Environmental Report 2017

Vattenfall Heat Vattenfall Heat Uppsala Environmental Report 2017

Our integrated management system is certified in accordance with the environmental management standard ISO 14001, and we were the first energy company in to have an energy management system that is certified to ISO 50001. The reception and management of waste for energy recovery is quality certified to ISO 9001.

Situation analysis

Policy

Management review Laws and other requirements

HSE report Aspects/risks/energy surveys

Internal audit Action plan

Deviations Target and target programme

Monitoring and measurements Organisation

Documentation Training and competence

Safety and protection Communication Operations Operating and maintenance Purchasing Contractors Chemicals

Environmental Report Uppsala 2017 · Vattenfall Heat Page 2 Partnership for Uppsala, Knivsta and Storvreta

Vattenfall Heat in Uppsala, Knivsta and Storvreta are proud to be your local supplier of district heating, and in Uppsala steam and district cooling too. At the same time, in Uppsala we also generate electricity and manage combustible waste so it doesn’t need to go to landfill. More than half of the annual requirement for fuel in Uppsala is covered by waste, much of which is also renewable. Utilising this spent material as a resource means that we don’t need to use as much of other fuels such as peat, wood and oil. Some of the waste is sorted combustible waste from the UK, Ireland, Norway and Finland, which don’t have a district heating network and plants that can deal with the waste. Although Sweden can only take a small proportion of the combustible waste in these countries, the environmental benefits of the partnership are two-fold – it Adrian Berg von Linde saves wood here and it avoids landfill there. Head of Business Development Heat District heating is by definition a local business – our district heating network is located close to our customers. Our district heating network also allows us to utilise waste heat from various sources, e.g. from the heat in waste water. This year we launched the SamEnergi project, which makes it easier for small waste heat suppliers to connect and supply heat to the district heating network. We believe that this is all part of the new energy landscape that is emerging. District heating customers will be able to do the same as electricity customers: be consumers for part of the time and, at other times, be generators for the shared network.

Another partnership that we are involved in is the Uppsala Climate Protocol where we participate in various focus groups and lead the ”War on Plastic” to raise awareness of the importance of recycling plastic and manufacturing it from renewable raw materials. We can all do our bit for the environment. The Johan Siilakka Sustainable Transport focus group organises various activities to promote Plant Manager Uppsala cycling and public transport. We are proud to be a cycle-friendly workplace. Customers who are keen to reduce their CO2 emissions can choose our CO2 Neutral Heat and Cooling products. In 2017, these products reduced CO2 emissions by more than 16,000 tonnes over the course of the year.

It’s all happening on site! In 2017 we planned a wide range of measures which will become increasingly evident as time goes on. We plan to replace peat with wood in two stages. The first stage is to completely refurbish the fuel handling unit for our hot water furnace (HVC). The second stage is to build a brand new furnace and fuel reception area to replace our existing CHP plant. We will also gradually replace fossil oil with bio-oil. During the course of 2017, two furnaces were converted to bio-oil. The bio-oil comes from by-products of various kinds, e.g. from the food and cosmetics industry, and is sustainability certified. Overall, this will halve our climate-impacting CO2 emissions by 2020. Our aim is for our production to be carbon neutral by 2030, and we will work together with other stakeholders to ensure that fossil-based plastic is phased out.

Working on so many different projects at the same time is both exhilarating and challenging. It’s important to ensure that accidents don’t occur and we always try to work systematically, and there’s always something that can be improved and that we can learn from. By thinking things through carefully from the outset and then reflecting on the safest way of working while the work is under way, we can keep many risks to a minimum. There’s truth in the expression ”we don’t have time to hurry”.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 3 Utsläpp till luft från anläggninAirgarna i Up pemissionssala from

Utsläpp till luft från anläggningarna i Uppsala Klimatpåverkande koldioxid

År 2017 var i stort sett lika kalltfacilities som år 2016 in Uppsala Klimatpåverkande koldioxid och koldioxidutsläppen blev något lägre År 201Ut7sl ävarpp it stortill luf tsett från lika an lkalltäggn sominga rårna 201 i Up6 psala jämfört med året innan. Den prickade linjen i och koldioxidutsläpp en blev något lägre diagrammet visarClimate-impacting vår långsiktiga CO plan2 för att jämförtKlim medatpå våreterk ainnan.nde k oDenldio xprickadeid linjen i CO2 Heat Uppsala nå koldioxidneutralGenerally produktion speaking, 20172030. was HVC just as cold as 2016, diagrammetandÅr CO 2012 emissions7 varvisar i stortvår were långsiktiga sett slightly lika lowerkallt plan somthan för årtheatt 201 6 och Carpe Futurumprevious projektens year. The dotted åtgärder line in the diagram shows nå koldioxidneutraloch koldioxidutsläpp produktionen blev 2030. något HVC lägre Fossil + Peat består huvudsakligenour long-term av ökad plan träinblandningfor achieving carbon-neutral Fossil och Carpejämfört Futurum med året projektens innan. Den åtgärder prickade linjen i Trend line fram till dess productionatt torven byhelt 2030. ersätts The med measures under the HVC Scheduled development bestårdiagrammet huvudsakligen visar avvår ökad långsiktiga träinblandning plan för att trädbränslen andav olika Carpe slag. Futurum I den projects torveldade primarily comprise of framan increasednå till koldioxidneutral dess attadmixture torven of heltproduktion wood ersätts until suchmed2030. time HVC as hetvattenpannan har konverteringen till trädbränslenpeatoch has Carpe been av fullyFuturum olika replaced slag. projektens I byden wood torveldade åfuelstgärder of träpellets redan påbörjats och beräknas tas i hetvattenpannanvariousbestår kinds. huvudsakligen In the har peat-fuelled konverter av ökad hotingen träinblandningwater till furnace, drift hösten 2018conversion. to wood pellets is already under way and träpelletscommissioningfram tillredan dess is påbörjats dueatt torven to take och heltplace beräknas ersätts in autumn medtas 2018.i CO2 1,000 tonnes drift trädbränslenhösten 2018 .av olika slag. I den torveldade Vi erbjuder våra kunder möjlighet att We hetvattenpannanare offering our customers har konverter the opportunityingen till to medverka till minskade koldioxidutsläpp, utöver den prognosticerade minskningen, genom att välja Vicontribute erbjudeträpelletsr to våra reduced redan kunder påbörjats CO möjlighet2 emissions, och att beräknas in addition tas to i vår produkt Koldioxthe plannedidneutral reduction, Värme by och/ellerchoosing ourKoldi Carbonoxidneutral Kyla. Försäljningen av dessa medverkadrift hösten till minskade 2018. koldioxidutsläpp, utöver den prognosticerade minskningen, genom att välja produkter minskadeNeutral Heatingutsläppen and/or av koldioxidCarbon Neutral med Cooling16 376 ton under 2017, jämfört med om ingen vår produkt Koldioxidneutral Värme och/eller Koldioxidneutral Kyla. Försäljningen av dessa kund hade valtproduct. detta Theerbjudande. sale of these Du productskan läsa reducedmer om carbonprodukterna på vår hemsida. produkterdioxideVi erbjude emissions minskader våra by 16,376utsläppenkunder tonnes möjlighet av duringkoldioxid att 2017, med 16 376 ton under 2017, jämfört med om ingen kundcomparedmedverka hade tovalt projections tilldetta minskade erbjudande. if no koldioxidutsläpp,customers Du kan had läsa utövermer om den produkterna prognosticera på vårde minskningen,hemsida. genom att välja Försurande ämnen chosenvår produktthis offer. Koldiox You canidneutral learn more Värme about och/ellerthese Koldioxidneutral Kyla. Försäljningen av dessa Kväveoxider (NOproductsx) och on svaveldioxid our website: (SO www.vattenfall.se/2) har Försprodukterurande äm minskadenen utsläppen av koldioxid med 16 376 ton under 2017, jämfört med om ingen störst påverkanfjarrvarme. av våra försurande utsläpp, Emissions of acidifying substances Kväveoxiderkund hade (NO valtx) och detta svaveldioxid erbjudande. (SO Du2) harkan läsa mer om produkterna på vår hemsida. 2017 var utsläppen av svaveldioxider lägre än störstAcidifying påverkan substances av våra försurande utsläpp, tidigare år medan kvävedioxiderna gick upp 201Nitrogen7F övarrsu utsläppenoxidesrande (NOx)äm nave andn svaveldioxider sulphur dioxide lägre (SO än2) något eftersomhave HVC the pannan greatest behövdes impact on ourmer acidifying tidigareKväveoxider år medan (NO kvävedioxidernax) och svaveldioxid gick upp(SO2 ) har under vintermånadernaemissions. In. Våra2017, anläggningaremissions of sulphur dioxides någotstörst eftersom påverkan HVC avpannan våra försurande behövdes merutsläpp , Sulphur dioxide finns med i detwere nationella lower than systemet previous för years, while emissions of under201 vintermånaderna7 var utsläppen .av Våra svaveldioxider anläggningar lägre än Nitrogen oxides kväveoxidavgift.nitrogen Våra dioxides totala kväveoxidutsläpp increased slightly because the finnsHVCtidigare medfurnace i det år was medannationella needed kvävedioxiderna more systemet during för the gickwinter upp tonnes på 182 ton, som visas i diagrammet till höger, kväveoxidavgift.months.något Our eftersom facilities Vår a HVCare totala included pannan kväveoxidutsläpp in behövdes the national mer blir 103,5 mgsystem NOx per of nitrogenproducerad oxide kWh charges.. Detta Our total nitrogen på 18under2 ton, vintermånaderna som visas i diagrammet. Våra anläggningar till höger, ligger betydligtoxide under emissions Sverige ofmedel 182 tonnes för 2017 (as shown in the blir finns103,5 med mg NOi detx per nationella producerad systemet kWh .för Detta som är 145 mg/kWhdiagram förto the kraftvärmeverk right) equate to och 103.5 154 mg mg/kWh of NOx per för avfallsförbränning. Medel för liggergeneratedkväveoxidavgift. betydligt kWh. under This isVår Sverigewella totalabelowmedel thekväveoxidutsläpp Swedishför 2017 energianläggningar 2017 var 172 mg/kWh. somaverage påär 18145 for2 tmg/kWh2017,on, som which förvisas is kraftvärmeverk 145 i diagrammet mg/kWh for CHPtilloch höger 154 mg/kWh, för avfallsförbränning. Medel för plants and 154 mg/kWh for waste Incineration. The energianläggningarblir 103,5 mg NO 2017x per var producerad 172 mg/kWh kWh. . Detta Stoft average for energy plants in 2017 was 172 mg/kWh. Dust emissions ligger betydligt under Sverigemedel för 2017 Stoftutsläppen låg 2017 på samma nivå som föregående år. Stoftsom är 145 mg/kWh för kraftvärmeverk och 154 mg/kWh för avfallsförbränning. Medel för Historiskt settDust har minskningen från 2005 och framåt berott på StoftutsläppenDustenergianläggningar emissions låg in 2017 2017 were på2017 samma at varthe 172same nivå mg/kWh levelsom asföregående . år. minskad torveldning och ökad avfallsförbränning. Historisktprevious years.sett har Historically minskningen the reduction från 2005 from och 2005 framåt berott på Avfallsförbränningen har den mest omfattande rökgasreningen minskadonwardsStof ttorveldning has been due och to ökareducedd avfallsförbränning. peat-firing and av alla våra produktionsanläggningar.increased waste incineration. Avfall The är waste det bränsleincineration som AvfallsförbränningenStoftutsläppen låg har 201 den7 på mest samma omfatta nivånde som rökgasreningen föregående år . innehåller mestplant tungmetaller has the most, d extensiveet är därför flue viktigt gas cleaning med bra of all tonnes avour alla Historisktproduction våra produktionsanläggningar. sett plants. har Of minskningen all fuels, waste från Avfall contains 2005 är ochdet bränsleframåt berott som på prestanda för denna rökgasrening och att anläggningen har god innehållerthe minskadmost heavy mest torveldning metals,tungmetaller so och it is ,importantöka detd är avfallsförbränning. därför that thisviktigt med bra marginal till gällande miljövillkor, se sidan 15. prestandaflueAvfallsförbränningen gas cleaning för denna works rökgasrening effectively har den and mest och that att omfatta the anläggningen nde rökgasreningen har god plant exceeds the applicable environmental av alla våra produktionsanläggningar. Avfall är det bränsle som marginalrequirements till gällande by a good miljövillkor, margin (see se page sidan 13). 15. innehåller mest tungmetaller , det är därför viktigt med bra prestanda för denna rökgasrening och att anläggningen har god marginal till gällande miljövillkor, se sidan 15. Environmental Report Uppsala 2017 · Vattenfall Heat Page 4

4 4

4 Operations in Uppsala

Energy supplied Energy delivered 61% Waste (1,153 GWh) 1,315 GWh District heating 20% Peat (371 GWh) 94 GWh Electricity (net) 7% Wood (127 GWh) 115 GWh Process steam 2% Oil (37 GWh) 45 GWh District cooling 3% Waste heat (49 GWh) 8% Electricity (160 GWh)

Efficiency: 93% Production In addition, 12 GWh of cooling was supplied using 89% Distribution ”island solutions”, i.e. independently of the district Total efficiency 83% cooling network.

The proportion of renewables in the fuel mix for district heating is 70% with peat counted as (slowly) renewable. If peat is counted as a fossil fuel, the proportion is 50%. Waste is calculated here as 60% renewable in terms of energy, which makes the remainder non-renewable, i.e. plastic with fossil origins.

Key figures for delivered district heating, kg/MWh = g/kWh

2017 2016 2015 2014 2013 2012

CO2 in accordance with ETS 204 209 182 197 226 205

CO2ekv in accordance with VMK 194 182 159 181 235 216 NOx 0,11 0,11 0,09 0,09 0,10 0,12

SO2 0,16 0,16 0,15 0,17 0,20 0,14

The emissions reported do not include the district heating and district cooling volumes produced from waste that is covered by customer-specific agreements (Carbon Neutral Heating and Cooling, respectively).

We report our carbon dioxide emissions using two different systems: the European emissions trading system ETS and the Swedish system set up by the Värmemarknadskommittén [Swedish Heating Market Committee] (VMK) in conjunction with the industry organisation Energiföretagen (previously Swedenergy and the Swedish District Heating Association). Details of the latter can be found on Energiföretagen’s website, www.energiforetagen.se. This data includes not only carbon dioxide emissions from the plant but also templates for emissions of the greenhouse gases methane and nitrous oxide, converted into CO2 equivalents. An emissions factor has also been added for the electricity that is purchased for the plant. Emissions are distributed between district heating and electricity produced using what is known as the ”alternative production method”. In brief, this means that more emissions are credited to the electricity compared with the heat produced at the same time, as alternative methods to generate electricity would require more fuel. For peat, we use the values that are checked in the system for emissions trading.

We are part of the emissions trading system for carbon dioxide Our plants are covered by the EU’s emissions trading scheme for carbon dioxide. We trade one emission allowance for every tonne of fossil CO2 emitted. This is our contribution to efforts to reduce emissions from EU member states.

We also offer Carbon Neutral Heating and Cooling We offer larger customers a solution consisting of district heating and cooling from our waste incineration plant in Uppsala that is compensated for carbon dioxide. This is district heating and cooling that is carbon neutral because we compensate for that part of the waste that is not renewable, i.e. the fossil-based plastic in the waste. We do this by increasing the amount of biomass in our total fuel mix, over and above the amount that is already planned*.

* Compensation is limited to the carbon dioxide emissions directly associated with our district heating production.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 5

Br änslemix i Uppsala BränsletillförselFuelBrän mixsle mini xUppsala i U samtppsal avärme - och elproduktion i Uppsala FuelBränsletillförsel supply and heat samt production värme- ochand electricityelproduktion generation i Uppsala in Uppsala Br änsletillförsel FuelBrän supplysletillförsel VårOur blandning mixture of avfuels bränslen has changed har förändrats over the years. genom We åren.were entirely I början dependent av 1980- taleton oil varin the vi heltearly beroende1980s. av olja.SinceVår Sedan blandning then, dess oil has avhar been bränslen oljan actively aktivt har replaced, ersattsförändrats medmainly genom framför by waste åren. allt and avfallI början peat. och Two av torv. 1980of our Två- taletoil av furnaces våravar vi oljepannor heltwere beroende converted av konverteradestoolja. bio-oil Sedan during dess till 2017, biooljahar and oljan theunder aktivt HVC 2017 furnaceersatts och is medHVC currently -framförpannan being alltkonv converted avfallerteras och to nu torv. wood till enbartTvå fuel av only. våraträbränsle. oljepannor konverterades till bioolja under 2017 och HVC-pannan konverteras nu till enbart träbränsle. Fuel supply & electricity and heat production in Uppsala

Oil

Coal

Electricity

Heating production Peat

Wood

Waste heat

Electricity production Waste

UUppsala’sppsalas v äheatrme requirementsbehov styr pr controloduktio productionnen DeThereUtp ärps storaisl aas significant skillnadvärmeb epå hdifferenceo Uppsalasv styr p betweenro dvärmebehovuktio Uppsala’snen under heat sommarrequirements och duringvinter summeroch vi anpassar and winter, vår and we produktionadaptDet är our stor production i skillnadenlighet accordingly.på med Uppsalas detta. The Stapeldiagrammet värmebehov bar chart shows under the visar sommar usage användningen of ochdifferent vinter plants av och olika duringvi anpassar anläggningar a normal vår year. underTheproduktion waste ett normalt incineration i enlighet år. Avfallsförbränningen plant med heats detta. Uppsala Stapeldiagrammet throughout värmer Uppsala the visar year, underbutanvändningen during hela the året, winter av men olika other under anläggningar furnaces vintern are behövsneededunder även ett too. normalt övriga pannor år. Avfallsförbränningen. värmer Uppsala under hela året, men under vintern behövs även övriga pannor. Production in Uppsala GWh/month

Waste incineration CHP plants, peat/wood Heat pumps Hot water furnaces, peat/wood Oil furnaces

Environmental Report Uppsala 2017 · Vattenfall Heat Page 6 6 6 Facilities in Uppsala

Distribution network District heating and district cooling are distributed to the heating and cooling systems of properties in the form of hot and cold water circulating in closed pipe systems. Our district heating network is 500 km long, and the district cooling network is 14 km long. We also have a 7 km network for steam.

Accumulators In order to meet the fluctuations in demand for district heating, there is a hot water accumulator inside the production area in Boländerna which holds 30,000 m3, providing 1,200 MWh of energy to supply 100 MW of power to the district heating network. There is also an accumulator for the district cooling network, which is located at Stallängsverket and is clearly visible from Kungsängsleden. It holds 3,000 m3, with energy of 30 MWh and can supply 10 MW of power. A large accumulator for district cooling, which is due to be completed by 2019, is also being built on the Boländerna site.

Waste-to-energy Products: District heating, electricity, steam and district cooling. Capacity and fuel: Total of 170 MW heat + 10 MW electricity + 11 MW cooling, with 55 tonnes of waste per hour. Flue-gas cleaning: Nitrogen oxides – urea and ammonia injection and catalytic converters. Dust – electro-filters and fabric filters. Sulphur and hydrochloric acid cleaning – flue gas scrubber/condensation with energy recovery and fabric filter with limestone additive. Organic substances – fabric filters with active charcoal Cleaning of flue gas condensate through limestone additive and complexing agent for heavy metals, then precipitation stage plus sand and charcoal filters.

Gas turbine Backup for electricity generation. Product: Electricity for starting the CHP plant in the case of electrical power cut. Capacity and fuel: 16 MW electricity, light oil.

CHP plant Products: District heating and electricity. Capacity and fuel: 235 MW heating and 120 MW electricity with 80 tonnes of peat/wood briquettes per hour. Oil and coal are used as back-up fuels. Flue-gas cleaning: Sulphur – limestone additive in furnace and wet stage, before fabric filter. Nitrogen oxides – urea and ammonia injection and catalytic converters. Dust – electro-filters and fabric filters. Bolandsverket Products: District heating and electricity. Capacity and fuel: Peat-fuelled hot-water furnace (HVC) 100 MW, electric furnace 10 and 50 MW (steam back-up), oil furnaces 4 x 75 MW (back-up), two of which run on bio-oil. Flue-gas cleaning HVC: Sulphur – limestone additive in furnace. Nitrogen oxides – urea injection. Dust – electro-filters and fabric filters.

Husbyborg unit Heat pump facility located at Uppsala’s sewage works. Products: District heating and district cooling. Capacity: 3 x 15 MW heating and 3 x 8 MW cooling from electricity and waste heat, plus 2 x 1.4 MW compression refrigerating machines.

Stallängsverket Located at Ultuna Campus Product: District cooling Capacity: District heat-driven absorption refrigeration 1.5 MW, cooling tower 1 MW, compression refrigerating machines 1.3 + 2.5 MW.

Ultuna cooling plant Located at Ultuna Campus Product: District cooling Capacity: District heat-driven absorption refrigeration 1.5 MW, cooling tower 1 MW, compression refrigerating machines 1.3 + 2.5 MW.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 7 Ångström cooling plant Located at Ångström Laboratory. Product: District cooling Capacity: District heat-driven absorption refrigeration 2.5 MW, cooling tower 2.7 MW. compression refrigerating machines 8 MW.

Knivsta – almost fully carbon neutral heating

In Knivsta, south of Uppsala, we supply district heating produced from biomass using our heating plant and district heating distribution network. The heating plant has two biomass-fuelled furnaces of 8 and 15 MW respectively, and oil furnaces for back-up and peak load. The fuel is ”green chips”, plus bark and wood chips. An impressive 99% of the fuel for the plant is biomass, which means that district heating in Knivsta is largely carbon-neutral. Knivsta has had district heating since 1976, and we have about 700 customers here.

Energy supplied Energy delivered 96% Biomass (76.8 GWh) District heating 52.8 GWh 1% Oil (0.7 GWh) 3% Electricity for pumps and fans, etc. (2.0 GWh)

Efficiency: 81% Production 84% Distribution

Heat loss arises during both production and distribution. Smaller district heating networks and networks with many single family home customers have lower efficiency than larger distribution networks.

CO2 emissions are reported using two different systems (see the description for Uppsala on page 5).

Key figures for delivered district heating, kg/MWh = g/kWh 2017 2016 2015 2014 2013 2012 CO2 from oil 4 3 5 5 15 7 CO2eq in accordance 10 16 19 18 with VMK NOx 0,39 0,36 0,36 0,34 0,37 0,42

SO2 0,15 0,18 0,18 0,26 0,26 0,26

The plant in Knivsta

Solid fuel furnaces Product: District heating Capacity and fuel: 8+15 MW wood chips, green chips and bark Flue-gas cleaning: Dust – electro-filters

Oil boilers Peak load and production back-up Product: District heating Capacity and fuel: 10+13 MW light oil

Environmental Report Uppsala 2017 · Vattenfall Heat Page 8 Operations in Storvreta

In 2017, in Storvreta north of Uppsala, we supplied heating generated almost entirely from wood. Very little oil was needed. The heating plant has two 2 MW furnaces that are fuelled with wood pellets. An oil furnace in Ärentuna School is used for back-up and peak load. A large water-filled underground rock cavity is used for heat storage and can deliver 8 MW.

Energy supplied Energy delivered 99% Biomass, 21 GWh District heating 14 GWh 0% Oil, 0.01 GWh 1% Electricity for pumps and fans, etc., 0.2 GWh

Efficiency: 93% Production 76% Distribution including rock cavity storage

We report CO2 emissions using two different systems (see the description for Uppsala on page 5).

Key figures for delivered district heating, kg/MWh = g/kWh 2017 2016 2015 2014 2013 2012

CO2 from oil 0,26 0,13 0,04 0 12 13

CO2ekv in accordance with VMK 6 9 9 9 NOx 0,38 0,38 0,36 0,7 0,7 0,7

SO2 0,003 0,003 0,003 0,003 0,003 0,004

The plant in Storvreta

Solid fuel furnaces Product: District heating Capacity and fuel: 2 x 2 MW wood pellets Flue-gas cleaning: Dust – cyclones

Rock cavity Large rock cavity for storage of hot water Capacity: 2 x 4 MW storage volume 100,000 m3 (can store 5 GWh heat)

Ärentuna School Peak load and production back-up Product: District heating Capacity and fuel: 4 MW light oil

Environmental Report Uppsala 2017 · Vattenfall Heat Page 9 Fuel and ash

Fuel in Uppsala The waste is composed of 50% household waste and 50% industrial waste. The majority of the waste comes from , Södermanland and Västmanland. We export energy recovery services to the UK, Ireland, Norway and Åland, which amounts in total to around 30% of the energy source for waste incineration.

The peat comes in the form of briquettes from Härjedalen and Belarus. The peat fuel is mixed with wood pellets and wood briquettes. Bio-oil is now connected up to two of our back-up oil furnaces and will be used in preference to oil as the back-up fuel in the event of problems with the supply of normal fuel or inadequate capacity in the ordinary installations. Oil may also be needed for peak load during the very coldest winter days.

Ash from waste incineration Waste incineration produces two different types of ash, as well as sludge from water treatment. The first type of ash is bottom ash from the furnaces, also called slag. The metals in the slag are sorted out and sent for recycling. The remaining ash is sorted into two different sizes. The fine fraction is used as a sealant and the coarse fraction is used as a drainage layer when covering landfills. The other type of ash is fly ash from the flue-gas cleaning. This ash contains material separated from the flue gases and is not suitable for roads, etc. It is managed and used instead on landfill sites for hazardous waste. There are also wet cleaning stages for the flue gases. The water from these cleaning stages is treated in a processFjärr vwhichärme includes i Sverig ethe addition of an organic sulphide, which binds heavy metals. The impurities are precipitatedMer än as hälften a sludge, av whichalla bostäder is sent och lokaler värms med fjärrvärme. to a hazardous waste deposit site. This means that the heavy metals that make their way into the installation via waste are removed from circulationFjä inrr vsociety.ärme iIn S vordererige for the quantity Fjärrvärmeof heavy metals är den in waste viktigaste to be förklaringen till att Sverige lyckats reducera utsläppen av växthusgaser. reduced, products must be manufacturedMer än without hälften them, av allaor those bostäder who use ochFjärrvärmevolymen items lokaler such värms as batteries med har fjärrvärme. and fördubblats i Sverige sedan 1982 och under samma tid har oljan i low-energy bulbs must recycle them carefully, so that they are not disposed of with combustible waste. Fjärrvärme är den viktigaste förklaringenfjärrvärmesystemet till att Sverige ersatts lyckats av reducera trä, torv utsläppenoch avfall. av Uppsalas växthusgaser. förändrade bränsleanvändning framgår på sidan 5. Ash from peat-burning Fjärrvärmevolymen har fördubblats i Sverige sedan 1982 och under samma tid har oljan i Peat produces ash that is ideal for constructingfjärrvärmesystemet roads and otherersatts surfaces. av trä, We torv have och forest avfall. roads Uppsalas in Uppsala förän drade bränsleanvändning framgår and a jogging circuit in Storvreta wherepå sidanpeat ash 5. is used as construction material. The approach ramp in Librobäck’s recycling station is made of peat ash. There are also projects where the peat ash replaces cement, which saves one kilo of carbon dioxide emissions per kilo of replaced cement. One of the reasons that ashes from peat can be used in this way is because lime is added in the combustion process in order to bind sulphur. The lime content in the ash makes it hard, but simultaneously light. Fjärr värme i Sverige Mer Districtän hälften heating av alla in Swedenbostäder och lokaler värms med fjärrvärme. FjärrvärmeOver half är of den all homesviktigaste and förklaringen properties are till heated att Sverige using lyckatsdistrict heating.reducera District utsläppen heating av växthusgaser.is the main reason Fjärrvärmevolymenwhy Sweden has har succeeded fördubblats in reducing i Sverige its sedan emissions 1982 of och greenhouse under samma gases. tid District har oljan heating i has doubled in Sweden since 1982, and in the same period, oil in the district heating system has been replaced by wood, fjärrvärmesystemetpeat and waste. Uppsala’s ersatts av modified trä, torv fuel och consumption avfall. Uppsalas is shown förän ondrade page bränsleanvändning 6. framgår på sidan 5.

Million tonnes

Recycling Biological recovery

Energy recovery Landfill Avfall som bränsle Diagrammet ovan från Avfall Sverige visar hur hanteringen av hushållsavfall utvecklats genom Avfall som bränsle åren. Den totala mängden behandlat hushållsavfall år 2017 uppgick till 4,8 miljoner ton eller 473 Diagrammet ovan från Avfall Sverigekg per visar person hur hanteringen och år, det ärav en hushållsavfall ökning med utvecklats 2,5 procent genom jämfört med 2016. Tack vare utökad åren. Den totala mängden behandlatmaterialåtervinning, hushållsavfall år biologisk2017 uppgick behandling till 4,8 miljoneroch avfallsförbränning ton eller 473 med energiutvinning, gick endast kg per person och år, det är en ökning0,5 procent med 2,5 av procent allt behandlat jämfört hushållsavfall med 2016. Tack till deponi vare u tökad2017. www.avfallsverige.se materialåtervinning, biologisk behandling och avfallsförbränning med energiutvinning, gick endast Energiåtervinningstjänster 0,5 procent av allt behandlat hushållsavfall till deponi 2017. www.avfallsverige.se Sverige har gjort en fantastisk resa de senaste 10 åren när det gäller hur vårt hushållsavfall tas om Environmental Report Uppsala 2017 · Vattenfall Heat Page 10 Energiåtervinningstjänster hand. Vi har kunnat stänga våra soptippar för brännbart avfall och istället energiåtervinna det Avfall som bränsle Sverige har gjort en fantastisk resasom de intesenaste läng 10re kanåren materialåtervinnas. när det gäller hur vårt Avfallstrappan hushållsavfall berättar tas om om hur vi får ut mesta möjliga Diagrammet ovan från Avfall Sverige visarhand. hur Vi hanteringenhar kunnat stängaav hushållsavfall våra soptipparnytta utvecklats av varor för brännbart genom och material: avfall först och iställetminimering energiåtervinna och återanvändning, det därefter materialåtervinning. åren. Den totala mängden behandlat hushållsavfallsom inte läng årre 2017kan materialåtervinnas. uppgick till 4,Sedan8 miljoner energiåtervinningAvfallstrappan ton eller 47 berättar3 och först om därefterhur vi får deponering ut mesta möjliga av t.e.x. askor om de inte kan användas kg per person och år, det är en ökningnytta med av2,5 varor procent och jämfört material: med först 2016 ellerminimering. Tack om vare de innehåller ochutökad återanvändning, sådant som därefter ska föras materialåtervinning. ut ur kretsloppet. materialåtervinning, biologisk behandlingSedan och energiåtervinning avfallsförbränning och med först energiutvinning, därefter deponering gick endast av t.e.x. askor om de inte kan användas Torv som bränsle 0,5 procent av allt behandlat hushållsavfalleller omtill deponide innehåller 2017. w sådantww.avfa lsomlsveri gskae.se föras ut ur kretsloppet. Då torv i vissa fall klassas som fossilt bränsle medans Internationella klimatpanelen (IPPC) definierar Energiåtervinningstjänster Torv som bränsle torv som en egen kategori, vare sig fossil som olja och kol, eller biobränsle som trä har vi valt att Sverige har gjort en fantastisk resa deDå senaste torv i 10vissa åren fall när klassas det gäller som fossilthurredovisa vårt bränsle hushållsavfall koldioxidutsläppen medans tas Internationella om både med klimatpanelen och utan bidrag (IPPC) från definierar torv, se sidan 3. Vattenfall har tagit hand. Vi har kunnat stänga våra soptippartorv försom brännbart en egen kategori,avfall och vare istället sigbeslut energiåtervinnafossi lpå som att olja sluta och det elda kol, torv eller, redan biobränsle under som 2018 trä konverteras har vi valt attHVC -pannan för att elda endast som inte längre kan materialåtervinnas. Avfallstrappan berättar om hur vi får ut mesta möjliga redovisa koldioxidutsläppen både träbränmed ochsle utan och bidragKVV-pannan från torv, fasas se ut sidan under 3. Vattenfall2020-talet har där tagit de sista åren blir som enbart nytta av varor och material: först minimering och återanvändning, därefter materialåtervinning. beslut på att sluta elda torv, redanreservoljepanna. under 2018 konverteras HVC-pannan för att elda endast Sedan energiåtervinning och först därefter deponering av t.e.x. askor om de inte kan användas träbränsle och KVV-pannan fasas ut under 2020-talet där de sista åren blir som enbart eller om de innehåller sådant som ska föras ut ur kretsloppet. reservoljepanna. Torv som bränsle Då torv i vissa fall klassas som fossilt bränsle medans Internationella klimatpanelen (IPPC) definierar torv som en egen kategori, vare sig fossil som olja och kol, eller biobränsle som trä har vi valt att redovisa koldioxidutsläppen både med och utan bidrag från torv, se sidan 3. Vattenfall har tagit beslut på att sluta elda torv, redan under 2018 konverteras HVC-pannan för att elda endast 12 träbränsle och KVV-pannan fasas ut under 2020-talet där de sista åren blir som enbart reservoljepanna. 12

12 Waste as fuel The graph above from the Swedish Waste Management and Recycling Association shows how the treatment of household waste has developed in recent years. In 2017, the total volume of managed household waste was 4.8 million tonnes, or 473 kg per person per year, an increase of 2.5% compared with 2016. Thanks to increased recycling, biological treatment and waste incineration with energy recovery, only 0.5% of all managed household waste went to landfill in 2017. www.avfallsverige.se

Energy recovery services Over the past 10 years, Sweden has made huge progress in the management of household waste. We have been able to close our landfill sites for combustible waste and, instead, we now recover energy from materials that can no longer be recycled. The waste hierarchy tells us how we can obtain the maximum benefit from goods and materials: first prevention and reuse, then recycling. Then energy recovery and, only after that, disposal, for example, of ash that can’t be used or that contains materials which must be removed from the cycle.

Peat as fuel Since, in some cases, peat can be classified as fossil fuel and the Intergovernmental Panel on Climate Change (IPCC) places peat in a category of its own, neither fossil fuel nor biomass, we have chosen to report CO2 emissions both with and without the contribution of peat (see page 3). Vattenfall has decided to stop burning peat: during the course of 2018 the HVC furnace is being converted to burn wood fuels only, and the KVV furnace is to be phased out in the 2020s and will serve as a back-up oil furnace only in its final years.

We are working to reduce our impact on the environment Through our work to reduce our impact on the environment, we have identified our key environmental factors, some of which are described in brief below.

Climate impact See diagram on page 4 for emissions of carbon dioxide and page 5 for emissions for delivered district heating. Uppsala also has emissions of other greenhouse gases. Nitrous oxide emissions (N2O) amount to around 6 tonnes per year, which, with a conversion factor of 290GWP, contributes less than 0.5% compared with carbon dioxide emissions. We also use the coolant R134a, which contributes around 10 per cent compared with carbon dioxide emissions, despite the large conversion factor of 1,430GWP.

Acidifying emissions to air See diagram on page 4 for emissions of substances that produce acidification such as nitrogen oxides and sulphur dioxide, and page 5 for emissions for delivered district heating. Nitrogen dioxide emissions for the Uppsala plants are below the average for Sweden in the nitrogen oxide charge system. More information on the nitrogen oxide charge is available on the Swedish Environmental Protection Agency’s website www.naturvardsverket.se

Emissions to water Emissions to water result from flue gas condensation, as described on page 13, and rainwater entering surface water drains. Rainwater carries with it particles of various types from the asphalt surfaces around the plant, e.g. flakes of paint from containers, fuel and ash dust, etc. We regularly measure the levels of heavy metals in the surface water and, during 2017, we built a sedimentation reservoir for particle separation of surface water from half of the site. A reservoir for the remainder of the site is planned in conjunction with the construction of a new plant on the site.

Energy efficiency Our total energy turnover can be seen on pages 5, 8 and 9. It shows the degree of efficiency from fuel to delivery to the customer. We are working systematically on increasing energy efficiency, e.g. improved utilisation of waste heat from hot flue gases in Uppsala and the installation of a new more energy-efficient compressed air compressor in Knivsta.

- Internal electricity consumption In 2017 in Uppsala, we consumed 76.6 GWh of electricity (43.6 kWh electricity consumption/total generation in MWh) for pumps, fans and other equipment, which is less than last year. For Knivsta we consumed 2.1 GWh electricity (33 kWh/generated MWh), which is a higher consumption than last year but the ratio is lower because generation has increased since new grid connections were established during the course of the year. For Storvreta we consumed 0.17 GWh (9 kWh/MWh), which is less than last year.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 11 Vi arbetar för att minska vår miljöpåverkan I arbetet med att minska vår miljöpåverkan har vi identifierat våra betydande miljöaspekter, här nedan följer en kort redovisning av några av dessa.

Klimatpåverkan Utsläpp av koldioxid, se diagram sidan 3 och utsläpp per levererad fjärrvärme på sidan 4. Uppsala har även utsläpp av andra växthusgaser. Lustgasutsläppen (N2O) uppgår till cirka 6 ton per år vilket med omräkningsfaktorn 290 ger ett bidrag på mindre än 0,5 procent jämfört med koldioxidutsläppen. Vi använder även köldmedia R134a som bidrar med ca 10 procent jämfört med koldioxidutsläppen trots den stora omräkningsfaktorn 1430.

Försurande utsläpp till luft Utsläpp av försurande ämnen som kväveoxider och svaveldioxid, se diagram sidan 3 och utsläpp per levererad fjärrvärme på sidan 6. Kvävedioxidutsläppen sammantaget för Uppsalaanläggningarna ligger under Sverigemedel i kväveoxidavgiftssystemet. Mer om kväveoxidavgiften finns på naturvårdsverkets hemsida www.naturvardsverket.se

Utsläpp till vatten Utsläpp sker till vatten från rökgaskondenseringen vilket redovisas på sidan 18, men också via regnvatten till dagvattenbrunnar. Regnvattnet för med sig partiklar av olika slag från asfaltsytorna runt anläggningen, t.e.x. färgflagor från containrar, bränsle- och askdamm o.s.v.. Vi mäter regelbundet halterna av tungmetaller i dagvattnet och under 2017 inrättades ett sedimenteringsmagasin för partikelavskiljning av dagvatten från halva delen av tomten. Ett magasin för resterande del av tomten planeras i samband med byggandet av en ny anläggning på tomten.

Energieffektivitet Vår totala energiomsättning finns på sidorna 6, 10 och 11. Där visas verkningsgraden från bränsle till leverans hos kund. Vi arbetar systematiskt för ökad energieffektivitet, till exempel förbättrat tillvaratagande av spillvärme från varma rökgaser i Uppsala och installation av ny effektivare tryckluftskompressor i Knivsta.

- Intern elförbrukning I Uppsala använde vi 76,6 GWh el (43,6 kWh elförbrukning/total produktion i MWh) år 2017 till pumpar, fläktar och annan utrustning, vilket är mindre än förra året. För Knivsta användes 2,1 GWh el (33 kWh/producerad MWh) vilket är högre förbrukning än förra året men kvoten är lägre då produktionen ökat sedan nya nätanslutningar gjorts under året. För Storvreta användes 0,17 GWh (9 kWh/MWh) vilket är lägre än förra året.

Electricity consumption, Heat Uppsala (kWh/produced MWh)

55.0

50.0

45.0

40.0

35.0

Our electricity efficiency work should be seen in the context of the long-term downward trend. In cold years, such as 2010, electricity consumption is lower per generated MWh because the idling consumption is shared across a large production volume. Vårt arbete med eleffektiviseringar syns i den långsiktiga trenden som har sjunkit. Kalla år som t.e.x. 2010 blir elförbrukningen lägre per producerad MWh- The då customer’stomgångsförbrukningen energy fördelas use also på en affects stor produktionsvolym. the environment Our customers’ energy consumption affects society’s use of resources and the degree of emissions. Examples of how we contribute to our customers’ good13 energy housekeeping are outlined below:

- Providing free energy statistics on My Pages via www.vattenfall.se for all of our customers allows them to track trends and changes. - Flow charges benefit larger customers if their district heating units are more efficient than the norm. - Dividing these charges into a power component and an energy component benefits customers who reduce their power requirements, e.g. through additional insulation. The need for heat is then reduced even during the coldest winter days, and oil can be used for peak loads. - We recommend different types of energy optimisation adapted to the customer’s situation. We have skills, expertise and experience to offer, such as service and heat exchanger replacement, to help customers achieve a high degree of efficiency in their heating system.

Resource efficiency Our fuel consumption in Uppsala is based on refuse, which is a waste resource and is therefore more resource-efficient than other fuels. All our fuel consumption is shown on pages 6-7.

- Use of finite resources – fossil fuels Oil and coal are now only used as back-up fuels and in very cold weather, in the event of interruptions in operations, breakdowns, etc. In 2017, the proportion of oil in our fuel mix was 2 per cent in Uppsala, 1 per cent in Knivsta and almost 0 per cent in Storvreta.

- Hydro For the Uppsala plant we used 477,980 m3 of water in 2017 (271 litres per delivered MWh). This is less than in 2016, mainly due to less network leakage. For Knivsta we used 3,666 m3 of water (58.3 litres/ MWh), which is less than in 2016, again due to less leakage during the course of the year. For Storvreta we only used 161 m3 (8.6 litres/MWh), which is considerably less than in 2016 when a major leak was identified and subsequently rectified in late 2016.

- Waste Scrap metal is sorted from the slag from incinerated waste and recycled. Peat ash is recycled for road construction.

Flue ash and sludge from waste incineration Each year about 10,000 tonnes of fly ash and sludge are produced from waste incineration. This is about 5 kg per MWh delivered, and does not change from year to year. The content of metal in the waste determines the amount of metal in the ash from waste incineration. The sludge separated through the waste incineration’s water purification treatment includes an organic sulphide, which binds metals such as mercury and cadmium. The sludge and fly ash are considered hazardous waste and treated according to current regulations, which means that leaching from landfills is minimal. Good incineration reduces the content of organic matter in fly ash and sludge.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 12 Sustainable fuel Fuel suppliers can affect the environment and the work environment in different countries. Oil extraction has an environmental impact and there is a risk of oil spills in connection with transporting oil. Both the environment and the work environment are important when cutting peat. We have visited our suppliers to ensure that the conditions are good enough. We are also monitoring developments around sustainability criteria for biomass fuels and are conducting supplier assessments.

Risk of environmental accidents Instituting preventive measures against accidents such as oil spills and fires is an important part of our work. We do this through, for example, maintenance, inspections, risk analyses and deviation reports. There were no major accidents in 2017.

Risk of disturbances in the local environment We prevent disturbances in the local environment, such as dust from peat and ash, by handing fuels and ashes indoors as far as possible. Disturbances can also arise from the odour of waste that is used as a fuel. We prevent this by working proactively in planning deliveries, waste inspections and controlling air flows in connection with waste treatment.

Emissions and environmental limits

A selection of substances and conditions that are of interest from an environmental point of view are presented below.

Air emissions from waste incineration Emission limits 2017 results Dust, mg/m3, as a daily average, measured 10 No days over 10 continuously Mercury, µg/m3, measured twice a year 25 0,4 – 0,5

Dioxins, ng/m3, measured twice a year 0,1 <0,011

Total organic coal, mg/m3, as a 10 No days over 10 daily average, measured continuously

Dust is interesting from an environmental perspective as it can contain both heavy metals and hydrocarbon (unburned). It is consequently important to keep dust emissions down. However, mercury is a heavy metal that is not usually carried in dust and is therefore reported separately.

Key mg milligram thousandth of a gram µg microgram millionth of a gram ng nanogram billionth of a gram

Water emissions from waste incineration Emission limits 2017 results Mercury, kg per year, limit value, continuous measurement 0,5 <0,02

Lead, kg per year, limit value, continuous measurement 12,5 3,4

Cadmium, kg per year, limit value, continuous measurement 0,75 0,2

Dioxins, ng/l, measured twice a year, target value 0,1 < 0,004

During the year, a limited number of operational interruptions occurred, and these were reported to the supervisory authority. A full report on emissions and environmental conditions can be found in our environmental report to the authorities, which can be ordered from Vattenfall Heat Uppsala.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 13 Så här bidrar vi till att uppfylla de svenska miljömålen

Begränsad klimatpåverkan Uppsala kommuns mål är att bli fossilfria till 2030 och klimatpositiva till 2050. Utsläppen av växthusgaser från energianvändning, transporter och arbetsmaskiner inom Uppsala kommungeografi ska senast år 2030 vara nära noll samt baseras på förnybara energikällor. We help meet Sweden’s environmental targets in the following ways Vattenfall Värme Uppsala har minskat koldioxidutsläppen med 25 procent jämfört med 1990 och planerarReduced att Climate till 2020 Impact ha halverat utsläppen jämfört med 2013. Koldioxidutsläppen kommer att ’s goal is to be fossil free by 2030 and climate-positive by 2050. By 2030 at the latest, minskaemissions genom of greenhouse våra projekt gases för from att byta energy torv consumption, mot trä, främst transport då kraftvärmeve and work machineryrket er insätts the av ett nytt årmunicipality 2021. Vi deltar of Uppsala i Uppsala must Klimatprotokoll,be almost zero and som must är be ett based samarbete on renewable startat energy av Uppsala sources. kommun för minskadVattenfall klimatpåverkan. Heat Uppsala has reduced carbon dioxide emissions by 25 per cent compared with 1990, and by 2020 plans to have halved emissions compared with 2013. Carbon dioxide emissions will be reduced Fthroughrisk luft our plans to replace peat with wood, particularly when the CHP plant is replaced with a new plant in 2021. We are participating in the Uppsala Climate Protocol, which is a collaborative project started by the LänsstyrelsenUppsala municipality anger attfor reducedden största climate källan impact. till utsläpp av partiklar och kväveoxider i Uppsala län är utsläppen från trafiken. Vår produktions bidrag till innerstadsluften av partiklar är som mest 0,004 µg/mFresh3 avair miljökvalitetsnormen 50 per dygn. För kväveoxider är vårt bidrag till innerstadsluften som mestThe County1,5 µg/m Administrative3 av miljökvalitetsnormen Board has stated 90 that per the timme. greatest source of particle and nitrogen oxide emissions in is from traffic. For particles, our contribution to inner city air is at most 0.004 μg/m3 of the environmental quality standard of 50 per day. For nitrogen oxides, our contribution to inner city Bairar ais n ata tmosturlig 1.5för μsg/murni3n ofg the environmental quality standard of 90 per hour. Våra utsläpp av försurande ämnen har minskat betydligt genom åren, se graferna över försurande ämnenOnly natural på sidan acidification 3. Our emissions of acidifying substances have decreased significantly over the years; see the graphs on Gacidifyingiftfri milj ösubstances on page 4. VåraA non-toxic utsläpp environment till luft av kvicksilver och dioxiner har minskat dramatiskt sedan 1980-talet, se diagrammenOur air emissions härintill. of mercury Våra andutsläpp dioxins till havevatten been bidrar dramatically endast reducedi begränsade since themängder 1980s, seetill transporten the diagram av tungmetallerbelow. Our water i Fyrisån. emissions Våra contribute utsläpp onlytill vatten a limited från amount avfallsförbränningens to the transport of heavy rökgaskondensering metals in the Fyris finns River. redovisadeOur water emissions på sidan from 15. flue gas condensation during waste incineration are reported on page 13.

Mercury emissions to air

Wet flue gas cleaning AFA (Condensation)

Additional dry flue gas cleaning AFA (Filsorption)

17

Environmental Report Uppsala 2017 · Vattenfall Heat Page 14 Dioxin emissions to air

15.0

13.0

11.0

9.0

7.0 Incineration engineering steps AFA

5.0 Wet flue gas cleaning (AFA Condensation)

Additional dry flue gas 3.0 cleaning AFA (Filsorption)

1.0

- 1.0

No eutrophication TheInge Fyrisn öv Riverergö dhasnin moderateg ecological status under the Water Framework Directive. This is due to the transportation of nitrogen and phosphorous, primarily from agriculture but also from large and small waste waterFyrisån treatment har måttlig plants. ekologisk Vattenfall status Heat Uppsala’s enligt Vattendirek total emissionstivet. of Detta nitrogenous beror på substances kväve- och have been reducedfosfortransporten, over the years främst as mentioned från jordbruk above, men and areäven primarily från stora in the och form små of airborne reningsverk. nitrogen Vattenfall oxides; Värme aroundUppsalas 50 samladetonnes per utsläpp year calculated av kvävehaltiga as nitrogen, ämnen or 4% har of theminskat county’s genom emissions. åren somWater nämns emissions ovan are och aroundsker framförallt 5 tonnes per i form year av calculated kväveoxider as nitrogen, till luft, which cirka constitutes 50 ton per one år räknatper cent som of the kväve, total nitrogeneller 4 procent emissionsav utsläppen into thei länet. Fyris Utsläppen River. till vatten är cirka 5 ton per år räknat som kväve, vilket utgör 1 Goodprocent urban av deenvironment totala kväveutsläppen till Fyrisån. District heating allows cities and urban areas to provide a good and healthy lifestyle environment and also contributeGod beby togg ad goodmiljö regional and global environment. District heating is the ideal form of heating for cities andFjärrvärme urban areas. bidrar till att städer och tätorter kan utgöra en god och hälsosam livsmiljö och medverkar till en god regional och global miljö. Fjärrvärme passar utmärkt som uppvärmningsform Environmentalför städer och tätorter glossary.

Sulphur,Miljöbe gnitrogenrepp oxides, hydrogen chloride and ammonia are substances which cause acidification. This leads to nutrients leaching out of the ground and metals being released that are normally bound. Sulphur emissions have decreased throughout the entire country, thanks to reduced use of coal and oil. Nitrogen Svavel, kväveoxider, klorväte och ammoniak oxides are formed in connection with all combustion är ämnenand affect orsakar the environment försurning. in Det four lederdifferent till waysatt marken as theyurlakas lead på to näringsämnenacidification, eutrophication, och metaller intensification frigörs som of normalt the greenhouse är bundna. effect Svavelutsläppen and formation of har ground minskat i levelhela ozone. landet, Hydrogen tack vare chloride minskad is a användning corrosive gas av and ko togetherl och olja. with Kväveoxider water it forms bildas hydrochloric vid all förbränning acid, which isoch acidifying.påverkar Ordinarymiljön på salts fyra can olika form sätt hydrogen genom chloride att de leder in conjunction till försurning, with waste övergödning, incineration förstärkning Hydrogen av chlorideväxthuseffekten is removed och from bildandet flue gas through av marknära condensing. ozon. AmmoniaKlorväte, alsoeller appears väteklorid, to be är acidifying en frätande as it easily gas och forms ammonium ions, which are weak acids. tillsammans med vatten bildar den saltsyra, som är försurande. Vanliga salter kan bilda klorväte vid Dustavfallsförbränning. is particles of ash Klorvätet that are released renas ur into rökgasen the air from genom industry kondensering. and cars. The Även dust ammoniak can contain verkar heavy metalsförsurande and hydrocarbon. genom att denWe clean lätt bildar the flue ammoniumjoner, gases of dust using som electrofilters är svaga syrandor. fabric filters. The dust from waste incineration (fly ash) is hazardous waste. Fly ash from peat and wood contains only low levels of pollutants and can be used, for example, in road building and as a substitute for cement. Stoft är partiklar av aska som släpps ut i luften från industrier och bilar. Stoftet kan bära på Carbontungmetaller dioxide och is a kolväten.gas that is Vifound renar naturally rökgaserna in the airfrån and stoft is one med of theel- mostoch textilfilter. important substances Stoftet från in photosynthesis.avfallsförbränning However, (flygaska) a distinction är farligt is made avfall. between Flygaska the från amount torv ofoch carbon trä innehåller dioxide that endast is part låga of the halter naturalföroreningar cycle, and och the kan surplus användas that arises för till through exempel use vägbyggen of fossil fuels. och This som surplus ersättning intensifies för cement.the greenhouse effect. The increase that disturbs the balance is caused chiefly by traffic and burning of fossil fuels such as oil and coal. On the other hand, the amount of carbon dioxide that arises when biomass fuels are used is absorbed again by plants.

Environmental Report Uppsala 2017 · Vattenfall Heat Page 15

18 Dioxins are a group of over 200 different chlorinating hydrocarbons. Some of the variants are highly toxic. In principle, dioxin arises in connection with all combustion, where landfill fires are the worst. A single short-lived fire at a landfill site produces more emissions of dioxin into the air than Heat Uppsala’s waste incineration plant does in ten years, which is one of the reasons why there is a ban on dumping combustible waste.

Heavy metals impact on the environment, primarily mercury, lead and cadmium. They are naturally present in all animals and plants, but only in small quantities. If their content increases unnaturally, these heavy metals are highly powerful environmental toxins.

In Sweden, emissions of many heavy metals have declined substantially in recent years, thanks to new processing techniques, better purification techniques, a ban on mercury, increased collection of batteries and a ban on lead in petrol.

The major sources of emissions of mercury are crematoriums and chlor-alkali industries. For cadmium it is the metal industries. Waste incineration in Sweden accounts for less than one per cent of the total air emissions of heavy metals.

More information

• The industry association Swedish Waste Management has information about waste disposal: www.avfallsverige.se • The industry organisation Energiföretagen: www.energiforetagen.se • Swedish peat production: www.svensktorv.se • The Swedish Energy Authority has statistics on energy use in Sweden and information about energy and energy efficiency: www.energimyndigheten.se • Energy advice and environmental programmes, Uppsala Municipality www.uppsala.se, including a link to Uppsala Municipality’s Climate Protocol • Details of the progress made on Sweden’s environmental targets can be found at www.miljomal.nu

For more information about Vattenfall, you can visit our website: www.vattenfall.se

Environmental Report Uppsala 2017 · Vattenfall Heat Page 16 Environmental policy

An important part of Vattenfall’s vision is to be among the leaders in developing environmentally sustainable production, supply, and distribution of energy.

This means the following:

We strive to be amongst the best in class for each energy source we use and for each type of technology we implement, as well as along the entire value chain. Our ambition is to be a role model in the areas in which we operate.

Our investment projects are based on well-informed judgements, which strike a balance between environmental and economic impact. With this in mind, we do our utmost to invest in modern, efficient and environmentally effective technologies and solutions.

We aim to increase our use of low-emission energy sources and technologies, such as low-carbon technologies.

We invest in research and development to improve the environmental performance of our operations, to increase the competitiveness of our renewable and low-emission energy sources and to reduce emissions of CO2 from our power plants.

We take a systematic approach to environmental factors and environmental risks. This includes making continuous improvements, setting requirements and targets and performing reviews. We treat this as an integral part of our management system and have regular strategic discussions at senior management level.

We specify and assess environmental performance when selecting suppliers, contractors and business partners.

We engage with our customers and promote the efficient use of energy with a view to reducing environmental impact.

We strive to constantly improve our internal energy and resource efficiency.

Safety, results and co-operation are fundamental to our operations.

Our environmental work paves the way for sustainable business development and makes us more competitive. We comply with existing laws, regulations and permits.

Through continuous improvements, our aim is to lead the way in our sector and to act as a role model in the markets on which we operate. Within our area of operation, we focus on environmental protection, pollution prevention and human health.

Our actions are characterised by respect for the cultures of the regions in which we operate. We are committed to maintaining an open dialogue on issues relating to the environmental impact of our leadership, our day-to-day operations and our products. We endeavour to provide society with energy solutions that enable sustainable development.

______

Environmental Report Uppsala 2017 · Vattenfall Heat Page 17 Värme Uppsala är en affärsenhet i Vattenfall AB. FjärrvärmeHeat Uppsala är den isstörsta a business delen av vårunit verksamhet in Vattenfall och våra AB. kunder är fastighetsbolag, bostadsrättsföreningar, villaägare, industrier och offentliga lokaler till exempel skolor, simhallar och District heating is the major part of our business and our customers are real estate companies, housing bibliotek.associations, Verksamheten home owners, omfattar industrial hela and publicvärdekedjan: facilities; produktion, for example distributionschools, swimming och försäljning. pools and Vi erbjuderlibraries. The även business fjärrkyla covers och ånga,the entire den value senare chain: används production, i industriella distribution processer. and sales. Att We producer also offera el district och värmecooling samtidigtand steam, ger with hög the verkningsgrad. latter being used Uppsala in industrial är Vattenfalls processes. största Producing anläggning electricity för and fjärrvärme heat i Sverige.simultaneously delivers a high level of efficiency. Uppsala has Vattenfall’s largest plant for district heating in Sweden.

Our main plants in Sweden, including subsidiaries Heat volume: 4,000 GWh Electricity volume: 380 GWh Turnover: MSEK 3,000 Employees: 400

Våra större anläggningar i Sverige, inkl dotterbolag 1 Our main plants in Sweden, including subsidiaries HarIf you du have frågor questions är du välkommenplease contact att us: kontakta oss:

Vattenfall Heat Värme Uppsala Uppsala Customer enquiries: Vattenfall Customer Service PO Box 13 Kundfrågor:SE-880 30 Näsåker, Vattenfall Sweden kundservice Box 13 880Telephone: 30 Näsåker +46 (0)20 82 00 00 Telefon:email: [email protected] 020-82 00 00 www.vattenfall.se/uppsala e-post: [email protected] www.vattenfall.se/uppsalaVisiting address: Vattenfall Heat Uppsala Bolandsgatan 13 Besöksadress:[email protected] Vattenfall Värme Uppsala Bolandsgatan 13 varme@vatt 1 Västerbergslagensenfall.com Energi AB (VB Energi) and Gotlands Energi AB (Geab).

Environmental Report Uppsala 2017 · Vattenfall Heat Page 18 1 Västerbergslagens Energi AB (VB Energi) och Gotlands Energi AB (Geab).

21