Brain Stimulation Via the Tongue: Medstar NRH Studies Pons™ For

Total Page:16

File Type:pdf, Size:1020Kb

Brain Stimulation Via the Tongue: Medstar NRH Studies Pons™ For Spring 2017 Vol. 6, No. 1 Brain Stimulation via the Tongue: MedStar NRH Studies PoNS™ I N S I D E : for Balance Restoration A new study at The investigation is evaluating a unique device called a Portable Rehabbing Bilateral Joint MedStar NRH is Neuromodulation Stimulator—PoNS™ for short. The device utilizes Replacement >>Page 3 sequenced patterns of electrical stimulation on the tongue in testing the value conjunction with physical therapy as a direct route to the cranial of cranial nerve nerves and brain stem. non-invasive “PoNS™ has been designed to boost neuroplasticity and regulate the neuromodulation electrochemical environment of the brain,” says Michael Yochelson, (CN-NINM) to MD, MBA, principal investigator of the study and vice president of improve vestibular medical affairs and chief medical officer at MedStar NRH. function after mild- “The concept is fairly simple. Stimulation of the trigeminal and moderate traumatic facial nerves via the tongue may activate neural impulses directly brain injury (TBI). in the brainstem. With sustained stimulation the impulses can travel throughout the brain and potentially jump-start a cascade of changes to the neural network and create new channels for the release of neurotransmitters,” Dr. Yochelson explains. Amputee Care: From PoNS™ is a small device that fits comfortably in the mouth and Pre-Surgery to Post- releases mild electrical stimulation to the tongue. Theoretically, Prostheses >>Page 4 combining neuro-stimulation with physical therapy will boost neuroplasticity and facilitate a better recovery even in patients who Next Generation ZeroG™ sustained TBI more than a year ago. at MedStar NRH >>Page 5 Continued on page 2. Developing Tool for Urinary Tract Infection MedStar NRH is testing the use of the PoNS™ device to stimulate Prevention >>Page 6 the tongue during therapy to improve balance. Knowledge and Compassion Focused on You Continued from page 1 Brain Stimulation via the Tongue... MEDSTAR NRH “Some preliminary research on a small number of people showed greater improvement in patients who utilized the device,” says Dr. Yochelson. “The hope is CONCUSSION CLINIC this larger clinical trial will help clarify its effectiveness.” IN BRIEF “ PoNS™ is a small The Concussion Clinic is a unique device that fits outpatient service of the MedStar comfortably in the NRH Rehabilitation Network that offers highly specialized services mouth and releases mild for people suffering from the electrical stimulation lingering—and often life altering— to the tongue to results of mild traumatic brain boost neuroplasticity injury (TBI). The program includes and facilitate a better assessments by a physician and/or neuropsychologist that include: recovery.” • Neurologic examination If PoNS™ proves useful in improving function after mild traumatic brain injury it • Balance testing could have wide-ranging appeal. More than 5 million Americans are living with a • Review of medications traumatic brain injury and between 30 and 65 percent of them suffer dizziness and a • Neuropsychological assessment lack of balance while sitting or standing. • For athletes, if previous screening was done with ImPACT, testing Study Parameters may be repeated Patient recruitment for the study is just underway at MedStar NRH and in five other Treatment is individualized to help medical centers in the U.S. and Canada. Patients must have suffered a concussion patients with long-term cognitive (mild TBI) or moderate TBI, be at least one year post injury and continue to have and/or physical impairment, but do problems with balance. Participants will be randomized into two groups: During not require hospitalization. When exercise and physical therapy, all groups will use the PoNS™ device; the control indicated, physical therapy for group will utilize sham stimulation and the treatment cohort will use the active concussion rehab and vestibular stimulation protocol. therapy, occupational therapy and Speech-Language Pathology is In a typical 20 to 30-minute PoNS™ session, the patient performs a set of physical available to patients. exercises, tailored toward their disability. Each of the exercises are paired with specific patterns of electrodes being activated on the PoNS, which in turn stimulate Recommendations are also made individual nerve endings on the tongue. Over time these nerve impulses from the about: tongue in association with specific activities help to form new neural pathways—and • Return to school, sports, and the patient regains control of that function. work “Patients will participate for five weeks,” explains Rahsaan Holley, OT, study • Accommodations for school or coordinator. “For two weeks, they will complete three hours of therapy at MedStar work, if appropriate NRH. Then they will continue to exercise at home for an additional three weeks. They • Recovery period follow-up will use the PoNS™ device during their therapy at MedStar NRH and at home. A • Further treatment if symptoms do baseline evaluation will be performed at the beginning of the process, and a follow- not improve as expected up assessment will examine any change in function.” The Concussion Clinic is available at outpatient centers throughout Potential of Neuromodulation the region. To learn more, go to “If outcomes prove positive, the technique could be used as a treatment tool for medstarnrh.org/concussionclinic. multiple diagnoses,” says Dr. Yochelson. “We’ve been examining neuromodulation through the use of external stimulation for some time,” he says. “But now it appears it may be an effective way to change and regulate the electrochemical environment of the brain and enhance neuroplasticity.” This is the focus of the MedStar NRH Center for Brain Plasticity and Research, Dr. Yochelson notes. “The PoNS™ study is one of a number of investigations examining ways to harness and boost neuroplasticity. We know that it underlies all cerebral learning and training and is the linchpin in recovery for a host of neurological disorders.” 2 MedStar National Rehabilitation Network MedStar NRH Experts Rehab Bilateral Joint Replacement Patients Joint replacement is among the most While not all patients require inpatient evaluation of patients’ equipment needs— common surgeries in the U.S., with a rehabilitation following joint replacement, and elimination of barriers they may face million procedures performed annually. those undergoing bilateral surgery can in their homes,” Mumma adds. The result is benefit from this type of intense care. outcomes that exceed national benchmarks. That number is expected to grow Patients will spend a minimum of three- exponentially in the next two decades— “We work hand-in-hand with orthopaedic hours-a-day in therapy during the average surgeons at a number of facilities such as with the number of knee replacement week-long stay. surgeries performed each year alone the Hospital for Special Surgery and with MedStar Health orthopaedic surgeons estimated to reach 3.5 million by 2030. Interdisciplinary Team including Drs. James Tozzi, Evan Argintar, of Orthopaedic Experts Among these surgeries will be a growing Savyasachi Thakkar, Brian Evans and Mark number of simultaneous and staged “The benefit of our inpatient treatment Zawadsky,” says Dr. Bunning. “These are bilateral joint replacement surgeries— program is our patients’ access to collegial relationships that truly benefit which is fast becoming today’s preferred multiple rehab professionals who take an our patients.” choice for many men and women. But integrated team approach and 24-hour- bilateral joint replacement comes with a-day coverage to diagnosis and manage some special considerations during any medical issues,” says Sherry Mumma, post-surgery rehabilitation—a challenge PT, DPT, ATP/SMS. the MedStar NRH Inpatient Orthopaedic “We are taking care of the whole Program is especially trained to meet. patient with a team of orthopaedic “Our program team provides rehabilitation experts including physical services to more than 200 joint replacement therapists, occupational patients a year—and that includes both therapists, nurses, case bilateral replacements, as well as an managers, recreation increasing number of revision surgeries. therapists, nutritionists and In fact, as patients live longer revision social workers,” she explains. surgery will become more commonplace. “Our goal is to maximize By 2030, it’s expected that 190,000 knee function and independence replacement revision surgeries will be so patients will be safe in their performed yearly,” says Robert Bunning, home environment. To reach MD, clinical director of the program. that goal, we work to increase range of motion, strength and Comprehensive Care for Complex Cases endurance,” she adds. “We have the level of experience that is “We understand that invaluable for patients—especially those recovery from bilateral joint whose recovery is more complex because replacement is complex,” says of chronic health conditions. This high Jennifer Offutt, OT. “So we level of skill is particularly important to work collaboratively on the promote the fullest possible recovery physical, psychological and from bilateral joint replacement,” he adds. pharmacological elements “Because we take an integrated, of recovery. That includes multidisciplinary approach to treatment, building confidence because we’re very good at managing those most patients experience fear of falling, of movement Deborah Morgan chronic health problems—as well had bilateral knee as preventing the most serious and of pain.” replacement complications
Recommended publications
  • Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G
    Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G. Jamieson, M.D. Weill Cornell Medicine, New York, NY The patient who presents with either acute or subacute confusion, in the absence of a clearly defined speech disorder and focality on neurological examination that would indicate an underlying mass lesion, needs to be evaluated for a multitude of neurological conditions. Many of the conditions that produce the recent onset of alteration in mental status, that ranges from mild confusion to florid delirium, may be due to infectious or inflammatory conditions that warrant acute intervention such as antimicrobial drugs, steroids or plasma exchange. However, some patients with recent onset of confusion have an underlying toxic-metabolic disorders indicating a specific diagnosis with need for appropriate treatment. The clinical presentations of some patients may indicate the diagnosis (e.g. hypoglycemia, chronic alcoholism) while the imaging patterns must be recognized to make the diagnosis in other patients. Toxic-metabolic disorders constitute a group of diseases and syndromes with diverse causes and clinical presentations. Many toxic-metabolic disorders have no specific neuroimaging correlates, either at early clinical stages or when florid symptoms develop. However, some toxic-metabolic disorders have characteristic abnormalities on neuroimaging, as certain areas of the central nervous system appear particularly vulnerable to specific toxins and metabolic perturbations. Areas of particular vulnerability in the brain include: 1) areas of high-oxygen demand (e.g. basal ganglia, cerebellum, hippocampus), 2) the cerebral white matter and 3) the mid-brain. Brain areas of high-oxygen demand are particularly vulnerable to toxins that interfere with cellular respiratory metabolism.
    [Show full text]
  • Efficacy And/Or Effectiveness of Portable Neuromodulation Stimulator (Pons®) As Treatment for Traumatic Brain Injury (TBI)”
    Evidence-Based Practice Group Answers to Clinical Questions “Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI)” A Rapid Systematic Review By WorkSafeBC Evidence-Based Practice Group Dr. Craig Martin Manager, Clinical Services Chair, Evidence-Based Practice Group October 2019 Clinical Services – Worker and Employer Services Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI) i About this report Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI) Published: October 2019 About the Evidence-Based Practice Group The Evidence-Based Practice Group was established to address the many medical and policy issues that WorkSafeBC officers deal with on a regular basis. Members apply established techniques of critical appraisal and evidence-based review of topics solicited from both WorkSafeBC staff and other interested parties such as surgeons, medical specialists, and rehabilitation providers. Suggested Citation WorkSafeBC Evidence-Based Practice Group, Martin CW. Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI). Richmond, BC: WorksafeBC Evidence- Based Practice Group; October 2019. Contact Information Evidence-Based Practice Group WorkSafeBC PO Box 5350 Stn Terminal Vancouver BC V6B 5L5 Email [email protected] Phone 604 279-7417 Toll-free 1 888 967-5377
    [Show full text]
  • Overview of the Reticular Formation (RF)
    TeachSheet Reticular Formation & Diffuse modulatory system Overview of the Reticular Formation (RF) The term reticular formation refers to the neuronal network within the brainstem, although it continues rostrally into the thalamus and hypothalamus and caudally into the propriospinal network of the spinal cord. A “coordinating system” (like the Limbic system) with “connections” to sensory, somatic motor and visceral motor systems Organization can be subdivided into two neuronal cell “columns” (medial to lateral) as well as on the basis of their neurotransmitter release Neuronal columns (many nuclei and names, but these are some of the major ones): o “Medial tegmental field” (large-celled nuclei) . Origin of the reticulospinal pathway . Role in coordinating posture, eye and head movements. o “Lateral tegmental field” (smaller and fewer cells, shorter local projections) . Extends from the medulla to the pons . Coordinate autonomic and limbic functions (e.g. micturition, swallowing, mastication and vocalization) The functions of the reticular formation include their ability to coordinate motor and sensory brainstem nuclei: o Pattern generator . Eye movements; horizontal (PPRF) and vertical (riMLF) . Rhythmical chewing movements (pons) . Posture and locomotion (midbrain and pons) . Swallowing, vomiting, coughing and sneezing (medulla) . Micturition (pons) o Respiratory control (medulla); expiratory, inspiratory, apneustic and pneumotaxic o Cardiovascular control (medulla); vasomotor pressor/depressor, cardioacceleratory and inhibitory. Afferents arise from baroreceptors (carotid sinus and aortic arch), chemoreceptors (carotid sinus, lateral reticular formation chemosensitive area in the medulla) and stretch receptors (lung and respiratory muscles) . Efferents arise from reticular formation neurons within the pons and medulla o Sensory modulation or “gate” control . The term “gating” refers to “modulation” of synaptic transmission from one set of neurons to the next.
    [Show full text]
  • The Portable Neuromodulation Stimulator (Pons)
    The Portable Neuromodulation Stimulator (PoNS™) FACT SHEET What is the PoNS? The Portable Neuromodulation Stimulator (PoNS) device is an investigational medical device being studied for the treatment of neurological symptoms caused by disease or trauma. The PoNS is currently being studied in the United States for the treatment of balance disorder related to mild to moderate Traumatic Brain Injury (mTBI), and in Canada for the treatment of gait and balance disorder for patients with Multiple Sclerosis (MS). It represents the first in a series of non-invasive devices -- based on the patented PoNS platform -- designed to amplify the brain’s powerful ability to heal itself. This is part of a new approach being studied for “symptom treatment” for the rising number of patients who have experienced loss of function as a result of neurological disease or trauma. What is the potential impact of the PoNS? As a result of their disease or injury, many patients are left with disrupted neural networks in the brain that are unable to carry neural impulses completely or efficiently. Neural impulses are the signals responsible for directing the functions of the body, such as movement control or sensory perception. Researchers believe that significantly increasing the activation of these neurons through electrical stimulation, combined with targeted functional therapy, may help reorganize and reactivate the networks responsible for those functions. While physicians and patients turn to available options to manage a host of neurological symptoms today, for millions living with these chronic disorders, there exists limited treatment options that actually help patients rehabilitate lost functions. The PoNS device is being studied as new potential option for the treatment of these chronic neurological symptoms of disease or trauma.
    [Show full text]
  • Reticular Formation and Sleep/Wakefulness
    Reticular Formation and Sleep/Wakefulness Maureen Riedl Department of Neuroscience University of Minnesota 1 Reticular Formation • The reticular formation is the oldest part of our nervous system phylogenetically. • It is present throughout the midbrain, pons and medulla. • Typically, the reticular formation is regions of the brainstem between clearly defined nuclei and tracts • It is groups of neurons embedded in a seeming disorganized mesh of axons and dendrites. 2 Reticular Formation • Although seemingly disorganized, over 100 groups of neurons related by function and connections have been identified in the reticular formation. 3 Reticular Formation Locus Coeruleus Cortex Spinal Cord Amygdala Superior Colliculus Reticular Formation Motor Nuclei Cerebellum Hippocampus Hypothalamus Periaqueductal Gray Thalamus 4 Reticular Formation • The reticular formation receives input from all parts of the nervous system… every sensory system, all parts of the motor system, thalamus, hypothalamus, cortex, etc. • The output of the reticular formation is as diverse as its input. • Many of the neurons in the reticular formation have large, highly branched dendrites that receive diverse information. 5 Reticular Formation • The reticular formation has a major role in regulation of: • Motor control • Sensory attention • Autonomic nervous system • Eye movements • Sleep and wakefulness 6 Reticulospinal & Reticulbulbar Projections • Reticular formation (RF) in the lower pons and medulla receives motor information from premotor cortex, motor cortex and cerebellum as well as proprioceptive and vestibular sensory information. • RF sends axons to cranial nerve motor nuclei and to ventral horn of the spinal cord via the reticulospinal tracts. 7 Reticulospinal & Reticulbulbar Projections • Reticular formation (RF) initiates ‘accompanying’ movements. • Accompanying movements are subconscious and are needed in support of a consciously initiated movement.
    [Show full text]
  • Brain Anatomy
    BRAIN ANATOMY Adapted from Human Anatomy & Physiology by Marieb and Hoehn (9th ed.) The anatomy of the brain is often discussed in terms of either the embryonic scheme or the medical scheme. The embryonic scheme focuses on developmental pathways and names regions based on embryonic origins. The medical scheme focuses on the layout of the adult brain and names regions based on location and functionality. For this laboratory, we will consider the brain in terms of the medical scheme (Figure 1): Figure 1: General anatomy of the human brain Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 12.2 CEREBRUM: Divided into two hemispheres, the cerebrum is the largest region of the human brain – the two hemispheres together account for ~ 85% of total brain mass. The cerebrum forms the superior part of the brain, covering and obscuring the diencephalon and brain stem similar to the way a mushroom cap covers the top of its stalk. Elevated ridges of tissue, called gyri (singular: gyrus), separated by shallow groves called sulci (singular: sulcus) mark nearly the entire surface of the cerebral hemispheres. Deeper groves, called fissures, separate large regions of the brain. Much of the cerebrum is involved in the processing of somatic sensory and motor information as well as all conscious thoughts and intellectual functions. The outer cortex of the cerebrum is composed of gray matter – billions of neuron cell bodies and unmyelinated axons arranged in six discrete layers. Although only 2 – 4 mm thick, this region accounts for ~ 40% of total brain mass. The inner region is composed of white matter – tracts of myelinated axons.
    [Show full text]
  • Pons Treatment™: Restoring Balance and Gait Through Noninvasive Neuromodulation1-4
    Introducing PoNS™ (Portable Neuromodulation Stimulator) PoNS Treatment™: Restoring balance and gait through noninvasive neuromodulation1-4 The PoNS™ device is intended for use as an acute treatment of chronic balance deficit due to mild-to- moderate traumatic brain injury (mmTBI), and is to be used in conjunction with physical therapy (PT). The device is limited to prescription use. Contraindications The PoNS™ device delivers electrical stimulation directly to the surface of the tongue. Precautions for use are similar to those for transcutaneous electrical nerve stimulation (TENS). Electrical stimulation SHOULD NOT be used: if there is an active or suspected malignant tumor, in areas of recent bleeding or open wounds, or in areas that lack normal sensation. PoNS™ has not been tested on, and thus should not be used by, individuals under the age of 18 or who are pregnant. PoNS™ should not be used in patients sensitive to nickel, gold, or copper. PoNS™ is an authorized medical device and commercially available in Canada. PoNS™ is an investigational device under review for EU clearance by an EU notified body and by TGA in Australia; PoNS™ is not commercially available in the US, EU, or Australia. ™ HEALING IN MIND In patients who have experienced an mmTBI Chronic balance deficit is prevalent5-8 ~350 people in Canada are living with chronic balance deficit THOUSAND after an mmTBI5-7 ~13 new cases of chronic balance deficit from mmTBI THOUSAND are reported annually in Canada6-8 Rehabilitation therapy (physical therapy, occupational therapy,
    [Show full text]
  • Tegmental Pontine Hemorrhages: Clinical Features and Prognostic Factors
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES Tegmental Pontine Hemorrhages: Clinical Features and Prognostic Factors Marcelo Lancman, Jorge Norscini, Hripsime Mesropian, Carlos Bardeci, Toselli Bauso and Rubens Granillo ABSTRACT: We report six patients with partial, predominantly paramedian, tegmental pontine hemorrhages. Constant clinical manifestations consisted of: ipsilateral miosis, horizontal gaze paresis, lower motor neuron facial paresis, contralateral hemisensory loss and mild and transitory hemiparesis, dysarthria and mild or no compromise of consciousness. Five out of six were hypertensive. All patients survived with mild sequelae, oculomotor disturbances being the most persistent deficit. We found in our patients that a transverse diameter of less than 17 mm, unilaterality of the injury and absence of coma were the major indicators of a favorable outcome. RESUME: Hemorragie de la decussation du pont: caracteristiques cliniques et facteurs pronostiques. Nous rap- portons les cas de 6 patients avec hemorragies partielles, a predominance paramediane, de la decussation du pont. Les manifestations cliniques retrouvees invariablement etaient un myosis ipsilateral, une paresie du regard horizontal, une paresie du neurone moteur inferieur, une perte de sensibilite a l'hemicorps contralateral et une hemiparesie legere et transitoire, de la dysarthrie et une atteinte legere ou une absence d'atteinte de la conscience. Cinq sur six des patients etaient hypertendus. Tous les patients ont survecu avec des sequelles, les perturbations oculomotrices etant la sequelle la plus persistante. Nous avons constate chez nos patients qu'un diametre transverse de moins de 17 mm, une lesion unilaterale et l'absence de coma etaient les indicateurs majeurs d'une issue favorable. Can. J. Neurol. Sci. 1992; 19: 236-238 Pontine hemorrhages account for about 5-10% of intra- five patients, diabetes mellitus and moderate alcohol intake in parenchymal hemorrhages.1"4 Most frequently the hemorrhage is two and chronic renal failure in one.
    [Show full text]
  • White Matter Anatomy: What the Radiologist Needs to Know
    White Matter Anatomy What the Radiologist Needs to Know Victor Wycoco, MBBS, FRANZCRa, Manohar Shroff, MD, DABR, FRCPCa,*, Sniya Sudhakar, MBBS, DNB, MDb, Wayne Lee, MSca KEYWORDS Diffusion tensor imaging (DTI) White matter tracts Projection fibers Association Fibers Commissural fibers KEY POINTS Diffusion tensor imaging (DTI) has emerged as an excellent tool for in vivo demonstration of white matter microstructure and has revolutionized our understanding of the same. Information on normal connectivity and relations of different white matter networks and their role in different disease conditions is still evolving. Evidence is mounting on causal relations of abnormal white matter microstructure and connectivity in a wide range of pediatric neurocognitive and white matter diseases. Hence there is a pressing need for every neuroradiologist to acquire a strong basic knowledge of white matter anatomy and to make an effort to apply this knowledge in routine reporting. INTRODUCTION (Fig. 1). However, the use of specific DTI sequences provides far more detailed and clini- DTI has allowed in vivo demonstration of axonal cally useful information. architecture and connectivity. This technique has set the stage for numerous studies on normal and abnormal connectivity and their role in devel- DIFFUSION TENSOR IMAGING: THE BASICS opmental and acquired disorders. Referencing established white matter anatomy, DTI atlases, Using appropriate magnetic field gradients, and neuroanatomical descriptions, this article diffusion-weighted sequences can be used to summarizes the major white matter anatomy and detect the motion of the water molecules to and related structures relevant to the clinical neurora- from cells. This free movement of the water mole- diologist in daily practice.
    [Show full text]
  • Magnetic Resonance Detects Brainstem Changes in Chronic, Active Heavy Drinkers
    Psychiatry Research: Neuroimaging 132 (2004) 209–218 www.elsevier.com/locate/psychresns Magnetic resonance detects brainstem changes in chronic, active heavy drinkers Courtnay W. Bloomera, Daniel D. Langlebenb, Dieter J. Meyerhoff c,* aUniversity of Pennsylvania-Presbyterian Medical Center, Philadelphia, PA 19104, USA bTreatment Research Center, Department of Psychiatry, University of Pennsylvania Health Services, Philadelphia, PA 19104, USA cDepartment of Radiology University of California, San Francisco and Magnetic Resonance Unit, Department of Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, USA Received 30 October 2003; received in revised form 3 June 2004; accepted 5 June 2004 Abstract Neuropathological and neuroimaging studies show cortical and subcortical volume loss in alcohol-dependent individuals. Using quantitative magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopic imaging (1H MRSI), we studied the size and potential cellular injury of the brainstem in untreated heavy alcohol drinkers. The brainstem is considered critical in the development and maintenance of drug and alcohol dependence. Two methods of brainstem size determination were compared: standard volumetry vs. midsagittal MR image area measurement. Heavy drinkers (n=12) and light drinkers (n=10) were compared with MRI; 1H MRSI brainstem data were obtained from a subset of this cohort. Chronic heavy drinking was associated with significantly smaller midsagittal areas of the brainstem, midbrain, and pons, and with significantly smaller overall brainstem volume. Heavy drinking was also associated with significantly lower ratios of N- acetyl-aspartate and choline-containing metabolites compared with creatine-containing compounds in the brainstem, independent of brainstem atrophy. Additionally, brainstem volume and midsagittal brainstem area were correlated (r=0.78).
    [Show full text]
  • The Pons Neurological System > Brainstem & Cranial Nerve Anatomy > Brainstem & Cranial Nerve Anatomy
    The Pons Neurological System > Brainstem & Cranial Nerve Anatomy > Brainstem & Cranial Nerve Anatomy THE PONS OVERVIEW Here, we'll learn about the pons. • Start a table. • Denote that, from a clinician's perspective, the pons is, most notably, the neurobiological site of injury that produces locked-in syndrome. • Start a mid-sagittal section. First, draw the different brainstem levels, from superior to inferior: • Midbrain • Pons • Medulla KEY SURROUNDING STRUCTRES Label the anterior/posterior orientational plane of our diagram. • Include the key structures that border the brainstem: • The hyopthalamus, superiorly. • The cerebellum, posteriorly. • The cervical spinal cord, inferiorly. • And the temporal lobe, laterally. • Now, point out the pontine basis, which comprises pontine nuclei and pontocerebellar fiber tracts. • Shade in the CSF and indicate that the 4th ventricle lies at the level of the pons. RADIOGRAPHIC AXIAL SECTION • Before we draw a detailed anatomical section, let's review an axial section in radiographic perspective, which is the 1 / 4 common clinical perspective. • Show its anterior/posterior orientational plane. • Draw the pons. • Demarcate the pontine basis, anteriorly. • In this view, show its representative pontine nuclei. • And show its pontocerebellar fibers, which cross the pons and pass into the middle cerebellar peduncle as an important step in the corticopontocerebellar pathway. Clinical Correlation: central pontine myelinolysis ANATOMIC AXIAL SECTION Now, let's draw an anatomic axial outline of the pons. • Indicate the anterior–posterior axis of our diagram. • Label the left side of the page as nuclei and the right side as tracts. • Then, label the fourth ventricle — the cerebrospinal fluid space of the pons. • Next, distinguish the large basis from the comparatively small tegmentum.
    [Show full text]
  • An Anatomic, Imaging, and Clinical Review of the Medial Longitudinal
    www.clinicalimagingscience.org Journal of Clinical Imaging Science Neuroradiology/Head and Neck Imaging Review Article An Anatomic, Imaging, and Clinical Review of the Medial Longitudinal Fasciculus Peter Fiester1, Saif Ahmed Baig1, Jeet Patel1, Dinesh Rao1 1Department of Neuroradiology, University of Florida Health Jacksonville, Jacksonville, Florida, United States. ABSTRACT e medial longitudinal fasciculus (MLF) is a paired, highly specialized, and heavily myelinated nerve bundle responsible for extraocular muscle movements, including the oculomotor reflex, saccadic eye movements an smooth pursuit, and the vestibular ocular reflex. Clinically, lesions of the MLF are classically associated with internuclear ophthalmoplegia. However, clinical manifestations of a lesion in the MLF may be more complex and variable. We provide an overview of the neuroanatomy, neurologic manifestations, and correlative examples of the *Corresponding author: imaging findings on brain MRI of MLF lesions to provide the clinician and radiologist with a more comprehensive Saif Ahmed Baig, understanding of the MLF and potential clinical manifestations for an MLF lesion. Department of Neuroradiology, University of Florida Health Keywords: Medial longitudinal fasciculus, Internuclear opthalmoplegia, Trochlear syndrome, One-and-a-half Jacksonville, Jacksonville, syndrome, Wall-eyed bilateral internuclear opthalmoparesis syndrome Florida, United States. [email protected] INTRODUCTION Received : 07 April 2020 Internuclear opthalmoplegia is defined as the lack of adduction of the ipsilateral eye with Accepted : 10 November 2020 preserved abduction of the contralateral eye with nystagmus. It is the result of a lesion Published : 18 December 2020 affecting the medial longitudinal fasciculus (MLF) – a paired, highly specialized, and heavily DOI: myelinated nerve bundle traveling in a craniocaudid direction near the midline within 10.25259/JCIS_49_2020 the tegmentum of the midbrain and dorsal pons.
    [Show full text]