Arithmetic and Memorial Practices by and Around Sophie Germain in the 19Th Century Jenny Boucard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Work of Sophie Germain and Niels Henrik Abel on Fermat's Last
The Work of Sophie Germain and Niels Henrik Abel on Fermat’s Last Theorem Lene-Lise Daniloff Master’s Thesis, Spring 2017 This master’s thesis is submitted under the master’s programme Mathematics, with programme option Mathematics, at the Department of Mathematics, University of Oslo. The scope of the thesis is 60 credits. The front page depicts a section of the root system of the exceptional Lie group E8, projected into the plane. Lie groups were invented by the Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in differential equations and today they play a central role in various parts of mathematics. Abstract In this thesis, we study what can be said about Fermat's Last Theorem using only elementary methods. We will study the work of Sophie Germain and Niels Henrik Abel, both who worked with Fermat's Last Theorem in the early 1800s. Abel claimed to have proven four partial results of Fermat's Last Theorem, but mentioned nothing about how he had proved them. The aim of this thesis is to rediscover these four proofs. We will show that using only elementary methods, we are able to prove parts of Abel's theorems, but we have not found it possible to prove them in full generality. We will see that allowing ourselves to use some non-elementary methods one can prove more of Abel's claims, but still not in full generality. i Acknowledgements First of all I would like to thank my supervisor Arne B. Sletsjøe for suggesting the topic, and guiding me through the process of writing the thesis. -
Sophie Germain, the Princess of Mathematics and Fermat's Last
Sophie Germain, The Princess of Mathematics and Fermat's Last Theorem Hanna Kagele Abstract Sophie Germain (1776-1831) is the first woman known who managed to make great strides in mathematics, especially in number theory, despite her lack of any formal training or instruction. She is best known for one particular theorem that aimed at proving the first case of Fermats Last Theorem. Recent research on some of Germain`s unpublished manuscripts and letters reveals that this particular theorem was only one minor result in her grand plan to prove Fermat`s Last Theorem. This paper focuses on presenting some of Sophie Germains work that has likely lain unread for nearly 200 years. 1. Introduction Sophie Germain has been known for years as the woman who proved Sophie Germain's Theorem and as the first woman who received an award in mathematics. These accomplishments are certainly impressive on their own, especially being raised in a time period where women were discouraged from being educated. However, it has recently been discovered that her work in number theory was far greater than an isolated theorem. In the last 20 years, her letters to mathematicians such as Gauss and Legendre have been analyzed by various researchers and her extensive work on the famous Fermat's Last Theorem has been uncovered. Germain was the first mathematician to ever formulate a cohesive plan for proving Fermat's Last Theorem. She worked tirelessly for years at successfully proving the theorem using her method involving modular arithmetic. In pursuit of this goal, she also proved many other results, including the theorem she is famous for. -
Attempt on Magnification of the Mechanism of Enzyme Catalyzed Reaction Through Bio-Geometric Model for the Five Points Circle In
International Journal of Emerging Scientific Research 1 (2020) 1 – 19 International Journal of Emerging Scientific Research (IJESR) Journal homepage: www.sciengtexopen.org/index.php/ijesr Attempt on Magnification of the Mechanism of Enzyme Catalyzed Reaction through Bio-geometric Model for the Five Points Circle in the Triangular Form of Lineweaver-Burk Plot a, b, c, d Vitthalrao Bhimasha Khyade , Avram Hershko a Sericulture Unit, Malegaon Sheti Farm, Agricultural Development Trust Baramati, Shardanagar, Maharashtra, India b Department of Zoology, Shardabai Pawar Mahila Mahavidyalaya, Shardanagar Tal. Baramati Dist. Pune – 413115, India c Dr. APIS, Shrikrupa Residence, Teachers Society, Malegaon Colony (Baramati) Dist. Pune – 413115, India d Unit of Biochemistry, The B. Rappaport Faculty of Medicine, and the Rappaport Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel Authors’ Contributions This work was carried out in collaboration between all authors. V. B. Khyade carried out the research work, supervised by A. Hershko. Both authors (V. B. Khyade and A. Hershko) performed statistical analysis. Revision of the manuscript as well as corrections were made and approved by both authors. ARTICLE INFO ABSTRACT Article history: The bio-geometrical model is dealing with correlation between the “five events for Received 26 August 2020 enzyme catalyzed reaction” and “triple point event serving groups on the circle” in Received in revised form 23 September 2020 triangle obtained for the graphical presentation of the double reciprocal for magnification of the mechanism of enzyme catalyzed reaction. This model is based on Accepted 22 October 2020 the nine point circle in triangle of the double reciprocal plot. -
Sophie Germain and Special Cases of Fermat's Last Theorem
Sophie Germain and Special Cases of Fermat's Last Theorem Colleen Alkalay-Houlihan 1 Sophie Germain 1.1 A Passion for Mathematics Marie-Sophie Germain was a self-taught mathematician with an exceptional desire to learn mathe- matics. Born April 1, 1776 in Paris, France, revolution surrounded Germain's childhood. She came from a relatively prosperous family; her father was a silk merchant and was elected a member of the Constituent Assembly in 1789, when Germain was 13 years old. Escaping the chaos of revolution, Germain retreated into her father's library, where she discovered mathematics. The first books to enrapture her were Etienne B´ezout'sstandard mathematical textbooks and Jean-Etienne Montucla's \Histoire des math´ematiques."[2]Here she read the legend telling of how Archimedes, circa 212 B.C., was examining a geometric figure in the sand with such concentration that he did not respond to an enemy soldier's questions, and was speared to death. Germain began to realize that mathematics must be a fascinating subject, to inspire such absolute focus in a person, and henceforth she dedicated her time to studying math from the books in her father's study. In this time, however, women were not known to study mathematics; some aristocratic women were expected to have a basic understanding, but just enough to sustain a social conversation.[5] Germain, on the other hand, studied late into the night, absorbed in her attempts to understand, unguided, B´ezout'stexts. As her friend Guglielmo Libri recounted in her obituary, Germain's parents disapproved of her mathematical obsession. -
Bertrand and the Long Run Roberto Burguet József Sákovics August 2014
Bertrand and the Long Run Roberto Burguet József Sákovics August 2014 Barcelona GSE Working Paper Series Working Paper nº 777 Bertrand and the long run Roberto Burguety and József Sákovicsz August 11, 2014 Abstract We propose a new model of simultaneous price competition, based on firms offering personalized prices to consumers. In a market for a homogeneous good and decreasing returns, the unique equilibrium leads to a uniform price equal to the marginal cost of each firm, at their share of the market clearing quantity. Using this result for the short-run competition, we then investigate the long- run investment decisions of the firms. While there is underinvestment, the overall outcome is more competitive than the Cournot model competition. Moreover, as the number of firms grows we approach the competitive long- run outcome. Keywords: price competition, personalized prices, marginal cost pricing JEL numbers: D43, L13 We have benefited from fruitful discussions with Carmen Matutes. Burguet greatefully acknowledges financial support from the Spanish Ministry of Science and Innovation (Grant: ECO2011-29663), and the Generalitat de Catalunya (SGR 2014-2017). yInstitute for Economic Analysis, CSIC, and Barcelona GSE zThe University of Edinburgh 1 1 Introduction In this paper we take a fresh look at markets where the firms compete in prices to attract consumers. This is an elemental topic of industrial organization that has been thoroughly investigated, ever since the original contribution of Cournot (1838).1 Our excuse for re-opening the case is that we offer a fundamentally new way of modelling price competition, which naturally leads to a unique equilibrium with price equal to (perhaps non constant) marginal cost. -
Middlesex University Research Repository
Middlesex University Research Repository An open access repository of Middlesex University research http://eprints.mdx.ac.uk Delve, Janet (1999) The development of the mathematical department of the Educational Times from 1847 to 1862. PhD thesis, Middlesex University. Available from Middlesex University’s Research Repository at http://eprints.mdx.ac.uk/7993/ Copyright: Middlesex University Research Repository makes the University’s research available electronically. Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non- commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work’s full bibliographic details. This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s). If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address: [email protected] The item will be removed from the repository while any claim is being investigated. MX 7226926 X Contents ABSTRACT Mathematics held an important place in the first twelve of years of the Educational Times (1847-1923), and in November 1848 a department of mathematical questions and solutions was launched. In 1864 this department was reprinted in a daughter journal: Mathematical Questions with Their solutions from The Educational Times (MQ). -
Solving the Hard Problem of Bertrand's Paradox
Solving the hard problem of Bertrand's paradox Diederik Aerts Center Leo Apostel for Interdisciplinary Studies and Department of Mathematics, Brussels Free University, Brussels, Belgium∗ Massimiliano Sassoli de Bianchi Laboratorio di Autoricerca di Base, Lugano, Switzerlandy (Dated: June 30, 2014) Bertrand's paradox is a famous problem of probability theory, pointing to a possible inconsistency in Laplace's principle of insufficient reason. In this article we show that Bertrand's paradox contains two different problems: an \easy" problem and a \hard" problem. The easy problem can be solved by formulating Bertrand's question in sufficiently precise terms, so allowing for a non ambiguous modelization of the entity subjected to the randomization. We then show that once the easy problem is settled, also the hard problem becomes solvable, provided Laplace's principle of insufficient reason is applied not to the outcomes of the experiment, but to the different possible \ways of selecting" an interaction between the entity under investigation and that producing the randomization. This consists in evaluating a huge average over all possible \ways of selecting" an interaction, which we call a universal average. Following a strategy similar to that used in the definition of the Wiener measure, we calculate such universal average and therefore solve the hard problem of Bertrand's paradox. The link between Bertrand's problem of probability theory and the measurement problem of quantum mechanics is also briefly discussed. I. STATING THE PROBLEM The so-called (by Poincar´e) Bertrand's paradox describes a situation where a same probability question receives different, apparently correct, but mutually incompatible, answers. -
Doi:10.32703/2415-7422-2020-10-1(16)-62-71
http://www.hst-journal.com Історія науки і техніки 2020, том 10, вип. 1(16) History of science and technology, 2020, vol. 10, issue 1(16) DOI:10.32703/2415-7422-2020-10-1(16)-62-71 UDC 94(477):929 Лігін (Lihin) Oliinyk Olha Independent researcher, Ukraine e-mail: [email protected] https://orcid.org/0000-0002-1398-6679 The role of V. Lihin's scientific publications in international journals Abstract. In the 21st century, we live in the stage of human history when any information is as accessible as possible. The modern scientific world is based on an extensive network of journals. Thanks to them, we have the opportunity to get acquainted with the latest research results. In the 21st century, every reputable journal also has an online version, which makes the dissemination of scientific information almost instantaneous. We are so accustomed to the conveniences of the information age that it is difficult for us to imagine the difficulties that scientists faced a little over 150 years ago. In the second half of the nineteenth century, almost most of the sciences known to mankind were formed. The genesis of science launched the process of forming branch scientific communities and demanded stable ways of communication for productive and effective development of the branch. Scientific journals have become an ideal means of disseminating information, and a scientific article has been transformed from an ordinary letter into a modern form and has taken on an ideal form. Given all the above, it is important to consider the experience of V. Lihin in publishing articles in scientific journals abroad. -
On Leonardo Da Vinci's Proof of the Theorem of Pythagoras
LEONARDO DA VINCI'S PROOF OF THE THEOREM OF PYTHAGORAS FRANZ LEMMERMEYER While collecting various proofs of the Pythagorean Theorem for presenting them in my class (see [12]) I discovered a beautiful proof credited to Leonardo da Vinci. It is based on the diagram on the right, and I leave the pleasure of reconstructing the simple proof from this diagram to the reader (see, however, the proof given at the end of this article). Since I had decided to give correct references to as many results as possible (if only to set an example) I started looking at the many presen- tations of da Vinci's proofs on the internet for finding out where da Vinci had published his proof. It turned out that although this was a very well known proof, none of the many sources was able to point me to a book with a sound reference let alone to one of da Vinci's original publications. For this reason I gave up and simple remarked As a rule, one has to be very careful in such situations, meaning that claims that cannot be verified often turn out to be wrong. A simple search (with the keywords \da Vinci" and Pythagoras or Pitagoras) will reveal dozens of books that credit the proof above to da Vinci, including Maor's book [14] or the otherwise very accurate and highly readable book [17] by Ostermann & Wanner, where the proof is credited to da Vinci in Exercise 21 on p. 26. arXiv:1311.0816v2 [math.HO] 15 Jan 2014 Tracking down References. -
The Infinite Is the Chasm in Which Our Thoughts Are Lost: Reflections on Sophie Germain’S Essays
Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and Faculty Articles and Research Research 2020 The Infinite is the Chasm in Which Our Thoughts are Lost: Reflections on Sophie Germain's Essays Adam Glesser Bogdan D. Suceavă Mihaela Vajiac Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles Part of the History of Science, Technology, and Medicine Commons, and the Number Theory Commons The Infinite is the Chasm in Which Our Thoughts are Lost: Reflections on Sophie Germain's Essays Comments This article was originally published in Memoirs of the Scientific Sections of the Romanian Academy, tome XLIII, in 2020. Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Copyright The Romanian Academy Memoirs of the Scientific Sections of the Romanian Academy Tome XLIII, 2020 MATHEMATICS THE INFINITE IS THE CHASM IN WHICH OUR THOUGHTS ARE LOST: REFLECTIONS ON SOPHIE GERMAIN’S ESSAYS ADAM GLESSER1*, BOGDAN D. SUCEAVĂ2* AND MIHAELA B. VAJIAC3 1Associate Professor, Department of Mathematics, California State University Fullerton, CA, 92834-6850, U.S.A. 2Professor, Department of Mathematics, California State University Fullerton, CA, 92834-6850, U.S.A. 3Associate Professor, Faculty of Mathematics, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, U.S.A. *Adam Glesser and Bogdan D. Suceavă are two of the recipients of the Mathematical Association of America's Pólya writing Award on 2020, for their paper co-authored with Matt Rathbun and Isabel Marie Serrano, Eclectic illuminism: applications of affine geometry, College Mathematical Journal 50 (2019), no. -
Cournot-Bertrand Debate”: a Historical Perspective Jean Magnan De Bornier
History of Political Economy The “Cournot-Bertrand Debate”: A Historical Perspective Jean Magnan de Bornier 1. Introduction The distinction between models in terms of quantity and models in terms of price is a classical and well-established one in modern oli- gopoly theory. The former had its origin in Antoine Augustin Cour- not’s Recherches sur les Principes Mathe‘matiques de la The‘orie des Richesses (1838), while the latter is the result of criticism of Cournot’s book that Joseph Bertrand provided in a review published in 1883.’ The accepted version is that Cournot believed that producers in an oligopoly decide their policy assuming that other producers will main- tain their output at its existing level, while Bertrand considered it more realistic to assume that producers act on the belief that competitors will maintain their price rather than their output. According to W. Fellner (1949), “As is well known, the Cournot so- lution is based on the assumption that (in undifferentiated duopoly) each duopolist believes that his rival will go on producing a definite quantity irrespective of the quantity he produces. Obviously in these circumstances each duopolist believes that he can calculate the quan- 1. An English translation of Bertrand’s text is provided in an appendix to this article. Correspondence may be addressed to Jean Magnan de Bornier, FacultC d’konomie Appli- quk, 3 Avenue Robert Schumann, 13628 Aix en Provence Cedex, France. Pierre Salmon and Philippe Mongin as well as two anonymous referees provided useful comments on an earlier version of this text. Yolande Barriez helped translate from the German; Maggie Chev- aillier and James Pritchett helped to improve my English; to all, I wish to express my thanks; of course, any remaining errors and omissions remain my responsibility. -
Sophie Germain (1776–1831)
Sophie Germain (1776–1831) • born in Paris, daughter of a rich merchant • her home was meeting place for political discussions • In and after 1789, she started reading her father’s math books, self-studies in Latin in Greek, read Newton and Euler. • Germain could not enter university but obtained lecture notes from the École Polytech. in 1794 and sent her solutions to Lagrange under a false, male name (Antoine Le Blanc) • After a meeting with Lagrange, he was supportive and visited her at her home • Read Gauss’s Disquisitiones Arithmeticae in 1801 and started a correspondence with him (again as M. Le Blanc) • In 1806, the French occupied Gauss’s then hometown Braunschweig (Brunswick) and Germain was afraid Gauss would suffer Archimedes’s fate. Germain played her connections to ensure Gauss’s safety. In the course of this, Gauss learned about her true identity. • Gauss replied: How can I describe my astonishment and admiration on seeing my esteemed correspondent M le Blanc metamorphosed into this celebrated person. when a woman, because of her sex, our customs and prejudices, encounters infinitely more obstacles than men in familiarizing herself with [number theory's] knotty problems, yet overcomes these fetters and penetrates that which is most hidden, she doubtless has the most noble courage, extraordinary talent, and superior genius. • Germain then worked in number theory, in particular on FLT. • She also did celebrated work on elastic surfaces, sparked by an Academy Prize competition of the Institut de France. She won the prize after several incomplete attempts. • Her work was ignored by many contemporaries, such as Poisson and Laplace.