And Tumor Cells in Kaposi's Sarcoma

Total Page:16

File Type:pdf, Size:1020Kb

And Tumor Cells in Kaposi's Sarcoma Americani Joirnal ofPathology, Vol. 148, No. 5, May 1996 Copyfight X) American Societyfor Investigative Pathology CD40 Antigen Is Expressed by Endothelial Cells and Tumor Cells in Kaposi's Sarcoma Johannes Pammer,* Andreas Plettenberg,t of CD40 by Kaposi sarcoma tumor ceUs might Wolfgang Weninger,t Barbara Diller,t play an important role in thepathogenesis ofthis Michael Mildner,t Aumaid Uthman,t neoplasm. (AmJPathol 1996, 148:1387-1396) Wolfgang lssing,$ Michael Sturzl,§ and Erwin Tschachlert From the Division ofImmunology,t Allergy, and Infectious The CD40 antigen is a 45- to 50-kd transmembrane Diseases, Department ofDermatology, and Institute of glycoprotein that belongs to the nerve growth factor Clinical Pathology,* University of Vienna Medical School, receptor (NGFR)/tumor necrosis factor receptor Vienna, Austria, and the Department of Otolaryngology,t (TNFR)-superfamily.1 2 Members of this superfamily Grosshadern Clinic, Ludwig Maximilians University, are intimately involved in the regulation of cell sur- Munich, and the Max Planck Institute ofBiochemistry,j vival and include the T cell activation antigen CD27, Martinsnied, Germany the lymphocyte activation antigen CD30, the low af- finity NGFR, the FAS antigen CD95, the TNFRs CD12012 and the lymphotoxin-f3 receptor.3 CD40 was initially described on B cells and certain carci- The CD40 antigen is a member of the tumor ne- nomas.4'5 It has since become clear that it is also crosis factor receptor/nerve growth factor re- expressed on dendritic cells,6 monocytes,7 thymus ceptor superfamily and is involved in ceUprolif- epithelia," and normal basal epithelial cells of the eration, differentiation, and survival. Using nasopharynx,9 ectocervix,10 and skin.11 The pres- different monoclonal antibodies, wefound CD40 ence of this membrane antigen on endothelial cells expression by immunohistochemistry on CD31- has been reported in the past,12 but only very re- and CD34-positive Kaposi's sarcoma spindle cently have the regulatory and functional aspects of ceUs in aU tumors of 18 HIV-1 seropositive and 4 CD40 expression on human umbilical vein endothe- HIV-1 seronegative patients. Western blot analy- lial cells (HUVECs) and human aortic endothelial sis of tumor lysates detected a 48- to 50-kd gly- cells been studied.13,14 coprotein corresponding to the CD40 antigen ex- Stimulation of CD40 by either monoclonal antibod- pressed by B lymphocytes. CD40 expression was ies (MAbs) or its natural ligand induces DNA repli- also detectable in one offour cultures ofspindle cation in resting B lymphocytes, leads to sustained cells derivedfrom Kaposi sarcoma tissue. Treat- proliferation of these cells in the presence of certain ment ofthe CD40-positive spindle ceUs but not of cytokines, and can drive B cell differentiation and the CD40-negative ones with interferon-y up-reg- aggregation.1 Activation of monocytes via the CD40 ulated CD40 surface expression. Besides on Ka- antigen leads to the secretion of interleukin (IL)-6, posi sarcoma tumor ceUs, CD40 was distinctly IL-8, and TNF7 and triggering of CD40 on HUVECs present on vascular endothelial ceUs in areas increases expression of the leukocyte adhesion mol- within and adjacent to the tumors and in benign ecules E-selectin, vascular adhesion molecule-1 and inflammatory lesions such as granulation tissue intercellular adhesion of HIV-1-negative patients. In contrast, CD34- molecule-i 13 Besides their negative endothelia of thin waUed vessels, most likely lymphatics, werepredominantly CD40 neg- Supported by grant P01437-MED from the Austrian Science Foun- ative. Only faint or no CD40 expression was dation and by the European Concerted Action: Oncogenesis in HIV found on endothelial cells in normal skin. We Infection. conclude from our data that expression of the Accepted for publication December 18, 1995. CD40 antigen by endothelial ceUs is Address reprint requests to Dr. Erwin Tschachler, Division of up-regulated Immunology, Allergy, and Infectious Diseases, Department of Der- during tissue inflammation. As signaling through matology, University of Vienna Medical School, Wghringer GCurtel CD40 is able to increase ceU survival, expression 18-20, A-1090 Vienna, Austria. 1387 1388 Pammer et al AJP May 1996, Vol. 148, No. 5 important regulatory role within the immune system, and fistulas of the skin with formation of granula- CD40 and other members of the NGFR/TNFR family tion tissue, and samples of normal skin were ob- have recently been implicated in Epstein-Barr virus tained from the files of the Institute of Clinical (EBV)-associated growth transformation.15 Based on Pathology and the Department of Dermatology at the evidence that CD40 and other proteins of the the University of Vienna. For immunostaining of NGFR/TNFR family associate with a newly identified cryostat sections and for Western blot analysis, 6 cellular protein that interacts with the EBV latent in- KS lesions were biopsied under local anesthesia fection membrane protein (LMP-1), it has been sug- after informed consent was obtained from patients gested that this interaction may interfere with recep- with AIDS. The CD40-positive B cell line R17 and tor-associated signal transduction and constitutively the CD40-negative T cell line H9 were cultured promote cell growth.15 under standard conditions in RPMI 1640 medium Kaposi's sarcoma (KS) is a tumor of probable vas- supplemented with 10% fetal bovine serum. cular origin16-18that has aroused considerable interest of late, as it is the most frequent neoplasm seen in Immunohistochemistry patients with acquired immune deficiency syndrome For immunostaining of paraffin sections, anti-CD31 (AIDS). However, despite intensive research over the (JC/70A, Dako, Glostrup, Denmark), anti-CD34 past few years,17'18-20 the origin of KS tumor cells has (QBend/10, Novocastra Laboratories, Newcastle not been clarified and it is even a matter of contention upon Tyne, UK), and anti-CD40 (BB-20, Serotec, whether KS is a real neoplasm or represents a reactive Kidlington, UK) MAbs or corresponding isotype- proliferative process.18'21 Suspected pathogenic matched control antibodies were applied. Incubation mechanisms regarding this tumor include cytokine with the primary antibodies was followed by a dysregulation22 23 and the participation of the HIV-1 tat streptavidin-biotin complex alkaline phosphatase gene product24 in the activation and growth of spindle system (super sensitive detection system, Biogenex, cells, as well as the potential involvement of a trans- San Ramon, CA). For some experiments an avidin- missible agent.18'25 Recently, noncellular DNA se- biotin staining technique (Vector Laboratories, Bur- quences homologous to EBV sequences have been lingame, CA) was used. identified in KS tissue.26 Although these herpesvirus- Immunoperoxidase staining of cryostat sections like sequences can be detected in practically all sam- was performed as described earlier29 with anti-CD40 ples of AIDS-associated and non-AIDS-associated KS MAbs BB-20 and G28-5 (a kind gift of J. A. Ledbet- analyzed by several groups,26-28 a role for this possi- ter, Seattle, WA). ble new herpesvirus in KS pathogenesis remains to be established. Western Blotting While screening for endothelial markers in nor- mal and inflamed skin, we found distinct expres- For Western blotting, biopsies of KS or H9 and R17 sion of the CD40 antigen on endothelial cells in cells were lysed in NP40 lysis buffer as previously granulation tissue of chronic skin ulcers and fistu- described.29 Glycoproteins were enriched on a lating processes. Because of our interest in the lentil-lectin column (Pharmacia, Uppsala, Sweden) histogenesis and pathology of KS, we analyzed and eluted with 2 column volumes of 1 mol/L the CD40 expression in these tumors by immuno- a-methyl-mannopyranosid (Sigma Chemical Co., histochemical and biochemical methods. In our St. Louis, MO). After quantification, glycoproteins present study we evaluated KS at various stages were electrophoresed through an 8 to 18% gradi- and found strong expression of the CD40 antigen ent gel and transferred onto nitrocellulose mem- on both endothelial and spindle cells. branes (Schleicher & Schuell, Dassel, Germany). The immunoreaction was performed with either the BB-20 MAb or an appropriate isotype-matched Materials and Methods (IgG1; Coulter, Hialeah, FL) control antibody and Tissues and Cells an 1251-labeled sheep anti-mouse Ig antiserum (Amersham, San Jose, CA) as described.29 We analyzed a total of 26 biopsies of KS derived from 18 HIV seropositive and 4 HIV seronegative Tissue Culture and Immunostaining of patients. By routine histology, the biopsies were Cultured KS-Derived Cells classified as patch (n = 1), plaque (n = 9), and nodular KS lesions (n = 16). Formalin-fixed, par- Cultures of spindle cells derived from KS tissue were affin-embedded specimens of KS (n = 20), ulcers established by explant culture method (M7/2, M12/4) CD40 Antigen Expression in Kaposi's Sarcoma 1389 AJP May 1996, Vol. 148, No. 5 or by enzymatic dissection (M7Col 12, M 12T8) of KS distributed uniformly over the tumors (Figure 1) with biopsies from skin of two male patients with AIDS the exception of one sample in which CD40-negative (M7, Mi2). Cells were maintained in Dulbecco's min- areas within the tumor were detectable (Table 1, imal essential medium with 10% fetal bovine serum patient 16). On serial sections we could confirm that as previously described.30'31 KS spindle cells were CD40-positive tumor cells (Figure 2A) comprised the characterized by cytochemical staining and were majority of anti-CD31-positive (Figure 2B) and anti- positive for Ulex europaeus antigen-I and CD34-positive (Figure 2C) KS spindle cells. The BMA120.3°31 Polymerase chain reaction for the same staining pattern, ie, anti-CD40 reactivity of KS detection of KS-associated herpesvirus (KSHV) tumor cells, was obtained when frozen sections of six sequences in these cell cultures using the protocol different tumors derived from patients with AIDS published by Chang et al26 yielded negative re- were stained with two different anti-CD40 MABs sults.
Recommended publications
  • Expression of the Hematopoietic Stem Cell Antigen CD34 on Blood and Bone Marrow Monoclonal Plasma Cells from Patients with Multiple Myeloma
    Bone Marrow Transplantation, (1997) 19, 553–556 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 Expression of the hematopoietic stem cell antigen CD34 on blood and bone marrow monoclonal plasma cells from patients with multiple myeloma T Kimlinger1 and TE Witzig2 1Department of Laboratory Medicine and 2Division of Internal Medicine and Hematology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA Summary: led to strategies to deplete the tumor cells from the harvest product prior to reinfusion of the stem cells. Monoclonal plasma cells (CD38+CD45−/dim) are typi- One of the current attempts at purifying the harvest pro- cally present in the blood of patients with active mye- duct uses antibody to the CD34 antigen to positively select loma and can contaminate stem cell harvests. This has and enrich hematopoietic stem cells and in the process led to strategies that select CD34+ cells for use in auto- purge the stem cell product of tumor cells and T cells.11–13 logous stem cell transplantation with the goal of The CD34 antigen identifies a lymphohematopoietic stem decreasing tumor cell contamination. The aim of this cell, is present on 1–5% of adult bone marrow cells, and study was to learn if the CD34 antigen is expressed on is expressed on early B cells. The characteristics of this monoclonal plasma cells in the blood or marrow of important antigen and its clinical relevance have recently patients with multiple myeloma. We used three-color been reviewed.14 CD34+ hematopoietic cells from blood or flow cytometry (surface CD38;CD45 and cytoplasmic marrow can reconstitute hematopoiesis after high-dose kappa or lambda) to identify monoclonal plasma cells therapy programs.15 The number of CD34+ cells reinfused in the blood (n = 24) and marrow (n = 37) from patients predicts the time to engraftment.16,17 with plasma cell proliferative disorders.
    [Show full text]
  • MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells
    Published OnlineFirst July 18, 2013; DOI: 10.1158/0008-5472.CAN-13-0677 Cancer Tumor and Stem Cell Biology Research MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells Dina Stroopinsky1, Jacalyn Rosenblatt1, Keisuke Ito1, Heidi Mills1, Li Yin2, Hasan Rajabi2, Baldev Vasir2, Turner Kufe1, Katarina Luptakova1, Jon Arnason1, Caterina Nardella1, James D. Levine1, Robin M. Joyce1, Ilene Galinsky2, Yoram Reiter3, Richard M. Stone2, Pier Paolo Pandolfi1, Donald Kufe2, and David Avigan1 Abstract Acute myeloid leukemia (AML) is a malignancy of stem cells with an unlimited capacity for self-renewal. MUC1 is a secreted, oncogenic mucin that is expressed aberrantly in AML blasts, but its potential uses to target AML þ À stem cells have not been explored. Here, we report that MUC1 is highly expressed on AML CD34 /lineage / À CD38 cells as compared with their normal stem cell counterparts. MUC1 expression was not restricted to AML þ À CD34 populations as similar results were obtained with leukemic cells from patients with CD34 disease. Engraftment of AML stem cell populations that highly express MUC1 (MUC1high) led to development of leukemia in NOD-SCID IL2Rgammanull (NSG) immunodeficient mice. In contrast, MUC1low cell populations established normal hematopoiesis in the NSG model. Functional blockade of the oncogenic MUC1-C subunit with the peptide inhibitor GO-203 depleted established AML in vivo, but did not affect engraftment of normal hematopoietic cells. Our results establish that MUC1 is highly expressed in AML stem cells and they define the MUC1-C subunit as a valid target for their therapeutic eradication.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Review Article TheScientificWorldJOURNAL (2011) 11, 2011–2019 ISSN 1537-744X; doi:10.1100/2011/671453 The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis Irene Mavroudi1, 2 and Helen A. Papadaki1 1Department of Hematology, University of Crete School of Medicine, P.O. Box 1352, 71110 Heraklion, Crete, Greece 2Graduate Program “Molecular Basis of Human Disease”, University of Crete School of Medicine, 71003 Heraklion, Greece Received 29 August 2011; Accepted 5 October 2011 Academic Editor: Marco Antonio Cassatella The CD40 ligand (CD40L) and CD40 are two molecules belonging to the TNF/TNF receptor super- family, and their role in adaptive immune system has widely been explored. However, the wide range of expression of these molecules on hematopoietic as well as nonhematopoietic cells has revealed multiple functions of the CD40/CD40L interactions on different cell types and processes such as granulopoiesis. CD40 triggering on stromal cells has been documented to enhance the expression of granulopoiesis growth factors such as granulocyte-colony-stimulating factor (G- CSF) and granulocyte/monocyte-colony-stimulating factor (GM-CSF), and upon disruption of the CD40/CD40L-signaling pathway, as in the case of X-linked hyperimmunoglobulin M (IgM) syn- drome (XHIGM), it can lead to neutropenia. In chronic idiopathic neutropenia (CIN) of adults, however, under the influence of an inflammatory microenvironment, CD40L plays a role in granu- locytic progenitor cell depletion, providing thus a pathogenetic cause of CIN. KEYWORDS: CD40L, CD40, granulopoiesis, G-CSF, GM-CSF, Flt3-L, neutropenia, apoptosis, tumor necrosis factor family, and granulocytic progenitor cells Correspondence should be addressed to Helen A.
    [Show full text]
  • Precursors in Human Bone Marrow Identifies Autonomously
    A Feeder-Free Differentiation System Identifies Autonomously Proliferating B Cell Precursors in Human Bone Marrow This information is current as Helene Kraus, Sandra Kaiser, Konrad Aumann, Peter of September 30, 2021. Bönelt, Ulrich Salzer, Dietmar Vestweber, Miriam Erlacher, Mirjam Kunze, Meike Burger, Kathrin Pieper, Heiko Sic, Antonius Rolink, Hermann Eibel and Marta Rizzi J Immunol 2014; 192:1044-1054; Prepublished online 30 December 2013; Downloaded from doi: 10.4049/jimmunol.1301815 http://www.jimmunol.org/content/192/3/1044 Supplementary http://www.jimmunol.org/content/suppl/2013/12/30/jimmunol.130181 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 55 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/192/3/1044.full#ref-list-1 Why The JI? Submit online. by guest on September 30, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
    [Show full text]
  • Cell Activation Subsets of Human Dendritic Cells Tunes NK
    Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation This information is current as Barbara Morandi, Roberta Costa, Michela Falco, Silvia of September 29, 2021. Parolini, Andrea De Maria, Giovanni Ratto, Maria Cristina Mingari, Giovanni Melioli, Alessandro Moretta and Guido Ferlazzo J Immunol 2005; 175:3690-3697; ; doi: 10.4049/jimmunol.175.6.3690 Downloaded from http://www.jimmunol.org/content/175/6/3690 References This article cites 46 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/175/6/3690.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation1 Barbara Morandi,* Roberta Costa,† Michela Falco,‡ Silvia Parolini,§ Andrea De Maria,¶ Giovanni Ratto,ʈ Maria Cristina Mingari,*¶ Giovanni Melioli,‡ Alessandro Moretta,¶# and Guido Ferlazzo*2** CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes.
    [Show full text]
  • Extracellular Matrix and Α5β1 Integrin Signaling Control the Maintenance
    www.nature.com/scientificreports OPEN Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation Received: 05 December 2016 Accepted: 07 February 2017 capacity by human adipose-derived Published: 14 March 2017 stromal cells Nunzia Di Maggio1,*, Elisa Martella2,3,*, Agne Frismantiene4, Therese J. Resink4, Simone Schreiner1, Enrico Lucarelli2,3, Claude Jaquiery5, Dirk J. Schaefer6, Ivan Martin1 & Arnaud Scherberich1 Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potentialin vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptorα 5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion.
    [Show full text]
  • A Molecular Signature of Dormancy in CD34+CD38- Acute Myeloid Leukaemia Cells
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 67), pp: 111405-111418 Research Paper A molecular signature of dormancy in CD34+CD38- acute myeloid leukaemia cells Mazin Gh. Al-Asadi1,2, Grace Brindle1, Marcos Castellanos3, Sean T. May3, Ken I. Mills4, Nigel H. Russell1,5, Claire H. Seedhouse1 and Monica Pallis5 1University of Nottingham, School of Medicine, Academic Haematology, Nottingham, UK 2University of Basrah, College of Medicine, Basrah, Iraq 3University of Nottingham, School of Biosciences, Nottingham, UK 4Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK 5Clinical Haematology, Nottingham University Hospitals, Nottingham, UK Correspondence to: Claire H. Seedhouse, email: [email protected] Keywords: AML; dormancy; gene expression profiling Received: September 19, 2017 Accepted: November 14, 2017 Published: November 30, 2017 Copyright: Al-Asadi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Dormant leukaemia initiating cells in the bone marrow niche are a crucial therapeutic target for total eradication of acute myeloid leukaemia. To study this cellular subset we created and validated an in vitro model employing the cell line TF- 1a, treated with Transforming Growth Factor β1 (TGFβ1) and a mammalian target of rapamycin inhibitor. The treated cells showed decreases in total RNA, Ki-67 and CD71, increased aldehyde dehydrogenase activity, forkhead box 03A (FOX03A) nuclear translocation and growth inhibition, with no evidence of apoptosis or differentiation. Using human genome gene expression profiling we identified a signature enriched for genes involved in adhesion, stemness/inhibition of differentiation and tumour suppression as well as canonical cell cycle regulation.
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • Syndecan-1, Epithelial-Mesenchymal Transition Markers (E-Cadherin/Β-Catenin) and Neoangiogenesis-Related Proteins (PCAM-1 and Endoglin) in Colorectal Cancer
    ANTICANCER RESEARCH 36: 2271-2280 (2016) Syndecan-1, Epithelial-Mesenchymal Transition Markers (E-cadherin/β-catenin) and Neoangiogenesis-related Proteins (PCAM-1 and Endoglin) in Colorectal Cancer ANTIGONY MITSELOU1, VASSILIKI GALANI2, URANIA SKOUFI3, DIMITRIS L. ARVANITIS4, EVANGELI LAMPRI5 and ELLI IOACHIM3 Departments of 1Forensic Pathology, 2Anatomy-Histology- Embryology and 5Pathology, Medical School, University of Ioannina, Ioannina, Greece; 3Department of Pathology, General Hospital “Hatzikostas”, Ioannina, Greece; 4Department of Anatomy-Histology-Embryology, Medical Faculty, University of Thessaly, Larissa, Greece Abstract. The Syndecan-1 protein plays a crucial role in syndecan-1, EMT markers, E-cadherin/β-catenin, in cell proliferation, cell adhesion, cell migration and association with endoglin (CD105), may be involved in angiogenesis and, at the same time, its co-expression with E- tumor progression and prognosis of CRC patients. Further cadherin is regulated during epithelial-mesenchymal studies are needed to clarify the interaction between these transition (EMT). In colorectal cancer (CRC), the expression proteins and tumor initiation and progression. of syndecan-1, E-cadherin/β-catenin complex is frequently disturbed. Angiogenesis is critical for the growth and Colorectal cancer (CRC) is the most common tumor of the metastatic spread of tumors. In the present study, we focused gastrointestinal system, the third most frequent cancer on the expression of these biological molecules and their worldwide and the fourth most frequent cause of death (1). prognostic significance in human CRC. Formalin-fixed In Greece, the last two decades, CRC has a high incidence paraffin-embedded surgical specimens from 69 patients with and mortality rates, in both sexes (2). CRC frequency varies CRC were immunostained for syndecan-1, E-cadherin, β- markedly by region and community.
    [Show full text]
  • 6191.Full-Text.Pdf
    Macrophage-Inflammatory Protein-1α Receptor Expression on Normal and Chronic Myeloid Leukemia CD34+ Cells This information is current as Sian E. Nicholls, Guy Lucas, Gerard J. Graham, Nigel H. of September 26, 2021. Russell, Rachel Mottram, Anthony D. Whetton and Anne-Marie Buckle J Immunol 1999; 162:6191-6199; ; http://www.jimmunol.org/content/162/10/6191 Downloaded from References This article cites 41 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/162/10/6191.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Macrophage-Inflammatory Protein-1a Receptor Expression on Normal and Chronic Myeloid Leukemia CD341 Cells1 Sian E. Nicholls,* Guy Lucas,† Gerard J. Graham,‡ Nigel H. Russell,§ Rachel Mottram,* Anthony D. Whetton,* and Anne-Marie Buckle2* We have assessed expression of MIP-1a binding sites on the surface of CD341 cells from normal bone marrow (NBM) and chronic myeloid leukemia (CML) peripheral blood.
    [Show full text]
  • Hematopoietic Progenitor Cells + Adhesion and Proliferation of CD34
    The CysLT1 Ligand Leukotriene D4 Supports α4β1- and α5β1-Mediated Adhesion and Proliferation of CD34 + Hematopoietic Progenitor Cells This information is current as of October 2, 2021. Andreas M. Boehmler, Adriana Drost, Lena Jaggy, Gabriele Seitz, Tina Wiesner, Claudio Denzlinger, Lothar Kanz and Robert Möhle J Immunol 2009; 182:6789-6798; ; doi: 10.4049/jimmunol.0801525 Downloaded from http://www.jimmunol.org/content/182/11/6789 References This article cites 68 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/182/11/6789.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ␣ ␤ The CysLT1 Ligand Leukotriene D4 Supports 4 1- and ؉ ␤ ␣ 5 1-Mediated Adhesion and Proliferation of CD34 Hematopoietic Progenitor Cells1 Andreas M. Boehmler,* Adriana Drost,* Lena Jaggy,* Gabriele Seitz,* Tina Wiesner,* Claudio Denzlinger,† Lothar Kanz,* and Robert Mo¨hle2* Cytokines and chemokines control hematopoietic stem and progenitor cell (HPC) proliferation and trafficking.
    [Show full text]