBRARY Shelf Mark __l UniversityH Edinburgh 30150 024493592 Systematic Study on Davalliaceae in Peninsular Malaysia Haja Maideen Kader Maideen Doctor of Philosophy The University of Edinburgh Royal Botanic Garden Edinburgh 2008 Abstract Davalliaceae is a fern family established by A. B. Frank in 1877, based on the genus Davallia. It contains about 150 species in 8-12 genera and is restricted to the Old World tropics and subtropics. They are mostly epiphytes with long creeping fleshy rhizomes covered with peltate scales. In Peninsular Malaysia, the Davallioid ferns belong to Davallia Sm., Humata Cav., Leucostegia C. Presl and Araiostegia Copel. (Parris & Latiff, 1997). This study used morphological, cytological and molecular (three chloroplast regions) data in an attempt to classify Davalliaceae, especially in Peninsular Malaysia. The results presented in this thesis showed moderate to strong support for the paraphyly of genera in Davalliaceae, especially in Peninsular Malaysia. The results were incongruent with the latest classification based on morphology (Nooteboom, 1998) but congruent with a global study based on molecular data. The phylogeny showed that Leucostegia doest not belong to Davalliaceae. Four major clades were recognised in Davalliaceae, namely the Araiostegia Clade (AC); Davallia with two clades: Davallia Clade I (denticulata clade and dimorpha-divaricata clade), Davallia Clade II (scyphularia-solida clade and trichomanoides clade) and the Humata clade (HC). Maximum parsimony and Bayesian analyses of rps4 + rps4-trnS IGS and combined three regions produced congruent topologies, but the topologies ofrbcL and trnL-F region produced only slight differences. The expanded rbcL data also showed that all species were fully resolved without having a separated/regional clade.
    [Show full text]
  • Reproductive Morphology of Sargentodoxa Cuneata (Lardizabalaceae) and Its Systematic Implications
    Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. By: Hua-Feng Wang, Bruce K. Kirchoff and Zhi-Xin Zhu Wang, H.-F., Kirchoff, B. K., Qin, H.-N., Zhu, Z.-X. 2009. Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. Plant Systematics and Evolution 280: 207–217. Made available courtesy of Springer-Verlag. The original publication is available at http://link.springer.com/article/10.1007%2Fs00606-009-0179-3. ***Reprinted with permission. No further reproduction is authorized without written permission from Springer-Verlag. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: The reproductive morphology of Sargentodoxa cuneata (Oliv) Rehd. et Wils. is investigated through field, herbarium, and laboratory observations. Sargentodoxa may be either dioecious or monoecious. The functionally unisexual flowers are morphologically bisexual, at least developmentally. The anther is tetrasporangiate, and its wall, of which the development follows the basic type, is composed of an epidermis, endothecium, two middle layers, and a tapetum. The tapetum is of the glandular type. Microspore cytokinesis is simultaneous, and the microspore tetrads are tetrahedral. Pollen grains are two-celled when shed. The mature ovule is crassinucellate and bitegmic, and the micropyle is formed only by the inner integument. Megasporocytes undergo meiosis resulting in the formation of four megaspores in a linear tetrad. The functional megaspore develops into an eight-nucleate embryo sac after three rounds of mitosis. The mature embryo sac consists of an egg apparatus (an egg and two synergids), a central cell, and three antipodal cells.
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • A Putative Bhlh Transcription Factor Is a Candidate Gene for Male Sterile 32
    Liu et al. Horticulture Research (2019) 6:88 Horticulture Research https://doi.org/10.1038/s41438-019-0170-2 www.nature.com/hortres ARTICLE Open Access A putative bHLH transcription factor is a candidategeneformale sterile 32,alocus affecting pollen and tapetum development in tomato Xiaoyan Liu1,2,MengxiaYang2, Xiaolin Liu2,KaiWei2,XueCao2, Xiaotian Wang2,XiaoxuanWang2,YanmeiGuo2, Yongchen Du2,JunmingLi2,LeiLiu2,JinshuaiShu2,YongQin1 and Zejun Huang 2 Abstract The tomato (Solanum lycopersicum) male sterile 32 (ms32) mutant has been used in hybrid seed breeding programs largely because it produces no pollen and has exserted stigmas. In this study, histological examination of anthers revealed dysfunctional pollen and tapetum development in the ms32 mutant. The ms32 locus was fine mapped to a 28.5 kb interval that encoded four putative genes. Solyc01g081100, a homolog of Arabidopsis bHLH10/89/90 and rice EAT1, was proposed to be the candidate gene of MS32 because it contained a single nucleotide polymorphism (SNP) that led to the formation of a premature stop codon. A codominant derived cleaved amplified polymorphic sequence (dCAPS) marker, MS32D, was developed based on the SNP. Real-time quantitative reverse-transcription PCR showed that most of the genes, which were proposed to be involved in pollen and tapetum development in tomato, were downregulated in the ms32 mutant. These findings may aid in marker-assisted selection of ms32 in hybrid breeding 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; programs and facilitate studies on the regulatory mechanisms of pollen and tapetum development in tomato. Introduction can produce normal pollen, but the pollen cannot reach Tomato (Solanum lycopersicum) is one of the most the stigma because of indehiscent anthers or dehiscent important vegetable crops in the world.
    [Show full text]