Tumor-Initiating Stem Cells of Squamous Cell Carcinomas and Their Control by TGF-Β and Integrin/Focal Adhesion Kinase (FAK) Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Tumor-Initiating Stem Cells of Squamous Cell Carcinomas and Their Control by TGF-Β and Integrin/Focal Adhesion Kinase (FAK) Signaling Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling Markus Schobera and Elaine Fuchsa,b,1 aLaboratory of Mammalian Cell Biology and Development and bThe Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Contributed by Elaine Fuchs, May 17, 2011 (sent for review May 2, 2011) Cancer stem cells (CSCs) sustain tumor growth through their ability of 7,12-dimethylbenz[α]anthracene (DMBA) and 12-o-tetrade- to self-renew and to generate differentiated progeny. These func- canoylphorbol-13 acetate (TPA) is a well-established chemical tions endow CSCs with the potential to initiate secondary tumors carcinogen treatment that leads primarily to papillomas in the bearing characteristics similar to those of the parent. Recently the skin. Recently, it was shown that, like hair follicles (HFs), tumors hair follicle stem cell marker CD34 was used to purify a CSC-like cell formed by this chemical regimen contain a small population of population from early skin tumors arising from treatment with 7,12- cells that express the cell-surface glycoprotein CD34, a marker – dimethylbenz[α]anthracene/12-o-tetradecanoylphorbol-13-acetate, expressed by a variety of adult SCs. In a 500 50,000 cell serial + fi which typically generates benign papillomas that occasionally prog- transplant assay, CD34 cells puri ed from these tumors were ress to squamous cell carcinomas (SCCs). In the present study, we shown to possess increased tumor-initiating ability compared with identify and characterize CSCs purified from malignant SCCs. We unfractionated tumor cells (7). The extent to which CD34 defines CSCs is currently unknown. Also poorly understood are show that SCCs contain two highly tumorigenic CSC populations that – differ in CD34 levels but are enriched for integrins and coexist at how CSCs self-renew, how they differentiate into non tumor- initiating progeny in cutaneous SCC, and how they compare with the SCC–stroma interface. Intriguingly, whether CD34lo or CD34hi, stem cells and progenitor cells in normal tissue. These questions α6hiβ1hi populations can initiate secondary tumors by serial limit- α loβ lo are pivotal to address for the development of therapies. dilution transplantation assays, but 6 1 populations cannot. The TGF-β pathway is commonly deregulated in human can- CELL BIOLOGY Moreover, secondary tumors generated from a single CSC of either cers, including SCCs, where TGF-β functions initially as a tumor lo hi α hiβ hi subtype contain both CD34 and CD34 6 1 CSCs, indicating suppressor but promotes metastasis in late-stage carcinogenesis fi their nonhierarchical organization. Genomic pro ling and hierarchi- (8, 9). TGF-β receptor II (TβRII) is an essential component of cal cluster analysis show that these two CSC subtypes share a molec- β − the TGF- pathway, and its conditional ablation in skin epithe- ular signature distinct from either the CD34 epidermal or the lium (TβRIIKO) accelerates the development of aggressive SCCs hi CD34 hair follicle stem cell signature. Although closely related, upon exposure to the chemical carcinogen DMBA (9). Con- hi hi lo hi hi hi α6 β1 CD34 and α6 β1 CD34 CSCs differ in cell-cycle gene ex- comitant with TβRII loss in keratinocytes is the hyperactivation pression and proliferation characteristics. Indeed, proliferation and of integrins and the integrin signal transducer focal adhesion expansion of α6hiβ1hiCD34hi CSCs is sensitive to whether they can kinase (FAK) (9), features that promote cell proliferation, cell initiate a TGF-β receptor II–mediated response to counterbalance survival, and carcinogenesis (10–13). Indeed, integrins and elevated focal adhesion kinase-mediated integrin signaling within FAK are commonly up-regulated and are critical for the de- the tumor. Overall, the coexistence and interconvertibility of CSCs velopment of mouse and human solid tumors, including SCCs with differing sensitivities to their microenvironment pose chal- (10–15). The potent effects of TGF-β/TβRII and integrin/FAK lenges and opportunities for SCC cancer therapies. signaling on SCC formation are particularly intriguing, given that normal stem cells (SCs) of epidermis and HFs are responsive to cancer stem cell signature | epithelial–mesenchymal interactions | TGF-β signaling and display elevated integrin levels relative to skin cancer their committed progeny (16–19). These features provide an ideal platform for exploring the consequences of perturbing these pathways on the characteristics of SCC tumors and their ancers develop when cells acquire mutations in tumor- associated CSCs. Csuppressor genes and proto-oncogenes that favor growth- promoting over growth-restricting processes, thereby unbalanc- Results ing tissue homeostasis (1, 2). Indeed, cancer cells are generally β fi proliferative, refractory to apoptotic cell death, and deficient in FAK Function Is Critical for SCC Tumor Susceptibility in T RII-De cient normal cellular differentiation. However, solid tumors such as Mice. Mice lacking FAK are more refractory to SCC formation, β cutaneous squamous cell carcinomas (SCCs) are not simply whereas those lacking T RII show enhanced tumor susceptibility. cancer cell clones but rather are complex structures composed of To investigate whether FAK/integrin signaling is critical for the β KO multiple cell types in unique microenvironments (3). How tumor development of T RII SCCs, we generated mice whose skin ep- β architecture develops and how it is maintained over time is still ithelium was conditionally null for both T RII and FAK (dKO). As β KO KO poorly understood for most cancers. Integral to these issues is were T RII (9) and FAK (20), dKO skins were asymptomatic. whether deregulated proto-oncogenes and tumor-suppressor genes affect all cancer cells equally or perform specific functions within distinct cellular compartments of the tumor. Of particular Author contributions: M.S. and E.F. designed research; M.S. performed research; M.S. importance is how these mutations affect those cancer cells that analyzed data; and M.S. and E.F. wrote the paper. ensure long-term growth and survival of the tumor. The authors declare no conflict of interest. Cancer stem cells (CSCs) sustain tumor growth through their Freely available online through the PNAS open access option. ability to self-renew and differentiate into hierarchically orga- Data deposition: The data discussed in this article have been deposited in the Gene nized cancerous tissue (4, 5). These functions endow CSCs with Expression Omnibus (GEO) database (accession no. GSE29328)(http://www.ncbi.nlm.nih. the potential to initiate secondary tumors bearing characteristics gov/geo/query/acc.cgi?acc=GSE29328). similar to those of the parent. In SCCs, actively proliferating 1To whom correspondence should be addressed. E-mail: [email protected]. cancer cells reside at the tumor–stroma interface and differen- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. tiate into nontumorigenic pearls in the tumor center (6). The use 1073/pnas.1107807108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1107807108 PNAS Early Edition | 1of6 Downloaded by guest on September 28, 2021 However, complete carcinogenesis by topical DMBA treatments occasional newly developing tumors regressed in both control and (two times per week) induced cutaneous SCCs in all genotypes, FAKKO mice, suggesting either that they failed to generate CSCs with some SCCs well contained but invasive and others less differ- for sustained long-term growth or that CSC self-renewal had been entiated and very invasive. SCC initiation appeared sooner in restricted by elevated suppressive activities within benign tumors TβRIIKO mice and later in FAKKO mice than in their wild-type lit- (Fig. 1C) (2). By contrast, tumor regression was not observed in termates. Interestingly, the accelerated tumor initiation in TβRIIKO TβRIIKO mice and was rare in dKO animals. Together, these data β β mice was not seen in dKO mice, which developed SCCs at rates suggest that T RII/TGF- and integrin/FAK signaling interact in indistinguishable from those of wild-type littermates (Fig. 1A). controlling not only tumor initiation and growth but also the fre- Once initiated, TβRIIKO SCCs grew faster than control SCCs quency with which benign tumors regress, persist, or progress to (Fig. 1B). Additionally, although all SCCs executed a program malignant SCCs. resembling disorganized epidermal wound repair, TβRIIKO SCCs were the most poorly differentiated (Fig. S1). Such signs are Fractionating SCC Populations by Their Surface CD34 and Integrins typical of highly aggressive SCCs (11, 14). and Functionally Testing Them for Self-Renewing Capacity in Vitro. FAK function appeared to be critical for the accelerated growth For the present study, we focused on tumors that progressed to of TβRIIKO SCCs, because growth rates in dKO SCCs were com- SCCs in each of the four genetic backgrounds. Based on the no- parable to those of FAKKO and control SCCs (Fig. 1B). Moreover, tion that CSCs should reside within the relatively undifferentiated keratin 5(K5)/ keratin 14+ proliferative cells at the tumor–stroma interface (6), we posited that CSCs of SCCs should display abundant integrins. Indeed, all SCC cells located at the tumor– A B C stroma interface expressed high levels of the hemidesmosomal α6 and β4 integrins and the focal adhesion marker β1 integrin, but 100 WT 15 40 only a fraction of these were CD34+ (Fig. 1D and Fig. S2). When 80 TβRII dKO 30 coupled with the genotype-specific differences in SCC charac- 60 FAK 10 teristics, these spatial differences in the intensity of CD34 and 20 – 40 integrin staining at the tumor stroma interface were suggestive of 5 fl β (N=28) a heterogeneity that might be in uenced by T RII and/or FAK- (N=87) (N=92) 10 (N=109) 20 functions. 0 0 0 Tumor regression (%) To place this heterogeneity in the context of proliferative po- Tumor free mice % 0 10 20 30 Tumor diameter (mm) 1234 56 weeks after DMBA weeks WT dKOFAK tential, we fractionated these cancer cells from genotypically TβRII distinct primary SCCs by FACS.
Recommended publications
  • Expression of the Hematopoietic Stem Cell Antigen CD34 on Blood and Bone Marrow Monoclonal Plasma Cells from Patients with Multiple Myeloma
    Bone Marrow Transplantation, (1997) 19, 553–556 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 Expression of the hematopoietic stem cell antigen CD34 on blood and bone marrow monoclonal plasma cells from patients with multiple myeloma T Kimlinger1 and TE Witzig2 1Department of Laboratory Medicine and 2Division of Internal Medicine and Hematology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA Summary: led to strategies to deplete the tumor cells from the harvest product prior to reinfusion of the stem cells. Monoclonal plasma cells (CD38+CD45−/dim) are typi- One of the current attempts at purifying the harvest pro- cally present in the blood of patients with active mye- duct uses antibody to the CD34 antigen to positively select loma and can contaminate stem cell harvests. This has and enrich hematopoietic stem cells and in the process led to strategies that select CD34+ cells for use in auto- purge the stem cell product of tumor cells and T cells.11–13 logous stem cell transplantation with the goal of The CD34 antigen identifies a lymphohematopoietic stem decreasing tumor cell contamination. The aim of this cell, is present on 1–5% of adult bone marrow cells, and study was to learn if the CD34 antigen is expressed on is expressed on early B cells. The characteristics of this monoclonal plasma cells in the blood or marrow of important antigen and its clinical relevance have recently patients with multiple myeloma. We used three-color been reviewed.14 CD34+ hematopoietic cells from blood or flow cytometry (surface CD38;CD45 and cytoplasmic marrow can reconstitute hematopoiesis after high-dose kappa or lambda) to identify monoclonal plasma cells therapy programs.15 The number of CD34+ cells reinfused in the blood (n = 24) and marrow (n = 37) from patients predicts the time to engraftment.16,17 with plasma cell proliferative disorders.
    [Show full text]
  • MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells
    Published OnlineFirst July 18, 2013; DOI: 10.1158/0008-5472.CAN-13-0677 Cancer Tumor and Stem Cell Biology Research MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells Dina Stroopinsky1, Jacalyn Rosenblatt1, Keisuke Ito1, Heidi Mills1, Li Yin2, Hasan Rajabi2, Baldev Vasir2, Turner Kufe1, Katarina Luptakova1, Jon Arnason1, Caterina Nardella1, James D. Levine1, Robin M. Joyce1, Ilene Galinsky2, Yoram Reiter3, Richard M. Stone2, Pier Paolo Pandolfi1, Donald Kufe2, and David Avigan1 Abstract Acute myeloid leukemia (AML) is a malignancy of stem cells with an unlimited capacity for self-renewal. MUC1 is a secreted, oncogenic mucin that is expressed aberrantly in AML blasts, but its potential uses to target AML þ À stem cells have not been explored. Here, we report that MUC1 is highly expressed on AML CD34 /lineage / À CD38 cells as compared with their normal stem cell counterparts. MUC1 expression was not restricted to AML þ À CD34 populations as similar results were obtained with leukemic cells from patients with CD34 disease. Engraftment of AML stem cell populations that highly express MUC1 (MUC1high) led to development of leukemia in NOD-SCID IL2Rgammanull (NSG) immunodeficient mice. In contrast, MUC1low cell populations established normal hematopoiesis in the NSG model. Functional blockade of the oncogenic MUC1-C subunit with the peptide inhibitor GO-203 depleted established AML in vivo, but did not affect engraftment of normal hematopoietic cells. Our results establish that MUC1 is highly expressed in AML stem cells and they define the MUC1-C subunit as a valid target for their therapeutic eradication.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Review Article TheScientificWorldJOURNAL (2011) 11, 2011–2019 ISSN 1537-744X; doi:10.1100/2011/671453 The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis Irene Mavroudi1, 2 and Helen A. Papadaki1 1Department of Hematology, University of Crete School of Medicine, P.O. Box 1352, 71110 Heraklion, Crete, Greece 2Graduate Program “Molecular Basis of Human Disease”, University of Crete School of Medicine, 71003 Heraklion, Greece Received 29 August 2011; Accepted 5 October 2011 Academic Editor: Marco Antonio Cassatella The CD40 ligand (CD40L) and CD40 are two molecules belonging to the TNF/TNF receptor super- family, and their role in adaptive immune system has widely been explored. However, the wide range of expression of these molecules on hematopoietic as well as nonhematopoietic cells has revealed multiple functions of the CD40/CD40L interactions on different cell types and processes such as granulopoiesis. CD40 triggering on stromal cells has been documented to enhance the expression of granulopoiesis growth factors such as granulocyte-colony-stimulating factor (G- CSF) and granulocyte/monocyte-colony-stimulating factor (GM-CSF), and upon disruption of the CD40/CD40L-signaling pathway, as in the case of X-linked hyperimmunoglobulin M (IgM) syn- drome (XHIGM), it can lead to neutropenia. In chronic idiopathic neutropenia (CIN) of adults, however, under the influence of an inflammatory microenvironment, CD40L plays a role in granu- locytic progenitor cell depletion, providing thus a pathogenetic cause of CIN. KEYWORDS: CD40L, CD40, granulopoiesis, G-CSF, GM-CSF, Flt3-L, neutropenia, apoptosis, tumor necrosis factor family, and granulocytic progenitor cells Correspondence should be addressed to Helen A.
    [Show full text]
  • Precursors in Human Bone Marrow Identifies Autonomously
    A Feeder-Free Differentiation System Identifies Autonomously Proliferating B Cell Precursors in Human Bone Marrow This information is current as Helene Kraus, Sandra Kaiser, Konrad Aumann, Peter of September 30, 2021. Bönelt, Ulrich Salzer, Dietmar Vestweber, Miriam Erlacher, Mirjam Kunze, Meike Burger, Kathrin Pieper, Heiko Sic, Antonius Rolink, Hermann Eibel and Marta Rizzi J Immunol 2014; 192:1044-1054; Prepublished online 30 December 2013; Downloaded from doi: 10.4049/jimmunol.1301815 http://www.jimmunol.org/content/192/3/1044 Supplementary http://www.jimmunol.org/content/suppl/2013/12/30/jimmunol.130181 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 55 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/192/3/1044.full#ref-list-1 Why The JI? Submit online. by guest on September 30, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
    [Show full text]
  • Cell Activation Subsets of Human Dendritic Cells Tunes NK
    Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation This information is current as Barbara Morandi, Roberta Costa, Michela Falco, Silvia of September 29, 2021. Parolini, Andrea De Maria, Giovanni Ratto, Maria Cristina Mingari, Giovanni Melioli, Alessandro Moretta and Guido Ferlazzo J Immunol 2005; 175:3690-3697; ; doi: 10.4049/jimmunol.175.6.3690 Downloaded from http://www.jimmunol.org/content/175/6/3690 References This article cites 46 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/175/6/3690.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation1 Barbara Morandi,* Roberta Costa,† Michela Falco,‡ Silvia Parolini,§ Andrea De Maria,¶ Giovanni Ratto,ʈ Maria Cristina Mingari,*¶ Giovanni Melioli,‡ Alessandro Moretta,¶# and Guido Ferlazzo*2** CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes.
    [Show full text]
  • And Tumor Cells in Kaposi's Sarcoma
    Americani Joirnal ofPathology, Vol. 148, No. 5, May 1996 Copyfight X) American Societyfor Investigative Pathology CD40 Antigen Is Expressed by Endothelial Cells and Tumor Cells in Kaposi's Sarcoma Johannes Pammer,* Andreas Plettenberg,t of CD40 by Kaposi sarcoma tumor ceUs might Wolfgang Weninger,t Barbara Diller,t play an important role in thepathogenesis ofthis Michael Mildner,t Aumaid Uthman,t neoplasm. (AmJPathol 1996, 148:1387-1396) Wolfgang lssing,$ Michael Sturzl,§ and Erwin Tschachlert From the Division ofImmunology,t Allergy, and Infectious The CD40 antigen is a 45- to 50-kd transmembrane Diseases, Department ofDermatology, and Institute of glycoprotein that belongs to the nerve growth factor Clinical Pathology,* University of Vienna Medical School, receptor (NGFR)/tumor necrosis factor receptor Vienna, Austria, and the Department of Otolaryngology,t (TNFR)-superfamily.1 2 Members of this superfamily Grosshadern Clinic, Ludwig Maximilians University, are intimately involved in the regulation of cell sur- Munich, and the Max Planck Institute ofBiochemistry,j vival and include the T cell activation antigen CD27, Martinsnied, Germany the lymphocyte activation antigen CD30, the low af- finity NGFR, the FAS antigen CD95, the TNFRs CD12012 and the lymphotoxin-f3 receptor.3 CD40 was initially described on B cells and certain carci- The CD40 antigen is a member of the tumor ne- nomas.4'5 It has since become clear that it is also crosis factor receptor/nerve growth factor re- expressed on dendritic cells,6 monocytes,7 thymus ceptor superfamily
    [Show full text]
  • Extracellular Matrix and Α5β1 Integrin Signaling Control the Maintenance
    www.nature.com/scientificreports OPEN Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation Received: 05 December 2016 Accepted: 07 February 2017 capacity by human adipose-derived Published: 14 March 2017 stromal cells Nunzia Di Maggio1,*, Elisa Martella2,3,*, Agne Frismantiene4, Therese J. Resink4, Simone Schreiner1, Enrico Lucarelli2,3, Claude Jaquiery5, Dirk J. Schaefer6, Ivan Martin1 & Arnaud Scherberich1 Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potentialin vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptorα 5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion.
    [Show full text]
  • A Molecular Signature of Dormancy in CD34+CD38- Acute Myeloid Leukaemia Cells
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 67), pp: 111405-111418 Research Paper A molecular signature of dormancy in CD34+CD38- acute myeloid leukaemia cells Mazin Gh. Al-Asadi1,2, Grace Brindle1, Marcos Castellanos3, Sean T. May3, Ken I. Mills4, Nigel H. Russell1,5, Claire H. Seedhouse1 and Monica Pallis5 1University of Nottingham, School of Medicine, Academic Haematology, Nottingham, UK 2University of Basrah, College of Medicine, Basrah, Iraq 3University of Nottingham, School of Biosciences, Nottingham, UK 4Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK 5Clinical Haematology, Nottingham University Hospitals, Nottingham, UK Correspondence to: Claire H. Seedhouse, email: [email protected] Keywords: AML; dormancy; gene expression profiling Received: September 19, 2017 Accepted: November 14, 2017 Published: November 30, 2017 Copyright: Al-Asadi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Dormant leukaemia initiating cells in the bone marrow niche are a crucial therapeutic target for total eradication of acute myeloid leukaemia. To study this cellular subset we created and validated an in vitro model employing the cell line TF- 1a, treated with Transforming Growth Factor β1 (TGFβ1) and a mammalian target of rapamycin inhibitor. The treated cells showed decreases in total RNA, Ki-67 and CD71, increased aldehyde dehydrogenase activity, forkhead box 03A (FOX03A) nuclear translocation and growth inhibition, with no evidence of apoptosis or differentiation. Using human genome gene expression profiling we identified a signature enriched for genes involved in adhesion, stemness/inhibition of differentiation and tumour suppression as well as canonical cell cycle regulation.
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • Syndecan-1, Epithelial-Mesenchymal Transition Markers (E-Cadherin/Β-Catenin) and Neoangiogenesis-Related Proteins (PCAM-1 and Endoglin) in Colorectal Cancer
    ANTICANCER RESEARCH 36: 2271-2280 (2016) Syndecan-1, Epithelial-Mesenchymal Transition Markers (E-cadherin/β-catenin) and Neoangiogenesis-related Proteins (PCAM-1 and Endoglin) in Colorectal Cancer ANTIGONY MITSELOU1, VASSILIKI GALANI2, URANIA SKOUFI3, DIMITRIS L. ARVANITIS4, EVANGELI LAMPRI5 and ELLI IOACHIM3 Departments of 1Forensic Pathology, 2Anatomy-Histology- Embryology and 5Pathology, Medical School, University of Ioannina, Ioannina, Greece; 3Department of Pathology, General Hospital “Hatzikostas”, Ioannina, Greece; 4Department of Anatomy-Histology-Embryology, Medical Faculty, University of Thessaly, Larissa, Greece Abstract. The Syndecan-1 protein plays a crucial role in syndecan-1, EMT markers, E-cadherin/β-catenin, in cell proliferation, cell adhesion, cell migration and association with endoglin (CD105), may be involved in angiogenesis and, at the same time, its co-expression with E- tumor progression and prognosis of CRC patients. Further cadherin is regulated during epithelial-mesenchymal studies are needed to clarify the interaction between these transition (EMT). In colorectal cancer (CRC), the expression proteins and tumor initiation and progression. of syndecan-1, E-cadherin/β-catenin complex is frequently disturbed. Angiogenesis is critical for the growth and Colorectal cancer (CRC) is the most common tumor of the metastatic spread of tumors. In the present study, we focused gastrointestinal system, the third most frequent cancer on the expression of these biological molecules and their worldwide and the fourth most frequent cause of death (1). prognostic significance in human CRC. Formalin-fixed In Greece, the last two decades, CRC has a high incidence paraffin-embedded surgical specimens from 69 patients with and mortality rates, in both sexes (2). CRC frequency varies CRC were immunostained for syndecan-1, E-cadherin, β- markedly by region and community.
    [Show full text]
  • 6191.Full-Text.Pdf
    Macrophage-Inflammatory Protein-1α Receptor Expression on Normal and Chronic Myeloid Leukemia CD34+ Cells This information is current as Sian E. Nicholls, Guy Lucas, Gerard J. Graham, Nigel H. of September 26, 2021. Russell, Rachel Mottram, Anthony D. Whetton and Anne-Marie Buckle J Immunol 1999; 162:6191-6199; ; http://www.jimmunol.org/content/162/10/6191 Downloaded from References This article cites 41 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/162/10/6191.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Macrophage-Inflammatory Protein-1a Receptor Expression on Normal and Chronic Myeloid Leukemia CD341 Cells1 Sian E. Nicholls,* Guy Lucas,† Gerard J. Graham,‡ Nigel H. Russell,§ Rachel Mottram,* Anthony D. Whetton,* and Anne-Marie Buckle2* We have assessed expression of MIP-1a binding sites on the surface of CD341 cells from normal bone marrow (NBM) and chronic myeloid leukemia (CML) peripheral blood.
    [Show full text]