The Work of Sophie Germain and Niels Henrik Abel on Fermat’s Last Theorem
Lene-Lise Daniloff
Master’s Thesis, Spring 2017
This master’s thesis is submitted under the master’s programme Mathematics, with programme option Mathematics, at the Department of Mathematics, University of Oslo. The scope of the thesis is 60 credits.
The front page depicts a section of the root system of the exceptional Lie group E8, projected into the plane. Lie groups were invented by the Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in differential equations and today they play a central role in various parts of mathematics.
a, b, c n > 2
an = bn + cn an = bn + cn
n = 3 n = 4
nn = mp
(am)p = (bm)p + (cm)p
p
an = bn+cn
- a, b, c
- a
- b
an = bn + cn
c
an = bn + cn
- n
- n > 2
- n
(−a)n = −an
- n
- a, b, c
na, b a, b
- c
- n
- c
- n
- a
- p
- a
ap−1 ≡ 1 (mod p)
φ : Z+ → Z+
φ
φ(n)
- n
- n
- a
- n
aφ(n) ≡ 1 (mod n)
p
φ(p) = p − 1
n
- φ
- φ
nn
- g
- g
k = φ(n) gk ≡ 1 (mod n)
p
φ(p − 1)
pnmgpn
- n
- k
m ≡ gk (mod n)
- p
- g
- p
g, g2, ..., gp−1
- n
- n = 2, n = 4, n = pk
- k > 0
- n = 2pk
- p > 2
ꢀ
- p
- g
- p
gp−1 = 1
- n
- p
- n
- m
- n
m
a, n, m m
- a
- n
xn ≡ a
(mod m)
- n = 3
- m = 5
- 1, 2, 3
- 3
x
x3
(mod 5)
- n = 3
- m = 7
- 3
x
x3
(mod 7)
7
- 3
- 7
- 3
- 5
- p
- n
- p
- u, v
- n
un−vn
- φ(u, v) =
- un − vn = (u − v)φ(u, v)
u−v
φ(u, v)
(u − v)(un−1 + un−2v + ... + uvn−1 + vn−1
)
φ(u, v) = u − v
= un−1 + un−2v + ... + uvn−1 + vn−1
- n
- xyz
np
xn + yn + zn ≡ 0 (mod p) xn ≡ n (mod p)
- x ≡ 0
- y ≡ 0
z ≡ 0 (mod p)
xn
- x, y, z
- n
zn
xn + yn + zn = 0
n
−xn =
yn +zn = (y+z)(yn−1 −yn−2z+...−yzn−2 +zn−1) = (y+z)φ(y, −z) q
- y ≡ −z (mod q)
- φ(y, −z) ≡ 0 (mod q)
nyn−1 ≡ 0
(mod q)
- q|n
- q|yn−1
- q|n
- q = n
n | xyz
- x
- y
y +z nn|y φ(y, −z)
- −yn = (x + z)φ(x, −z)
- −zn = (x + y)φ(x, −y)
a, b, c, α, β, γ
y + z = an x + y = bn x + z = cn φ(y, −z) = αn φ(x, −y) = βn φ(x, −z) = γn
−x = aα −y = bβ −z = cγ p
2x = bn + cn − an
- x ≡ 0 (mod p)
- bn + cn + (−a)n ≡ 0 (mod p)
- a, b
- c
- p
- b
- c
- p
- x, y
x, z
a ≡ 0 (mod p)
y + z = an
y ≡ −z (mod p) αn = φ(y, −z) ≡ nyn−1 (mod p) βn = φ(x, −y) ≡ yn−1 (mod p)
⇒ αn ≡ nβn (mod p)
β ≡ 0 (mod p)
g
gβ ≡ 1 (mod p)
gn
αngn ≡ n (mod p)
ꢀ
n < 100 p
5
- 11
- n = 5
- p = 11
- 5
- 1, 0
n = 5
- −1
- 11
- ±1 ± 1 ± 1 ≡ 0
- n
- p
n
- p
- p
- n
- p
n
pn
pn
x
- n = 5
- p = 11
- 5
- 11
x5
(mod 11)
5
11
n = 5
- p = 7
- 5
- 7
x
x5
(mod 7)
5
1, 2, 3, 4, 5, 6 p
- n
- p
- x, y
- z
xn +yn +zn ≡ 0 (mod p)
- x ≡ 0 (mod p) y ≡ 0 (mod p)
- z ≡ 0 (mod p)
- p
- n
⇒
p
- n
- a
b
an ≡ bn + 1 (mod p)
1 ≤ a, b ≤ p − 1
an − bn − 1n ≡ 0 (mod p)
a
- b
- p
- a, b < p
⇒
- p
- n
xn + yn + yn ≡ 0 (mod p)
x, y
ax ≡ y (mod p)
- z
- p
- a, b
bx ≡ z (mod p)
- p
- a
- b
- y, z
p
xn + (ax)n + (bx)n ≡ 0 (mod p)
⇒ 1 + an + bn ≡ 0 (mod p)
- p
- n
ꢀ
xn + yn + zn = 0
n
- x, y
- z
- n
- x, y, z
- n
- p
- n
p = 2Nn + 1
N
- p
- n
- p
- n
- p − 1
pp
p = 2
p
- n
- p − 1
- m
- n = Km
- p − 1 = Mm
K, M p − 1 = MK n = 2Nn p
MK
- 2N =
- p = 2Nn + 1
- n
- p
- p − 1
- n
a, b
a(p−1)+bn = 1
- u, v, w
- p
u + v + w ≡ 0 (mod p)
ubn = u(up−1 −a
- )
- ≡ u (mod p)
- vbn ≡ v (mod p)
- wbn ≡ w (mod p)
(ub)n + (vb)n + (wb)n ≡ 0 (mod p)
p
- p
- uvw
ꢀ
n
p = 2Nn + 1
- n
- N
- 2N
- n
p
xn ≡ b (mod p) b2N ≡ 1 (mod p)
0 < b < p
xn ≡ b (mod p) b2N ≡ (xn)2N ≡ xp−1 ≡ 1 (mod p)
- b2N ≡ 1 (mod p)
- b = 1
b = 1 x = 1
p
xn ≡ b (mod p)
- p
- g
gp−1 ≡ 1 (mod p)
p − 1
1 ≡ b2N ≡ gp−1 = g2Nn = (gn)2N (mod p) b ≡ gn (mod p)
- 2N
- b
b2N ≡ 1 (mod p)
- g
- p
gn, g2n, ..., g2Nn
ꢀ
- k
- n
- p
p = 2Nn + 1
nn
- p − k
- n
- p
(p − k)n ≡ kn (mod p)
n
k ≡ xn (mod p) p − k ≡ −k ≡ −xn = (−x)n (mod p)
p − k nn
ꢀ ꢁ
n
X
ni
- (p − k)n =
- (−1)i
- pn−iki ≡ kn (mod p)
i=0
ꢀ
n = 3 n = 3
- N
- p > 13
p = 6N + 1
1, 2,
. . . , 6N
p − 1 = 6N
2N
2N − 1
4N
4N − 2(2N − 1) = 2
p > 13
23 = 8
84
= 2
6N
2
1, 5, 8, 11..., 6N − 10, 6N − 7, 6N − 4, 6N
N ≥ 5
p ≥ 31
27 = 33
27 ≡ 0 (mod 3)
6N
- p < 31
- p
43 = 64 ≡ 7 (mod 19)
p
- p
- r, s
p
gq = 2
- r − s = 2
- g
q
- 3 | q
- q = 3k + 1
- q = 3k − 1
kr + s
- r + s ≡ 0 (mod p)
- 2 = r − s ≡ 2r (mod p)
r < p r = 1
r ≡ 1 (mod p)
r − s = 2 m
r + s ≡ 0 (mod p) r + s ≡ gm (mod p)
- 3|m
- r+s
- rs−1 +1 ≡ gms−1 (mod p)
- r+s ≡ gm (mod p)
- m = 3l + 1
- m = 3l − 1
l ∈ N
m = 3l + 1 q = 3k − 1
- m = 3l±1
- m = 3l−1
q = 3k ∓ 1 q = 3k+1 r2 − s2 = (r − s)(r + s)
= 2(r + s) ≡ g3k∓1g3l±1 (mod p)
= g3(k+l) r2s−2 −1 ≡ g3(k+l)s−2 (mod p)
- m = 3l + 1
- q = 3k + 1
3l ± 1 m = 3l − 1
- q = 3k − 1
- 3k ± 1
2r = (r − s) + (r + s)
⇒ g3k±1r ≡ g3k±1 + g3l±1 (mod p)
⇒ r ≡ 1 + g3(k−l) (mod p)
ꢀ
n = 3 p = 6N + 1 n = 3
n = 3
n > 3
2Nn + 1
- n > 3
- n
p = 2Nn + 1
N = 1, 2, 4, 5
Nn
p = 2Nn + 1
- n
- N
p = 2Nn + 1
- n
- p
xn + yn = zn
- x + y, z − y
- z − x
n2n−1
n
- n = 5
- 11, 41, 71
x + y zn = (x + y)φ(x, −y)
101
n
zn
59 · 115 · 415 · 715 · 1015
xn + yn = zn
x, y, z
- x, y
- z
x, y, z
n2n−1
nn|z
- x+y
- n
- z − y
- z − x
- n
- x
- y
- x, y, z
- n
x + y = an z − x = bn z − y = cn φ(x, −y) = αn φ(x, z) = βn φ(y, z) = γn aα = z bβ = y cγ = x
- n
- z
- n
- x + y ≡
xn + yn = zn ≡ 0 (mod n)
s = x + y
xn + yn
x + y φ(x, −y) =
(s − y)n + yn
=
s
ꢀ ꢁ
n−1
X
1
ni
- =
- (−1)i
sn−iyi
s
i=0
- ꢀ ꢁ
- ꢀ
- ꢁ
- n
- n
= sn−1
−
sn−2y + ... +
yn−1
1
n − 1
- φ(x, −y)
- n
- n
- zn = (x + y)φ(x, −y)
x + y
nnm−1
m
- x + y = nmn−1an
- φ(x, −y) = nαn
- a
- α
- n