Preclinical Antitumor Activity of an Antibody Against the Leukocyte Antigen CD48’

Total Page:16

File Type:pdf, Size:1020Kb

Preclinical Antitumor Activity of an Antibody Against the Leukocyte Antigen CD48’ Vol. 4, 895-900, April 1998 Clinical Cancer Research 895 Preclinical Antitumor Activity of an Antibody against the Leukocyte Antigen CD48’ Haiping Sun, Belinda J. Norris, Kerry Atkinson, and patients with low-grade lymphoma are generally incurable James C. Biggs, and Glenn M. Smith2 (1 ). Monoclonal antibodies have been used in a number of clinical trials for the treatment of leukemia and lymphoma (2). Cooperative Research Centre (CRC) for Biopharmaceutical Research, Ltd. [H. S., B. J. N., G. M. S.] and Department of Hematology, St. Monoclonal antibodies may be valuable in the treatment of Vincents Hospital [K. A., J. C. B.], Darlinghurst, New South Wales, relapsed patients because they act by different mechanisms than Australia 2010 chemotherapy to deplete malignant cells. In general, the thera- peutic effect of monocbonal antibodies that are not coupled to toxins or radioisotopes depends on the recruitment of host ABSTRACT effector mechanisms, including complement activation, ADCC, We have evaluated the antitumor activity of a murine and phagocytosis of antibody-coated malignant cells. In a Phase antibody (IgG2a) against the leukocyte antigen CD48. CD48 I/lI study, 15 patients with relapsed B-cell lymphoma were is expressed on T and B lymphocytes, monocytes, and a wide treated with an anti-CD2O chimeric antibody. Forty-seven % of range of lymphoid malignancies. To assess the therapeutic patients responded to treatment for at least 2 months, and some potential of an anti-CD48 antibody, we established a repro- remained in remission for over 7 months (3). ducible model of human B-cell (Raji) leukemia/lymphoma in CD48 is a Mr 47,000 glycophosphatidylinositol-linked gly- C.B17/scid mice, where untreated mice develop hind leg coprotein that is expressed on T and B lymphocytes, monocytes, paralysis due to tumor engraftment. Using this model, the and a wide range of lymphoid malignancies but not on other murine anti-CD48 antibody HuLy-m3 was shown to mediate tissues (4-6). The biological function of CD48 in humans is a strong in vivo antitumor effect. Long-term survival (>1 still not clear. In mice, CD48 is a high-affinity ligand ofCD2 (7) year) of scid mice was obtained after treatment with three but is a low-affinity ligand of human CD2 (8, 9). The DNA 200-pig i.v. doses of anti-CD48 antibody on days 0, 2, and 4 sequence of CD48 is known (10-12). An anti-CD48 antibody after i.v. injection of tumor cells. In contrast, mice treated was used in the treatment of patients with B-cell CLL. Transient with an isotype control antibody developed hind leg paral- clinical responses were observed in these patients using a mu- ysis after 34 ± 3 days. A strong antitumor response was still rime 1gM anti-CD48 monocbonal antibody, WM63 (13). The observed when a dose of 20 tg of HuLy-m3 antibody was lack of a sustained clinical response with the WM63 antibody used. also examined a During preclinical investigations, we was due to the inability of the 1gM antibody to mediate effective number of properties of the CD48 antigen. CD48 is present cell-mediated cytotoxicity. We have extended this study by at high levels on the surface of T and B cells, but most further characterizing the CD48 antigen and have demonstrated (>95%) CD34-positive cells do not express CD48. Anti- that a murine IgG2a antibody against CD48 can mediate strong CD48 antibodies are maintained on the surface of antigen- in vivo antitumor effects in scid mice. Our studies suggest that positive cells for extended periods (>24 h). These properties antibodies of an appropriate isotype against CD48 may be useful suggest that anti-CD48 antibodies may be useful in the in the treatment of lymphoid leukemias and lymphomas, poten- treatment of a number of diseases including lymphoid leu- tially as adjuvant immunotherapy in the conditioning regimens kemias and lymphomas. for hematopoietic stem cell transplantation and in the palliative treatment of T- and B-cell leukemias and lymphomas. INTRODUCTION Although first remissions are achievable in most lym- MATERIALS AND METHODS phoma patients with chemotherapy, recurrence is inevitable in Cell Lines. The hybridoma cell line secreting the murine the majority of patients. Presently, only 40% of patients with anti-CD48 monoclonal antibody HuLy-m3 was a obtained from intermediate- or high-grade NHL3 achieve long-term survival, Dr. Mauro S. Sandrin, The Austin Research Institute, Mel- bourne (5), and was cultured in RPMI 1640 with either 10% FBS or 10% bovine IgG-free serum (Starrate, Bethungra, New South Wales, Australia), 2 mi glutamine at 37#{176}Cina 5% CO2 Received 9/5/97; revised 1 1/13/97; accepted 1/8/98. incubator. The Raji cell line was obtained from American Type The costs of publication of this article were defrayed in part by the Culture Collection and cultured in RPM! 1640, 2 mrvi glutamine, payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to 10% FBS at 37#{176}C,and 5% CO2. indicate this fact. Production and Purification of Antibodies. The anti- I This work was supported by the Australian Government Cooperative CD48 antibody (IgG2a, Ka l0 M ) was purified from Research Program. 2 To whom requests for reprints should be addressed, at CRC for Biopharmaceutical Research Ltd., 384 Victoria Street, Darlinghurst, NSW, Australia 2010. Phone: 61-29-295-8465; Fax: 61-29-295-8451. 3 The abbreviations used are: NHL, non-Hodgkin’s lymphoma; ADCC, PBMC, peripheral blood mononuclear cell; CLL, chronic lymphoid antibody-dependent cellular cytotoxicity; FBS, fetal bovine serum; leukemia. Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 1998 American Association for Cancer Research. 896 Antibody against Leukocyte Antigen CD48 hybridoma conditioned media or from ascites fluid produced in 1% sucrose and 0.5% paraformaldehyde in PBS, and if not either nude (BALB/c-nu/+) mice or BALB/c X CBA/CaH F1 profiled immediately, stored at 4#{176}Cwith the addition of 1 ml of mice using Protein A affinity chromatography (Pharmacia, Up- PBS/l% BSA. Fluorescence was estimated on both lympho- psala, Sweden). The purity ofthe antibody was assessed by 10% cytes and monocytes within 24 h of sample preparation on a SDS-PAGE, and the activity was confirmed by flow cytometry Coulter Epics flow cytometer. using human leukemic cell lines. For animal experiments, the Estimation of the Number of CD48 Molecules per Cell. antibody was further purified by ion exchange chromatography Human PBMCs from two healthy donors and two CLL patients and gel filtration. An IgG2a isotype control antibody (anti- were prepared as described above. Three drops of Simply Ccl- human TSH) was obtained from Bioqest (North Ryde, Sydney, lular Microbeads (Flow Cytometry Standards Corp., Research Australia) and repurified as above. Protein concentration was Triangle Park, NC) were added to 1 X 106 cells/sample, fol- estimated by absorbance at 280 nm (14). Biotinylation of anti- lowed by the addition of anti-CD48 or isotype control antibody bodies was carried out using NHS-biotin (Bio-Rad, Hercules, to a final concentration of 40 p.g/ml, and the mixture was CA: Ref. 14). Purified murine anti-CD48 antibody WM63 incubated for 30 ml at 4#{176}C.After washing, 10 il of FITC- (1gM) was obtained from Dr. Tony Henniker (Hematology, conjugated goat anti-mouse antibodies (Becton Dickinson) were Westmead Hospital, Sydney, Australia). added and incubated for 30 ruin at 4#{176}C.After washing, the cells sd! Mouse Model of Human Lymphoma and Treatment were resuspended in PBS/1%BSA and fixed in 0.5% paaform- with an Anti-CD48 Monocbonal Antibody. Six to eight- aldehyde and 1 % sucrose prepared in calcium- and magnesium- week-old female C.B 17/scid mice were obtained from Animal free PBS prior to flow cytometry. Flow cytometry was per- Resources Center (Canning Vale, Western Australia, Australia). formed on a Coulter Epics flow cyto-meter. Mice were housed in a specific pathogen-free facility. Groups of Antibody Internalization. Examination ofthe internaliza- five mice received iv. injections of 1 X 106 or 5 X l0 Raji tion of anti-CD48 monoclonal antibodies was performed by con- cells in RPMI 1640 (200 l) on day 0. Antibodies were injected focal microscopy. Human PBMCs were isolated as described i.v on days 0, 2, and 4. The antibody dose on day 0 was given above. For confocal microscopy, 5-10 X 106 cells were incubated approximately 30 mm after Raji cell injection. Mice were ob- with either OKT3, anti-CD48, or control antibodies (10-20 g/ served and weighed daily and sacrificed on the onset of hind leg 0.5-1.0 x 106 cells) in PBS for 60 ruin at 4#{176}C.After washing, the paralysis. Blood and tissue samples were taken for analysis. cells were resuspended in complete medium (RPMI 1640 with Bone marrow collected from one femur and blood were ana- 10% FBS and 2 msi glutamine) and incubated for intervals at 37#{176}C lyzed immediately, and collected tissues were either frozen in in a 5% CO2 incubator. After the appropriate incubation time, the liquid nitrogen or fixed in 4% paraformaldehyde in PBS. Bone cells were washed, and duplicate samples were fixed with either marrow and blood were analyzed by flow cytometry to deter- 4% paraformaldehyde in PBS for cell surface staining or 4% mine the percentage of human cells. Anti-mouse CD45-phyco- paraformaldehyde/0.l% Triton X-lOO in PBS for surface and in- erythrin (PharMingen, San Diego, CA) and anti-human CD45- tracellular staining for 30 mm at room temperature. After washing FITC (Becton Dickinson, San Jose, CA) were used to detect with PBS/l% BSA, the cells were incubated with FITC conjugated mouse and human leukocytes by flow cytometry as described anti-mouse or anti-human IgGl antibody for 30 mm at 4#{176}C.The above.
Recommended publications
  • Expression of the Hematopoietic Stem Cell Antigen CD34 on Blood and Bone Marrow Monoclonal Plasma Cells from Patients with Multiple Myeloma
    Bone Marrow Transplantation, (1997) 19, 553–556 1997 Stockton Press All rights reserved 0268–3369/97 $12.00 Expression of the hematopoietic stem cell antigen CD34 on blood and bone marrow monoclonal plasma cells from patients with multiple myeloma T Kimlinger1 and TE Witzig2 1Department of Laboratory Medicine and 2Division of Internal Medicine and Hematology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA Summary: led to strategies to deplete the tumor cells from the harvest product prior to reinfusion of the stem cells. Monoclonal plasma cells (CD38+CD45−/dim) are typi- One of the current attempts at purifying the harvest pro- cally present in the blood of patients with active mye- duct uses antibody to the CD34 antigen to positively select loma and can contaminate stem cell harvests. This has and enrich hematopoietic stem cells and in the process led to strategies that select CD34+ cells for use in auto- purge the stem cell product of tumor cells and T cells.11–13 logous stem cell transplantation with the goal of The CD34 antigen identifies a lymphohematopoietic stem decreasing tumor cell contamination. The aim of this cell, is present on 1–5% of adult bone marrow cells, and study was to learn if the CD34 antigen is expressed on is expressed on early B cells. The characteristics of this monoclonal plasma cells in the blood or marrow of important antigen and its clinical relevance have recently patients with multiple myeloma. We used three-color been reviewed.14 CD34+ hematopoietic cells from blood or flow cytometry (surface CD38;CD45 and cytoplasmic marrow can reconstitute hematopoiesis after high-dose kappa or lambda) to identify monoclonal plasma cells therapy programs.15 The number of CD34+ cells reinfused in the blood (n = 24) and marrow (n = 37) from patients predicts the time to engraftment.16,17 with plasma cell proliferative disorders.
    [Show full text]
  • MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells
    Published OnlineFirst July 18, 2013; DOI: 10.1158/0008-5472.CAN-13-0677 Cancer Tumor and Stem Cell Biology Research MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells Dina Stroopinsky1, Jacalyn Rosenblatt1, Keisuke Ito1, Heidi Mills1, Li Yin2, Hasan Rajabi2, Baldev Vasir2, Turner Kufe1, Katarina Luptakova1, Jon Arnason1, Caterina Nardella1, James D. Levine1, Robin M. Joyce1, Ilene Galinsky2, Yoram Reiter3, Richard M. Stone2, Pier Paolo Pandolfi1, Donald Kufe2, and David Avigan1 Abstract Acute myeloid leukemia (AML) is a malignancy of stem cells with an unlimited capacity for self-renewal. MUC1 is a secreted, oncogenic mucin that is expressed aberrantly in AML blasts, but its potential uses to target AML þ À stem cells have not been explored. Here, we report that MUC1 is highly expressed on AML CD34 /lineage / À CD38 cells as compared with their normal stem cell counterparts. MUC1 expression was not restricted to AML þ À CD34 populations as similar results were obtained with leukemic cells from patients with CD34 disease. Engraftment of AML stem cell populations that highly express MUC1 (MUC1high) led to development of leukemia in NOD-SCID IL2Rgammanull (NSG) immunodeficient mice. In contrast, MUC1low cell populations established normal hematopoiesis in the NSG model. Functional blockade of the oncogenic MUC1-C subunit with the peptide inhibitor GO-203 depleted established AML in vivo, but did not affect engraftment of normal hematopoietic cells. Our results establish that MUC1 is highly expressed in AML stem cells and they define the MUC1-C subunit as a valid target for their therapeutic eradication.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • New Insights Into Epididymal Function in Relation to Sperm Maturation
    REPRODUCTIONREVIEW New insights into epididymal function in relation to sperm maturation Jean-Louis Dacheux and Franc¸oise Dacheux UMR INRA-CNRS 7247, 37380 Nouzilly, France Correspondence should be addressed to J-L Dacheux; Email: [email protected] Abstract Testicular spermatozoa acquire fertility only after 1 or 2 weeks of transit through the epididymis. At the end of this several meters long epididymal tubule, the male gamete is able to move, capacitate, migrate through the female tract, bind to the egg membrane and fuse to the oocyte to result in a viable embryo. All these sperm properties are acquired after sequential modifications occurring either at the level of the spermatozoon or in the epididymal surroundings. Over the last few decades, significant increases in the understanding of the composition of the male gamete and its surroundings have resulted from the use of new techniques such as genome sequencing, proteomics combined with high-sensitivity mass spectrometry, and gene-knockout approaches. This review reports and discusses the most relevant new results obtained in different species regarding the various cellular processes occurring at the sperm level, in particular, those related to the development of motility and egg binding during epididymal transit. Reproduction (2014) 147 R27–R42 Introduction sequentially throughout the epididymis. In view of these two parallel events, most investigations have The formation of fertile spermatozoa is the result of involved assessing the relationships between these two spectacular stages of cell differentiation that begin in events and identifying the epididymal signals able to the male gonad and finish in the female tract. The control spermatozoon fertility.
    [Show full text]
  • Immune Regulation by CD52-Expressing CD4 T Cells
    Cellular & Molecular Immunology (2013) 10, 379–382 ß 2013 CSI and USTC. All rights reserved 1672-7681/13 $32.00 www.nature.com/cmi RESEARCH HIGHLIGHT Immune regulation by CD52-expressing CD4 T cells Ban-Hock Toh1, Tin Kyaw1,2, Peter Tipping1 and Alex Bobik2 T-cell regulation by CD52-expressing CD4 T cells appears to operate by two different and possibly synergistic mechanisms. The first is by its release from the cell surface of CD4 T cells that express high levels of CD52 that then binds to the inhibitory sialic acid-binding immunoglobulin-like lectins-10 (Siglec-10) receptor to attenuate effector T-cell activation by impairing phosphorylation of T-cell receptor associated lck and zap-70. The second mechanism appears to be by crosslinkage of the CD52 molecules by an as yet unidentified endogenous ligand that is mimicked by a bivalent anti-CD52 antibody that results in their expansion. Cellular & Molecular Immunology (2013) 10, 379–382; doi:10.1038/cmi.2013.35; published online 12 August 2013 he immune system is designed to appears in the affirmative, and includes suppression was lost by cleavage of N- T protect its host from invading players such as IL-10-secreting Tr1 and glycans from CD52-Fc by peptide N- pathogens and yet remain non-reactive TGF-b-secreting Th3. cells. Absence of glycosidase or by removal of sialic acid to self. Immunological homeostasis is surface markers limited the usefulness residues by neuraminidase. Suppression maintained by purging self-reactive lym- of these other regulators. However, the was also blocked by antibody to the phocytes by clonal deletion coupled with recent report that CD49b and lympho- extracellular domain of Siglec-10 and a regulatory population of lymphocytes cyte activation gene-3 are highly and sta- by soluble Siglec-10-Fc.
    [Show full text]
  • The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Review Article TheScientificWorldJOURNAL (2011) 11, 2011–2019 ISSN 1537-744X; doi:10.1100/2011/671453 The Role of CD40/CD40 Ligand Interactions in Bone Marrow Granulopoiesis Irene Mavroudi1, 2 and Helen A. Papadaki1 1Department of Hematology, University of Crete School of Medicine, P.O. Box 1352, 71110 Heraklion, Crete, Greece 2Graduate Program “Molecular Basis of Human Disease”, University of Crete School of Medicine, 71003 Heraklion, Greece Received 29 August 2011; Accepted 5 October 2011 Academic Editor: Marco Antonio Cassatella The CD40 ligand (CD40L) and CD40 are two molecules belonging to the TNF/TNF receptor super- family, and their role in adaptive immune system has widely been explored. However, the wide range of expression of these molecules on hematopoietic as well as nonhematopoietic cells has revealed multiple functions of the CD40/CD40L interactions on different cell types and processes such as granulopoiesis. CD40 triggering on stromal cells has been documented to enhance the expression of granulopoiesis growth factors such as granulocyte-colony-stimulating factor (G- CSF) and granulocyte/monocyte-colony-stimulating factor (GM-CSF), and upon disruption of the CD40/CD40L-signaling pathway, as in the case of X-linked hyperimmunoglobulin M (IgM) syn- drome (XHIGM), it can lead to neutropenia. In chronic idiopathic neutropenia (CIN) of adults, however, under the influence of an inflammatory microenvironment, CD40L plays a role in granu- locytic progenitor cell depletion, providing thus a pathogenetic cause of CIN. KEYWORDS: CD40L, CD40, granulopoiesis, G-CSF, GM-CSF, Flt3-L, neutropenia, apoptosis, tumor necrosis factor family, and granulocytic progenitor cells Correspondence should be addressed to Helen A.
    [Show full text]
  • Precursors in Human Bone Marrow Identifies Autonomously
    A Feeder-Free Differentiation System Identifies Autonomously Proliferating B Cell Precursors in Human Bone Marrow This information is current as Helene Kraus, Sandra Kaiser, Konrad Aumann, Peter of September 30, 2021. Bönelt, Ulrich Salzer, Dietmar Vestweber, Miriam Erlacher, Mirjam Kunze, Meike Burger, Kathrin Pieper, Heiko Sic, Antonius Rolink, Hermann Eibel and Marta Rizzi J Immunol 2014; 192:1044-1054; Prepublished online 30 December 2013; Downloaded from doi: 10.4049/jimmunol.1301815 http://www.jimmunol.org/content/192/3/1044 Supplementary http://www.jimmunol.org/content/suppl/2013/12/30/jimmunol.130181 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 55 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/192/3/1044.full#ref-list-1 Why The JI? Submit online. by guest on September 30, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
    [Show full text]
  • Cell Activation Subsets of Human Dendritic Cells Tunes NK
    Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation This information is current as Barbara Morandi, Roberta Costa, Michela Falco, Silvia of September 29, 2021. Parolini, Andrea De Maria, Giovanni Ratto, Maria Cristina Mingari, Giovanni Melioli, Alessandro Moretta and Guido Ferlazzo J Immunol 2005; 175:3690-3697; ; doi: 10.4049/jimmunol.175.6.3690 Downloaded from http://www.jimmunol.org/content/175/6/3690 References This article cites 46 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/175/6/3690.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Distinctive Lack of CD48 Expression in Subsets of Human Dendritic Cells Tunes NK Cell Activation1 Barbara Morandi,* Roberta Costa,† Michela Falco,‡ Silvia Parolini,§ Andrea De Maria,¶ Giovanni Ratto,ʈ Maria Cristina Mingari,*¶ Giovanni Melioli,‡ Alessandro Moretta,¶# and Guido Ferlazzo*2** CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes.
    [Show full text]
  • And Tumor Cells in Kaposi's Sarcoma
    Americani Joirnal ofPathology, Vol. 148, No. 5, May 1996 Copyfight X) American Societyfor Investigative Pathology CD40 Antigen Is Expressed by Endothelial Cells and Tumor Cells in Kaposi's Sarcoma Johannes Pammer,* Andreas Plettenberg,t of CD40 by Kaposi sarcoma tumor ceUs might Wolfgang Weninger,t Barbara Diller,t play an important role in thepathogenesis ofthis Michael Mildner,t Aumaid Uthman,t neoplasm. (AmJPathol 1996, 148:1387-1396) Wolfgang lssing,$ Michael Sturzl,§ and Erwin Tschachlert From the Division ofImmunology,t Allergy, and Infectious The CD40 antigen is a 45- to 50-kd transmembrane Diseases, Department ofDermatology, and Institute of glycoprotein that belongs to the nerve growth factor Clinical Pathology,* University of Vienna Medical School, receptor (NGFR)/tumor necrosis factor receptor Vienna, Austria, and the Department of Otolaryngology,t (TNFR)-superfamily.1 2 Members of this superfamily Grosshadern Clinic, Ludwig Maximilians University, are intimately involved in the regulation of cell sur- Munich, and the Max Planck Institute ofBiochemistry,j vival and include the T cell activation antigen CD27, Martinsnied, Germany the lymphocyte activation antigen CD30, the low af- finity NGFR, the FAS antigen CD95, the TNFRs CD12012 and the lymphotoxin-f3 receptor.3 CD40 was initially described on B cells and certain carci- The CD40 antigen is a member of the tumor ne- nomas.4'5 It has since become clear that it is also crosis factor receptor/nerve growth factor re- expressed on dendritic cells,6 monocytes,7 thymus ceptor superfamily
    [Show full text]
  • Constitutive Expression of Murine Ctla4ig from a Recombinant Adenovirus Vector Results in Prolonged Transgene Expression
    Gene Therapy (1997) 4, 853–860 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 Constitutive expression of murine CTLA4Ig from a recombinant adenovirus vector results in prolonged transgene expression DB Schowalter1, L Meuse1, CB Wilson2,3, PS Linsley4 and MA Kay1,2,5,6 1Division of Medical Genetics, Department of Medicine, and Departments of 2Pediatrics, 3Immunology, 6Biochemistry and 5Pathology, University of Washington; and 4Bristol-Myers Squibb Pharmaceuticals, Seattle, WA, USA The administration of soluble muCTLA4Ig around the time Ad.RSV-muCTLA4Ig and a reporter adenovirus (2 × 109 of adenovirus vector mediated gene transfer into murine p.f.u. of Ad.PGK-hAAT) resulted in prolonged reporter hepatocytes has been shown to markedly prolong trans- gene expression, reduced anti-adenovirus and anti-hAAT gene expression, diminish the formation of adenovirus antibody production, and attenuated T cell proliferation and neutralizing antibody, decrease T cell proliferative IFN-g production in response to adenoviral vector. Mice response and infiltration into the liver without causing irre- given a constant total amount of adenovirus with dimin- versible systemic immunosuppression. In this study, an ishing amounts of Ad.RSV-muCTLA4Ig and a constant E1/E3-deleted adenovirus vector constitutively expressing amount of reporter virus (2 × 109 p.f.u. of Ad.PGK-hAAT) murine CTLA4Ig (Ad.RSV-muCTLA4Ig) was constructed in demonstrated prolonged reporter gene expression and order to determine if production of muCTLA4Ig from within decreased anti-adenovirus and anti-hAAT antibody pro- transduced cells (ie hepatocytes) would provide a more duction only when high serum levels of muCTLA4Ig were specific/localized interference with the CD28/B7–1 and produced.
    [Show full text]
  • A Novel Raji-Burkitt's Lymphoma Model for Preclinical and Mechanistic Evaluation of CD52-Targeted Immunotherapeutic Agents
    Cancer Therapy: Preclinical A Novel Raji-Burkitt’s Lymphoma Model for Preclinical and Mechanistic Evaluation of CD52-Targeted Immunotherapeutic Agents Rosa Lapalombella,1Xiaobin Zhao,1, 2 Georgia Triantafillou,1Bo Yu,3,4 Yan Jin, 4 Gerard Lozanski,5 Carolyn Cheney,1Nyla Heerema,5 David Jarjoura,6 Amy Lehman,6 L. James Lee,3,4 Guido Marcucci,1Robert J. Lee,2,4 Michael A. Caligiuri,1 Natarajan Muthusamy,1and John C. Byrd1, 2 Abstract Purpose:Todate, efforts to study CD52-targeted therapies, such as alemtuzumab, have beenlim- ited due to the lack of stable CD52 expressing transformed B-cell lines and animal models.We describe generation and utilization of cell lines that stably express CD52 both in vitro and in vivo. Experimental Design: By limiting dilution, we have established several clones of Raji-Burkitt’s lymphoma cell line that express surface CD52. Immunophenotype and cytogenetic charac- terizationof these clones was done. In vivo usefulness of the CD52high cell line to evaluate the ther- apeuticefficacyofCD52-directedantibody wasinvestigatedusingaSCIDmousexenograftmodel. Results: Stable expression of CD52 was confirmed in cells cultured in vitro up to 52 weeks of continuous growth. The functional integrity of the expressed CD52 molecule was shown using alemtuzumab, which induced cytotoxic effects in vitro in the CD52high but not the CD52low clone. Compared with control antibody, alemtuzumab treatment in CD52high inoculated mice resulted in significantly increased median survival. Comparable levels of CD52-targeted direct cyto- toxicity, complement-dependent cytotoxicity, and antibody-dependent cytotoxicity and anti-CD52 immunoliposome-mediated delivery of synthetic oligodeoxyribo nucleotides in CD52high clone and primary B-chronic lymphocytic leukemia cells implicated potential in vivo application of this model for evaluation of CD52-targeted antibody and immunoliposomes encapsulating therapeutic agents.
    [Show full text]
  • Extracellular Matrix and Α5β1 Integrin Signaling Control the Maintenance
    www.nature.com/scientificreports OPEN Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation Received: 05 December 2016 Accepted: 07 February 2017 capacity by human adipose-derived Published: 14 March 2017 stromal cells Nunzia Di Maggio1,*, Elisa Martella2,3,*, Agne Frismantiene4, Therese J. Resink4, Simone Schreiner1, Enrico Lucarelli2,3, Claude Jaquiery5, Dirk J. Schaefer6, Ivan Martin1 & Arnaud Scherberich1 Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potentialin vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptorα 5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion.
    [Show full text]