Local Action for Biodiversity (LAB), City of Cape Town Biodiversity and Climate Change Assessment Report Step 1 of LAB Pioneer B

Total Page:16

File Type:pdf, Size:1020Kb

Local Action for Biodiversity (LAB), City of Cape Town Biodiversity and Climate Change Assessment Report Step 1 of LAB Pioneer B Local Action for Biodiversity (LAB), City of Cape Town Biodiversity and Climate Change Assessment Report Step 1 of LAB Pioneer Biodiversity and Climate Change Project Environmental Resource Management Department, City of Cape Town October 2011 Executive Summary Cape Town is located in the Cape Floristic Region global biodiversity hotspot in one of the world’s five Mediterranean-climate regions. The municipal area covers 2,460 km2 and is home to 3.8 million people. Cape Town has a 307 km coastline, two mountain chains, lowland hills and plains and supports a wide range of natural ecosystems, habitats and species. The Mediterranean-climate regime dates from about 28 million years ago. This long time-span together with the diverse physical environment resulted in diversification of the flora and fauna that we observe today. However, this unique biodiversity is under threat, primarily from habitat conversion to agriculture and urban development, with invasive alien species being the second-most important impact. Global climate change also poses a significant threat to biodiversity. Global climate change is driven by increasing atmospheric carbon dioxide levels, resulting from the burning of fossil fuels and the destruction of natural vegetation cover. The general public is aware of the former, but less so of the latter driver of climate change. In Cape Town the climate is predicted to change in a number of ways: Altered rainfall patterns: overall drying with a shorter winter rainfall season, but more intensive, heavy rainfall events or storms. These changes will differ between mountain and lowland environments. Increased temperature, especially for the December-March and July-September periods, with predictions of +1.5 oC at the coast and +2-3 oC inland of the coastal mountains. It is also predicted that the prevailing summer south-east wind will become stronger. At a global scale, the sea level is expected to rise 0.2 m by 2020 and 1.0 m by 2100. This, coupled with the predicted increase in frequency and severity of storm surges, is expected to have a significant and detrimental impact on Cape Town’s coast. Second-order impacts of climate change include flooding, droughts, increased fire risk and invasions by alien species as well as socio-economic impacts arising from the loss of ecosystem services. Whereas we are certain that global climate change will impact on biodiversity, both at the species and ecosystem level, it is not yet clear how biodiversity will react, as natural variability does allow for some local adaptation. The projected reduction in winter rainfall and increase in droughts will negatively impact seasonal wetland communities. The rise in sea level and increase in storm surge events will erode coastal ecosystems, including dune strandveld vegetation. Many of these ecosystems already are reduced to narrow strips or are confined by urban development and cannot retreat inland. The City of Cape Town relies on many ecosystem services provided by biodiversity. Maintaining healthy ecosystems in the face of global climate change is thus essential in creating a resilient city. Worldwide, ecosystem-based approaches to climate change adaptation and mitigation have been shown to be cost- effective and generate social, economic and cultural co-benefits while helping to conserve biodiversity. Adaptation is defined as proactive actions that will reduce the risk of impacts from climate change. An example is ecosystem-based coastal defence strategy: more effective regulation of coastal development and activities to protect and retain coastal dune ecosystems, as well as the restoration of degraded coastal ecosystems, which will in turn provide improved protection of existing infrastructure. Another example is the control of invasive alien plants in natural vegetation areas: this will promote recovery of native plant communities so that they become more resilient to climate change impacts and can resume delivering ecosystem services. 1 Mitigation is defined as actions taken to alleviate or reduce the continuation of climate change. Natural ecosystems play a critical role as carbon sinks. Ecosystem-based approaches include good management of nature reserves and other natural open spaces and the restoration of degraded vegetation areas. Research indicates that local ecosystems (such as fynbos and renosterveld) sequester more carbon than degraded land and agricultural areas. The City of Cape Town is involved in several pro-active climate change adaptation and mitigation initiatives, such as the “Climate Change Think Tank” and the “Energy and Climate Action Plan”. More directly related to biodiversity and climate change, the Coastal Protection Zone Policy will limit future ribbon developments along the coastline, thus retaining ecological resilience and thereby promoting coastal defence. Recent stormwater policies manage stormwater quality and quantity impacts arising from urban development throughout the catchment and further, limit development in wetland and riparian buffers thus retaining resilience in these ecosystems, important for flood control. The systematic conservation plan for the city (Biodiversity Network) encompasses terrestrial and freshwater ecosystems and natural corridors. Future iterations of this plan will ensure that climate change adaptation measures are incorporated as far as is possible. The City of Cape Town’s Biodiversity Management Branch has adopted tools to manage City-owned nature reserves effectively and policy to control invasive alien species. Future plans include ecological restoration in degraded areas of the Biodiversity Network. All these activities are crucial in adapting the city to climate change. Furthermore, maintaining and restoring functioning ecosystems will also ensure the flow of ecosystem services and contribute to climate change mitigation. 2 Table of Contents Executive Summary ………………………………………………….………..……..……............................... 1 1.0 Introduction …………………………………………………………………………………..…………....... 4 1.1 Introduction to the City of Cape Town ………………………………………………………….................. 4 1.2 Overview of Cape Town’s Biodiversity ………………………………………………………………………. 5 1.3 Current Understanding of Climate Change in Cape Town ……………………………………….……….. 8 2.0 Climate Change Impacts on Cape Town …………………………………………………………..……. 9 2.1 Observed Changes in Cape Town’s Climate …………………………………………………………..……. 9 2.2 Overview of Climate Risks: 1st Order Impacts ………………………………………………………..……… 10 2.3 Overview of Climate Risks: 2nd Order Impacts ……………………………………………………….……… 13 2.4 Climate Change Impacts on Biodiversity …………………………………………………………..………... 14 3.0 Creating a Resilient City with Biodiversity …….……………………………………………………….. 15 3.1 Ecosystem-Based Approaches to Climate Change Adaptation and Mitigation …………………………... 15 3.2 Biodiversity’s Role in Climate Change Adaptation ………………………………………………….………. 16 3.3 Biodiversity’s Role in Climate Change Mitigation …………………………………………………………... 19 3.4 Adapting the Biodiversity Agenda to Climate Change …………………………………………………….. 20 4.0 Climate Change Initiatives in Cape Town …………..…………………………………………..……… 20 4.1 Current Initiatives …..…………………………………………………………………………….…………… 21 4.2 Future Initiatives ………………………………………………………………………………….…………… 23 5.0 Acknowledgements ………………………………………………………………………………………… 23 6.0 References …………..………………………………………………….………………………….………… 24 3 1.0 Introduction The City of Cape Town is internationally recognised for its natural beauty, Mediterranean climate and unique biodiversity (Holmes et al. 2008). Located in the Cape Floristic Region (CFR) global biodiversity hotspot, which is also a World Heritage Site recognised by the International Union for the Conservation of Nature (IUCN), Cape Town welcomes a constant flow of visitors every year from around the world. With this rich natural environment and a highly complex social and economic urban fabric, climate change brings further challenges to efforts in protecting biodiversity. The City of Cape Town Municipality (City) is one of the Local Action for Biodiversity (LAB) pioneer cities and hosts the ICLEI Cities Biodiversity Centre. The City opted to continue into the LAB Phase 2 Pioneer Biodiversity and Climate Change project for a number of reasons, including: • Conserving biodiversity and ecosystems is central to the area’s resilience in a changing climate • Communicating the role of biodiversity for a climate-resilient city to politicians and decision-makers is a powerful tool in motivating for biodiversity conservation • To review and stimulate thinking around the implications of climate change for biodiversity • To determine the links between biodiversity and climate change adaptation and mitigation, in order to align these for efficient planning and implementation. 1.1 Introduction to the City of Cape Town The City of Cape Town is situated at the south-western tip of Africa and in 2011 is home to approximately 3.8 million people. The City is a recent amalgamation of a number of local municipalities into one metropolitan area, or unicity, and administers an area of 2,460 km2. Like all South African cities and towns, Cape Town developed within the context of apartheid policies and laws in the 20th century, resulting in an urban city that today has many social and economic inequalities. As a result, Cape Town is a mix of well- developed, advantaged suburban and urban areas surrounded by impoverished, environmentally-poor disadvantaged areas characterised by large numbers of informal settlements and urban sprawl. Cape Town does not have
Recommended publications
  • Short-Term Relationships Between Winter Temperatures and Cardiac Disease Mortality in Cape Town
    3. Miller NF, Forde OH, Fhelle SS, Mjos OD. The Tromso heart study: high density lipoprotein and coronary heart disease: a prospective case-control study. Lancet 1977; 1: 965-967. Short-term relationships 4. Maciejko JJ, Holmes OR, Kottke BA, Zinsmeister AR, Dinh OM, Mao SJT. ~ A·p·olipoprotein AI as a marker for angiographically assessed coronary artery disease. N Engl J Med 1963; 309: 385-389. between winter 5. Ordovas JM. Schaefer FJ. Salem 0, et al. Apolipoprotein AI gene polymorphism associated with premature coronary artery disease and familial hypoalphalipo­ proteinemia. N Engl J Med 1986; 314: 671-677. temperatures and cardiac 6. Kessling A, Rajput-Williams J, Bainton 0, et al. DNA polymorphisms of the apolipoprotein All and AI-CIII-AIV genes: a study in men selected for differences in high density lipoprotein cholesterol concentration. Am J Hum Genet 1988; 42: disease mortality in Cape 458-467. 7. Karathanasis SK. Apolipoprotein multigene family: tandem organisation of apolipoprotein AIV. AI and CIII genes. Proc Natl Acad Sci USA 1986; 82: Town 6374-6378. 8. Humphries S. Kessling A, Wile 0, Jeenah M. Miller N. Variation at the apolipoprotein gene loci contributes to the determination of plasma apo AI and J. C. Heunis, J. Olivier, D. E. Bourne HDL-cholesterol levels in patients with coronary artery disease and healthy controls. In: Miller NE, ed. High Density Lipoproteins and Atherosclerosis 11. Amsterdam: Elsevier Science Publishers, 1989: 87-94. 9. Kessling A, Quellette S, Bouffard O. et al. Patterns of association between The short-term relationship between winter temperatures genetic variability in apolipoprotein S, apo Al-CIII-AIV, and cholesterol ester transfer protein gene regions and quantitative variation in lipid and lipoprotein and cardiac disease mortality in Cape Town was traits: influence of gender and exogenous hormones.
    [Show full text]
  • Study & Master Geography Grade 12 Teacher's Guide
    Ge0graphy CAPS Grade Teacher’s Guide Helen Collett • Norma Catherine Winearls Peter J Holmes 12 SM_Geography_12_TG_CAPS_ENG.indd 1 2013/06/11 6:21 PM Study & Master Geography Grade 12 Teacher’s Guide Helen Collett • Norma Catherine Winearls • Peter J Holmes SM_Geography_12_TG_TP_CAPS_ENGGeog Gr 12 TG.indb 1 BW.indd 1 2013/06/116/11/13 7:13:30 6:09 PMPM CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City Cambridge University Press The Water Club, Beach Road, Granger Bay, Cape Town 8005, South Africa www.cup.co.za © Cambridge University Press 2013 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2013 ISBN 978-1-107-38162-9 Editor: Barbara Hutton Proofreader: Anthea Johnstone Artists: Sue Abraham and Peter Holmes Typesetter: Brink Publishing & Design Cover image: Gallo Images/Wolfgang Poelzer/Getty Images ………………………………………………......…………………………………………………………… ACKNOWLEDGEMENTS Photographs: Peter Holmes: pp. 267, 271, 273 and 274 Maps: Chief Directorate: National Geo-spatial Information: Department of Rural Development and Land Reform: pp. 189, 233–235 and 284–289 ………………………………………………......…………………………………………………………… Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables and other factual information given in this work are correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.
    [Show full text]
  • Rava (Risk and Vulnerability Assessment for the Western Cape)
    Rava (Risk and Vulnerability Assessment for the Western Cape) Disaster Mitigation for Sustainable Livelihoods Programme (DiMP) University of Cape Town Executive Summary Institutional context In April 2002, the Provincial Tender Board approved Phase I of a Risk and Vulnerability Assessment Model for the Western Cape Province, to be undertaken jointly by the Universities of the Free State and Cape Town. Phase I of the RAVA Project represents the first step in a comprehensive risk assessment of likely disaster threats. It focuses on identifying natural and other hazards relevant to the Western Cape as well as the most appropriate institutional sources for reliable hazard information. This report addresses the interim reporting requirement to: complete an audit of hazard/disaster risk information sources and organisations relevant to the Western Cape, including the nature of information storage formats, and prepare a draft report indicating all identified natural and human-induced disasters. The UCT component reported here primarily reflects natural and other threats, and excludes information on droughts and floods. These two phenomena were analysed by the University of the Free State. Methodology To collect and consolidate relevant data/information on relevant natural and human-induced hazards in the Western Cape, three data gathering strategies were adopted: • Participatory consultation with key stakeholders took place through three distinct processes: Individual consultation with representatives from 32 municipalities Consultative
    [Show full text]
  • A Climatology of the Coastal Low in the SW Cape
    A CLIMATOLOGY OF THE COASTAL LOW IN THE SW CAPE BY C.M. HEYDENRYCH THESIS SUBMITTEDUniversity IN FULFILLMENT of Cape OF THE Town REQUIREMENTS TOWARDS A MSc DEGREE IN THE DEPARTMENT OF ENVIRONMENTAL AND GEOGRAPHICAL SCIENCE UNIVERSITY OF CAPE TOWN 1987 , ; i. j ,: ; :·~ r ; f !i' , , I,. t..., fr ; L2 • [:: <, J4 • ~· ~ f~ :". · ·: ~,, ' . ~ l'f; f '. U I • r • \_~c _-.____:_ .. --- The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town i ABSTRACT The Coastal Low is a shallow cyclonic mesoscale weather 'disturbance' which migrates around the southern African subcontinent on a fairly regular basis. It is generated and maintained by the synoptic scale circulations. The movement and surface characteristics have been well documented by a number of authors but few detailed studies have been undertaken on its vertical structure in southern Africa. In addition to this, most of the previous work has been of a meteorological nature. This study has concentrated on a more climatic approach in its investigation of the vertical and· surface features of the Coastal Low as it migrates through the South Western (SW) Cape. The SW Cape is a •transition region' for the migration of the Coastal Low; situated between the west and south coasts with a distinct local climate due to the complex topography of the region.
    [Show full text]
  • 3. Climate Change
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Air quality and climate change in the greater Cape Town area Town Masters dissertation of Evangelia-AnnaCape Kalognomou of University Submitted to the Department of Environmental & Geographical Science, Faculty of Science, University of Cape Town, in partial fulfilment of an MSc by coursework and dissertation. June 2009 University of Cape Town Declaration: 1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend it is one's own. 2. This submission is my own work. 3. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as their own work. 4. I acknowledge that copying someone else's assignment or essay, or part of it, is wrong, and declare that this is my own work. Town First Name and Surname: Student number: Evangelia-Anna Kalognomou KLGEVAOOJ Signature: Date:Cape of University 1 Town Cape of To my daughter Anastasia and my husband Vangeli for the love, patience, dedication and trust that he has shown me all these years. University 2 Abstract The work presented m this dissertation stems from the link that exists between meteorological conditions and the significant accumulation of air pollutants in large urban agglomerations.
    [Show full text]
  • Environmental Management Programme for an Exploration Right in the Northern Cape Ultra-Deep Licence Area in the Orange Basin, West Coast of South Africa
    ENVIRONMENTAL MANAGEMENT PROGRAMME FOR AN EXPLORATION RIGHT IN THE NORTHERN CAPE ULTRA-DEEP LICENCE AREA IN THE ORANGE BASIN, WEST COAST OF SOUTH AFRICA Prepared for: Petroleum Agency South Africa On behalf of: OK Energy Limited Prepared by: CCA Environmental (Pty) Ltd OE01SS/EMP/1 APRIL 2014 ENVIRONMENTAL MANAGEMENT PROGRAMME FOR AN EXPLORATION RIGHT IN THE NORTHERN CAPE ULTRA-DEEP LICENCE AREA IN THE ORANGE BASIN, WEST COAST OF SOUTH AFRICA Prepared for: Petroleum Agency South Africa Tygerpoort Building, 7 Mispel Street BELLVILLE, 7779 On behalf of: OK Energy Limited 3229 N Peebly Midwest City, Oklahoma UNITED STATES, 73110 Prepared by: CCA Environmental (Pty) Ltd Contact person: Eloise Costandius Unit 35 Roeland Square, Drury Lane CAPE TOWN, 8001 Tel: (021) 461 1118 / 9 Fax (021) 461 1120 E-mail: [email protected] EO01SS/EMP/1 APRIL 2014 OK Energy: Proposed exploration programme in the Northern Cape Ultra-deep Licence Area, West Coast of South Africa EXPERTISE OF ENVIRONMENTAL ASSESSMENT PRACTITIONER NAME Jonathan Crowther RESPONSIBILITY ON PROJECT Project leader and quality control. DEGREE B.Sc. Hons (Geol.), M.Sc. (Env. Sci.) PROFESSIONAL REGISTRATION Pr.Sci.Nat., CEAPSA EXPERIENCE IN YEARS 26 Jonathan Crowther has been an environmental consultant since 1988 and is currently the Managing Director of CCA Environmental (Pty) Ltd. He has expertise in a wide range of environmental disciplines, including Environmental Impact Assessments (EIA), Environmental Management Plans / Programmes, Environmental Planning & Review, Environmental EXPERIENCE Control Officer, Public Consultation & Facilitation. He has project managed a large number of offshore oil and gas EIAs for various exploration and production activities in South Africa and Namibia.
    [Show full text]
  • ICLEI – Local Governments for Sustainability – Africa Cape Town Baseline Study
    ICLEI – Local Governments for Sustainability – Africa Cape Town Baseline Study *Title: Cape Town Baseline study *By: Priscilla Rowswell and Lucinda Fairhurst, ICLEI Africa *Report Type: Research Study *Date: February 2011 *IDRC Project Number-Component Number: 105868-001 *IDRC Project Title: Sub-Saharan African Cities: A Five-City Network to Pioneer Climate Adaptation through Participatory Research and Local Action. *Country/Region: Namibia, South Africa, Mozambique, Tanzania, Mauritius *Full Name of Research Institution: ICLEI – Local Governments for Sustainability - Africa *Address of Research Institution: P.O. Box 5319, Tygervalley, 7536, Cape Town, South Africa *Name(s) of ICLEI Africa Core Project Team: Lucinda Fairhurst and Priscilla Rowswell *Contact Information of Researcher/Research Team members: [email protected]; +27 21 487 2312 *This report is presented as received from project recipient(s). It has not been subjected to peer review or other review processes. *This work is used with the permission of ICLEI – Local Governments for Sustainability - Africa *Copyright: 2012, ICLEI – Local Governments for Sustainability – Africa *Abstract: This project addresses knowledge, resource, capacity and networking gaps on the theme: 'Strengthening urban governments in planning adaptation.' The main objective of this project is to develop an adaptation framework for managing the increased risk to African local government and their communities due to climate change impact. The ultimate beneficiaries of this project will be African local governments and their communities. The guiding and well-tested ICLEI principle of locally designed and owned projects for the global common good, specifically in a developing world context, will be applied throughout project design, inception and delivery. Additionally, the research will test the theory that the most vulnerable living and working in different geographical, climatic and ecosystem zones will be impacted differently and as such, will require a different set of actions to be taken.
    [Show full text]
  • The Vegetation and Restoration Potential of the Arid Coastal Belt Between Port Nolloth and Alexander Bay, Namaqualand, South Africa
    The Vegetation and Restoration Potential of the Arid Coastal Belt Between Port Nolloth and Alexander Bay, Namaqualand, South Africa. Town Cape of University by · Philip George Desmet Thesis submitted in fulfilment for the degree Master of Science, University of Cape Town, South Africa. I ---· .J. -·- ·lfAf~,~"C!~"~~~:" 1 • i he University of Cape Town has bean g!ven, ; ;_1,.,, r:~ht t~ rnproduce this thesis ; or in 11art. Copyright Is held by Vie::::J author. ~-.x,,=~·=--=-~~ .. The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University 1-1 Table of Contents SUMMARY 1-4 ACKNOWLEDGEMENTS 1-7 CHAPTER 1 GENERAL INTRODUCTION. 1-8 CHAPTER 2 CHARACTERISATION OF THE ABIOTIC ENVIRONMENT OF THE COASTAL BELT BETWEEN PORT NOLLOTH AND ALEXANDER BAY. 2-11 1 LOCATION OF THE STUDY SITE. 2-11 2 A GENERAL DESCRIPTION OF THE LANDSCAPE. 2-11 3 THE GEOLOGY. 2-13 3.1 Regional setting. 2-13 3.2 Basement geology: Pre-Tertiary geology. 2-16. 3.2.1 The Gariep System. 2-18 3.2.2 The Stink:fontein Formation. Town 2-19 3.2.3 The Swartbank Pluton. 2-21 Box2.l A NOTEONTHEBUCHUBERG. 2-21 3.3 Tertiary and Quaternary geology: The coastal shelf 2-22 Box 2.2 REPLACEMENT PRODUCTS: CALCRETE, SILCRETE AND DORBANK.
    [Show full text]
  • Climate Risk and Vulnerability: a Handbook for Southern Africa (2Nd Ed), CSIR, Pretoria, South Africa
    CLIMATE Risk and Vulnerability A HANDBOOK FOR SOUTHERN AFRICA S E C O N O N D E D I T I 2nd Edition Lead Authors: Claire L Davis-Reddy and Katharine Vincent CLIMATE Risk and Vulnerability A HANDBOOK FOR SOUTHERN AFRICA Second Edition Citation: Davis-Reddy, C.L. and Vincent, K. 2017: Climate Risk and Vulnerability: A Handbook for Southern Africa (2nd Ed), CSIR, Pretoria, South Africa. For correspondence about this handbook, please email Claire Davis-Reddy: [email protected] © CSIR 2017. All rights to the intellectual property and/or contents of this document remain vested in the CSIR. This document is issued for the sole purpose for which it is supplied. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by means electronic, mechanical, photocopying, recording or otherwise without the express written permission of the CSIR. It may also not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or cover than that in which it is published. ISBN 978-0-620-76522-0 (electronic version) Climate Risk and Vulnerability: A Handbook for Southern Africa | i ACKNOWLEDGEMENTS The project is funded by USAID with the support of the This work was [partially] carried out under the Future Department of Science and Technology (DST), South Climate for Africa UMFULA project with financial support Africa. The authors would like to acknowledge the from the UK Natural Environment Research Council Applied Centre for Climate and Earth Systems Science (NERC), grant refs NE/M020010/1 and NE/M02007X/1, (ACCESS), the Southern African Science Service Centre and the UK Government’s Department for International for Climate Change and Adaptive Land Use (SASSCAL), Development (DFID).
    [Show full text]
  • Characterisation of Cape Town Brown Haze
    CHARACTERISATION OF CAPE TOWN BROWN HAZE Nicola Maria Walton School of Geography, Archaeology and Environmental Studies University of the Witwatersrand, Johannesburg Dissertation submitted to the Faculty of Science for the degree of Master of Science October 2005 i Declaration I declare that this dissertation is my own unaided work in fulfillment of the degree of Master of Science in the School of Geography, Archaeology and Environmental Studies at the University of Witwatersrand, Johannesburg. It has not been submitted previously for any degree or examination in any other university. ____________________________________________ (Nicola Walton) _______day of_______________2005 ii In memory of my Grandmother Jeanette Petronella Fleming (1925 – 2003) iii ABSTRACT The Cape Town brown haze is a brown-coloured smog that is present over the Cape Town atmosphere during the winter months due to the accumulation of gaseous and particulate pollutants. The main aim of this research was to evaluate the impact of atmospheric pollutants to visibility impairment by the brown haze through visibility modelling of major pollution sources around the City of Cape Town. The screening model, VISCREEN, the Plume Visibility model, PLUVUE II and the CALPUFF Modelling System were employed to model the visual impact of emissions from the major sources. Two point sources, Caltex Oil Refinery and Consol Glass, and three area sources, Cape Town Central Business District (CBD), Cape Town International Airport and the townships of Khayelitsha and Mitchell’s Plain were identified as the major sources. An initial screening analysis indicated that emissions from the two industrial sources would be visible and would result in a yellow-brown discolouration of the atmosphere.
    [Show full text]
  • The Avocado Pear Tree
    LINEAR LIBRARY C0100731717 H1111111111111 The Avocado Pear Tree Bonita Case University of Cape Town Submitted in fulfilment of the requirements for the Iv1aster's Degree in Creative \Vriting The University of Cape Town 1999 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town The Avocado Pear Tree Bonita Case Synopsis For twenty years Elsie September has refused to visit her uncle, Hannie, a state patient at Valkenberg mental hospital. At her grandmother's insistence, she almost goes to see him one day, but she only gets as far as the building and cannot bring herself to go inside. Instead, she meets Shaun and, as a relationship develops, Elsie begins to tell him the stories of her childhood. But Elsie's relationship with Shaun is troubled and unbalanced. Before Elsie reaches the point in her narrative where she will explain why she refuses to see her uncle, she and Shaun part acrimoniously and he disappears. Elsie has, by now, become so caught up in the telling of her story that not even Shaun's disappearance can stop her from going back to the day her world changed beneath the sheltering arms of the avocado pear tree. The Avocado Pear Tree Chapter 1 Forceps 14 Chookoo Train 19 Bell Bottoms 30 Peagats 35 Chapter 2 40 Dirty Washing 49 Bread 54 When God Listens 62 Chapter 3 73 The Parade 80 A Chinese Bangle 90 The Change of Life 98 The House in Gympie Street 103 Chapter 4 114 The Moneybox 123 Mona's Smile 130 Mr Smith's Combi 140 Chapter 5 147 Boulders 163 Chapter 6 183 Chapter 7 191 Chapter 8 198 Chapter 9 212 Water Pistol 214 The Avocado Pear Tree 227 Chapter 10 246 Chapter 1 The shrill, insistent telephone wakes me.
    [Show full text]
  • Senior Secondary Intervention Programme 2013
    SENIOR SECONDARY INTERVENTION PROGRAMME 2013 GRADE 12 GEOGRAPHY LEARNER NOTES The SSIP is supported by TABLE OF CONTENTS TEACHER NOTES SESSION TOPIC PAGE 1 Topic 1. Climate and weather SA and the world: change in energy balance – the development of winds and global circulation 3 - 25 Topic 2. Secondary and tertiary circulation 2 Topic 1. Mid-latitude cyclones 26 - 51 Topic 2.. Tropical cyclones 3 Topic 1. Factors that influence SA weather Topic 2. Travelling disturbances 52 - 85 Topic 3. Climate change and climate hazards 4 Topic 1. Map work multiple-choice questions Topic 2. Map projections 86 - 116 Topic 3. Geographic information systems 5 Topic 1.River systems and river system management 117 - 139 Topic 2. River capture and river profiles 6 Topic 1. Fluvial landforms, catchment and river management, slopes and mass movement 140 - 158 Topic 2. Map calculations 7 Topic 1. Structural land forms 159 - 175 Topic 2. Map interpretation climate / geomorphology Page 2 of 175 GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME GEOGRAPHY GRADE 12 SESSION 1 (TEACHER NOTES) TOPIC 1: CLIMATE AND WEATHER SA AND THE WORLD: CHANGE IN ENERGY BALANCE – THE DEVELOPMENT OF WINDS AND GLOBAL CIRCULATION Teacher Note: It is very important that the learners understand the content in this topic. They must be able to link back to it when they do cyclones and South African weather later on. The global circulation sketch must be emphasised and all learners must be able to draw it, label it fully and explain the processes illustrated on it. LESSON OVERVIEW Spend most time on Topic 1 as Topic 2 only rarely appears in the exams.
    [Show full text]