<<

Duality in

Yolanda Lozano (U. Oviedo)

2012 International Fall Workshop on and , Burgos, August 2012

miércoles 29 de agosto de 2012 Duality: New insight into the non-perturbative regimes of both and QFT

miércoles 29 de agosto de 2012 Duality: New insight into the non-perturbative regimes of both String Theory and QFT

In String Theory: T- and S-dualities

Witten’95

M-theory: Fully non-perturbative formulation of . Unifies with physics interactions in a unique way.

miércoles 29 de agosto de 2012 Define M-theory as the quantum theory whose low energy limit is eleven dim

miércoles 29 de agosto de 2012 Define M-theory as the quantum theory whose low energy limit is eleven dim supergravity Theory of membranes →

miércoles 29 de agosto de 2012 Define M-theory as the quantum theory whose low energy limit is eleven dim supergravity Theory of membranes → A perturbative expansion cannot however be defined from the SUGRA (no ) M-theory not known ⇒ (see M.P. García del Moral’s talk)

miércoles 29 de agosto de 2012 Define M-theory as the quantum theory whose low energy limit is eleven dim supergravity Theory of membranes → A perturbative expansion cannot however be defined from the SUGRA (no coupling constant) M-theory not known ⇒ (see M.P. García del Moral’s talk) Define it by means of the duality relations that connect its different limits

miércoles 29 de agosto de 2012 Define M-theory as the quantum theory whose low energy limit is eleven dim supergravity Theory of membranes → A perturbative expansion cannot however be defined from the SUGRA (no coupling constant) M-theory not known ⇒ (see M.P. García del Moral’s talk) Define it by means of the duality relations that connect its different limits In String and Gauge :

Gauge/gravity duality (Maldacena’97): Some gauge theories at strong (weak) coupling are dual to weakly (strongly) coupled string theories with one extra

miércoles 29 de agosto de 2012 Define M-theory as the quantum theory whose low energy limit is eleven dim supergravity Theory of membranes → A perturbative expansion cannot however be defined from the SUGRA (no coupling constant) M-theory not known ⇒ (see M.P. García del Moral’s talk) Define it by means of the duality relations that connect its different limits In String and Gauge Theories:

Gauge/gravity duality (Maldacena’97): Some gauge theories at strong (weak) coupling are dual to weakly (strongly) coupled string theories with one extra dimension Holographic duality

miércoles 29 de agosto de 2012 One of the most innovative ideas in in the recent past:

Possibility to apply string theory techniques to strongly coupled systems (- plasma, condensed systems). Possibility to learn something about by studying low dimensional systems with a holographic description (concrete realization of QG and space-time as emergent phenomena).

miércoles 29 de agosto de 2012 1. Duality relations

miércoles 29 de agosto de 2012 1. Duality relations T-duality: Perturbative transformation in String Theory. Relates large and small (space-time duality)

miércoles 29 de agosto de 2012 1. Duality relations T-duality: Perturbative transformation in String Theory. Relates large and small distances (space-time duality)

In toroidal compactifications: x x +2πnR →

Momentum states: Winding states: m nR p = p = R α￿

2 α￿ = l ; ls : string length ( ls 0 Theory limit) s → miércoles 29 de agosto de 2012 α￿ R of the bosonic string, maps Type IIA and → R : m n Type IIB and Het SO(32) and Het E8 ↔ ×

miércoles 29 de agosto de 2012 α￿ R Symmetry of the bosonic string, maps Type IIA and → R : m n Type IIB and Het SO(32) and Het E8 E8 ↔ ×

T T

miércoles 29 de agosto de 2012 α￿ R Symmetry of the bosonic string, maps Type IIA and → R : m n Type IIB and Het SO(32) and Het E8 E8 ↔ ×

√α d g ￿ g st → R st g ￿ ￿ (a) (b) gst : String coupling constant

φ gst = e￿ ￿ ; φ = (massless field) g

(c)(d)

miércoles 29 de agosto de 2012 α￿ R Symmetry of the bosonic string, maps Type IIA and → R : m n Type IIB and Het SO(32) and Het E8 E8 ↔ ×

√α d g ￿ g st → R st g ￿ ￿ (a) (b) gst : String coupling constant

φ gst = e￿ ￿ ; φ = dilaton (massless field) g

(c)(d) For more general compactifications: Abelian and non-Abelian T-duality (see later)

miércoles 29 de agosto de 2012 S-duality: Non-perturbative transformation in String and Field Theory. Relates the strong and weak coupling regimes. Interchanges electric (elementary states) and magnetic (solitons)

miércoles 29 de agosto de 2012 S-duality: Non-perturbative transformation in String and Field Theory. Relates the strong and weak coupling regimes. Interchanges electric (elementary states) and magnetic (solitons)

In a four dimensional Abelian : ( g = coupling constant) 1 E￿ B￿ g + → Symmetry → g B￿ E￿ → →−

miércoles 29 de agosto de 2012 S-duality: Non-perturbative transformation in String and Field Theory. Relates the strong and weak coupling regimes. Interchanges electric (elementary states) and magnetic (solitons)

In a four dimensional Abelian Gauge Theory: ( g = coupling constant) 1 E￿ B￿ g + → Symmetry → g B￿ E￿ → →− In the presence of a θ term i θ F F : ∧ θ i 1 τ = + transforms as τ 2π →−τ Together with τ τ +1 they generate the SL(2, Z) → S-duality miércoles 29 de agosto de 2012 Also a symmetry of N=4 SYM in 4 dim (Montonen & Olive’s conjecture)

miércoles 29 de agosto de 2012 Also a symmetry of N=4 SYM in 4 dim (Montonen & Olive’s conjecture)

To test a non-perturbative duality relation:

miércoles 29 de agosto de 2012 Also a symmetry of N=4 SYM in 4 dim (Montonen & Olive’s conjecture)

To test a non-perturbative duality relation: Look at the BPS states (special class of supersymmetric states with the key property that their is completely determined by their ) Stable and protected from quantum ⇒ corrections

miércoles 29 de agosto de 2012 Also a symmetry of N=4 SYM in 4 dim (Montonen & Olive’s conjecture)

To test a non-perturbative duality relation: Look at the BPS states (special class of supersymmetric states with the key property that their mass is completely determined by their charge) Stable and protected from quantum ⇒ corrections

i) Study their properties perturbatively at weak coupling in one theory ii) Extrapolate (safely) to strong coupling iii) Reinterpret in terms of non-perturbative configurations in the dual theory

miércoles 29 de agosto de 2012 In String Theory: S-duality transformation:

1 B2 C2 gst + → → gst C B 2 →− 2 ( B2 : NS-NS 2-form, C2 : RR 2-form) (generalized Maxwell fields with 2 antisym. indices, part of the massless spectrum)

miércoles 29 de agosto de 2012 In String Theory: S-duality transformation:

1 B2 C2 gst + → → gst C B 2 →− 2 ( B2 : NS-NS 2-form, C2 : RR 2-form) (generalized Maxwell fields with 2 antisym. indices, part of the massless spectrum)

In the presence of a C0 RR field: i 1 λ = C0 + transforms as λ gst →−λ Together with λ λ +1 they generate the SL(2, Z) → S-duality group

miércoles 29 de agosto de 2012 Symmetry of Type IIB, maps Type I with Heterotic SO(32). Type IIA and Heterotic E E give different compactifications 8 × 8 of M-theory in the strong coupling limit

1 S1 S /Z2

T T S

miércoles 29 de agosto de 2012 Symmetry of Type IIB, maps Type I with Heterotic SO(32). Type IIA and Heterotic E E give different compactifications 8 × 8 of M-theory in the strong coupling limit

1 S1 S /Z2

T T S Ω

miércoles 29 de agosto de 2012 Symmetry of Type IIB, maps Type I with Heterotic SO(32). Type IIA and Heterotic E E give different compactifications 8 × 8 of M-theory in the strong coupling limit

1 S1 S /Z2

T T S Ω

To get deeper into these dualities in String Theory:

miércoles 29 de agosto de 2012 2. Some basic facts about String Theory

miércoles 29 de agosto de 2012 2. Some basic facts about String Theory Type II theories:

B2 , Cp ( p odd IIA, p even IIB ) NS-NS, RR

miércoles 29 de agosto de 2012 2. Some basic facts about String Theory Type II theories:

B2 , Cp ( p odd IIA, p even IIB ) NS-NS, RR

The (fundamental) string is an electric source for B2 . The object that couples magnetically is called and NS5-: dB = dB ∗ 2 6

miércoles 29 de agosto de 2012 2. Some basic facts about String Theory Type II theories:

B2 , Cp ( p odd IIA, p even IIB ) NS-NS, RR

The (fundamental) string is an electric source for B2 . The object that couples magnetically is called and NS5-brane: dB = dB ∗ 2 6 A class of p-, called Dirichlet branes (Dp-branes) are electric sources for Cp+1

miércoles 29 de agosto de 2012 2. Some basic facts about String Theory Type II theories:

B2 , Cp ( p odd IIA, p even IIB ) NS-NS, RR

The (fundamental) string is an electric source for B2 . The object that couples magnetically is called and NS5-brane: dB = dB ∗ 2 6 A class of p-branes, called Dirichlet branes (Dp-branes) are electric sources for Cp+1 All these branes are BPS objects, satisfying q = T : 1 1 1 1 1 TF 1 = 2 ; TDp = p+1 ; TNS5 = 6 2 ls ls gst ls gst (non-perturbative) miércoles 29 de agosto de 2012 They all occur as classical solitonic solutions of the low energy ( ls 0 ) effective actions (SUGRAs) →

miércoles 29 de agosto de 2012 They all occur as classical solitonic solutions of the low energy ( ls 0 ) effective actions (SUGRAs) → Crucial discovery (Polchinski’95): RR charged p-branes = Dirichlet p-branes: (p+1) dimensional hypersurfaces on which open strings can end (previously predicted by T-duality):

D0D1 D2

miércoles 29 de agosto de 2012 They all occur as classical solitonic solutions of the low energy ( ls 0 ) effective actions (SUGRAs) → Crucial discovery (Polchinski’95): RR charged p-branes = Dirichlet p-branes: (p+1) dimensional hypersurfaces on which open strings can end (previously predicted by T-duality):

D0D1 D2

The important implication is that their dynamics can now be determined at weak coupling using open string !

miércoles 29 de agosto de 2012 For ex. conformal invariance of the theory ↔ Equations of motion of Seff = Sbulk + SD brane with − SD brane a U(1) gauge theory (U(N) for a system of N − D-branes)

miércoles 29 de agosto de 2012 For ex. conformal invariance of the worldsheet theory ↔ Equations of motion of Seff = Sbulk + SD brane with − SD brane a U(1) gauge theory (U(N) for a system of N − D-branes)

Type I: C2 ,C6 (D1, D5 branes)

miércoles 29 de agosto de 2012 For ex. conformal invariance of the worldsheet theory ↔ Equations of motion of Seff = Sbulk + SD brane with − SD brane a U(1) gauge theory (U(N) for a system of N − D-branes)

Type I: C2 ,C6 (D1, D5 branes)

Heterotic: B2 ,B6 (F1, NS5 branes)

miércoles 29 de agosto de 2012 For ex. conformal invariance of the worldsheet theory ↔ Equations of motion of Seff = Sbulk + SD brane with − SD brane a U(1) gauge theory (U(N) for a system of N − D-branes)

Type I: C2 ,C6 (D1, D5 branes)

Heterotic: B2 ,B6 (F1, NS5 branes)

Type I and Heterotic SO(32) contain as well an SO(32) N=1 SYM vector multiplet ( E8 E8 for Heterotic E8 E8 ) × ×

miércoles 29 de agosto de 2012 Now we can go back to S-duality:

1 B2 C2 gst + → → gst C B 2 →− 2

miércoles 29 de agosto de 2012 Now we can go back to S-duality:

1 B2 C2 gst + → → gst C B 2 →− 2 Is a symmetry of Type IIB (F 1 D1; NS5 D5) ↔ ↔

miércoles 29 de agosto de 2012 Now we can go back to S-duality:

1 B2 C2 gst + → → gst C B 2 →− 2 Is a symmetry of Type IIB (F 1 D1; NS5 D5) ↔ ↔ It relates Type I and Heterotic SO(32):

C2 B2 D1 F1 → D5 NS5

miércoles 29 de agosto de 2012 Now we can go back to S-duality:

1 B2 C2 gst + → → gst C B 2 →− 2 Is a symmetry of Type IIB (F 1 D1; NS5 D5) ↔ ↔ It relates Type I and Heterotic SO(32):

C2 B2 D1 F1 → D5 NS5

The strong coupling limit of Type IIA and Heterotic E E 8 × 8 is M-theory (more difficult to see..).

miércoles 29 de agosto de 2012 3. The gauge/gravity duality

Maldacena’97:

Equivalence between Type IIB string theory on AdS S5 5 × and 4 dim =4 supersymmetric SU(N) Yang-Mills theory N

AdS5 : anti-de Sitter space in 5 dim (maximally symmetric solution of the Einstein eqs. with a negative )

miércoles 29 de agosto de 2012 3. The gauge/gravity duality

Maldacena’97:

Equivalence between Type IIB string theory on AdS S5 5 × and 4 dim =4 supersymmetric SU(N) Yang-Mills theory N

AdS5 : anti-de Sitter space in 5 dim (maximally symmetric solution of the Einstein eqs. with a negative cosmological constant) First piece of evidence: The of 5 dim anti-de Sitter space matches precisely with the group of conformal of =4 SYM AdS/CFT N ⇒

miércoles 29 de agosto de 2012 Starting point: Study of N coincident D3-branes in Type IIB in the large N limit, based on two dual descriptions: - As solution of the classical eqs. of motion of ST/SUGRA - As a D-brane system

miércoles 29 de agosto de 2012 Starting point: Study of N coincident D3-branes in Type IIB in the large N limit, based on two dual descriptions: - As solution of the classical eqs. of motion of ST/SUGRA - As a D-brane system

5 AdS5 S emerges as the near horizon geometry of the × 4 4 D3-brane solution. The radius is given by R =4πgsNls

miércoles 29 de agosto de 2012 Starting point: Study of N coincident D3-branes in Type IIB in the large N limit, based on two dual descriptions: - As solution of the classical eqs. of motion of ST/SUGRA - As a D-brane system

5 AdS5 S emerges as the near horizon geometry of the × 4 4 D3-brane solution. The radius is given by R =4πgsNls The U(N) gauge theory living on the branes becomes 4 dim 2 =4SYM, with gYM = gs : N Conformally invariant ∞ 2 2g Topological large N expansion N − fg(λ) with ‘t Hooft 2 g=0 parameter λ = gYMN ￿

miércoles 29 de agosto de 2012 Starting point: Study of N coincident D3-branes in Type IIB in the large N limit, based on two dual descriptions: - As solution of the classical eqs. of motion of ST/SUGRA - As a D-brane system

5 AdS5 S emerges as the near horizon geometry of the × 4 4 D3-brane solution. The radius is given by R =4πgsNls The U(N) gauge theory living on the branes becomes 4 dim 2 =4SYM, with gYM = gs : N Conformally invariant ∞ 2 2g Topological large N expansion N − fg(λ) with ‘t Hooft 2 g=0 parameter λ = gYMN ￿

4 4 Through the correspondence: R =4πλ ls

miércoles 29 de agosto de 2012 4 4 λ = gsNR=4πλ ls imply

N , finite λ gs 0 Planar limit Classical →∞ ⇔ → ⇒ ↔ limit of IIB ST

miércoles 29 de agosto de 2012 4 4 λ = gsNR=4πλ ls imply

N , finite λ gs 0 Planar limit Classical →∞ ⇔ → ⇒ ↔ limit of IIB ST

λ ls 0 Strong ‘t Hooft coupling limit →∞ ⇔ → ⇒ ↔ SUGRA limit

miércoles 29 de agosto de 2012 4 4 λ = gsNR=4πλ ls imply

N , finite λ gs 0 Planar limit Classical →∞ ⇔ → ⇒ ↔ limit of IIB ST

λ ls 0 Strong ‘t Hooft coupling limit →∞ ⇔ → ⇒ ↔ SUGRA limit Strong-weak coupling duality ⇒

miércoles 29 de agosto de 2012 4 4 λ = gsNR=4πλ ls imply

N , finite λ gs 0 Planar limit Classical →∞ ⇔ → ⇒ ↔ limit of IIB ST

λ ls 0 Strong ‘t Hooft coupling limit →∞ ⇔ → ⇒ ↔ SUGRA limit Strong-weak coupling duality ⇒

Many tests: For each field in the 5 dim bulk Operator in the dual CFT ↔ D-branes , domain walls, etc.. ↔ ...

miércoles 29 de agosto de 2012 Less supersymmetric extensions Type IIB on AdS Y with Y an bearing 5 × 5 5 5-form flux:

miércoles 29 de agosto de 2012 Less supersymmetric extensions Type IIB on AdS Y with Y an Einstein manifold bearing 5 × 5 5 5-form flux:

2 2 2 2 Y5 C6 with C Ricci-flat such that ds = dr + r ds ↔ 6 C6 Y5 SUSY preserved Y5 is Sasaki-Einstein ( C6 is Ricci-flat ⇔ ⇔ and Kähler (Calabi-Yau 3-fold))

miércoles 29 de agosto de 2012 Less supersymmetric extensions Type IIB on AdS Y with Y an Einstein manifold bearing 5 × 5 5 5-form flux:

2 2 2 2 Y5 C6 with C Ricci-flat such that ds = dr + r ds ↔ 6 C6 Y5 SUSY preserved Y5 is Sasaki-Einstein ( C6 is Ricci-flat ⇔ ⇔ and Kähler (Calabi-Yau 3-fold))

5 6 Examples: Y5 = S , C6 = C

1,1 SU(2) SU(2) Y = T = × , C6 is the 5 U(1) p,q Y5 = Y ,p,q coprime (includes quasi- regular and irregular SE manifolds)

miércoles 29 de agosto de 2012 Less supersymmetric extensions Type IIB on AdS Y with Y an Einstein manifold bearing 5 × 5 5 5-form flux:

2 2 2 2 Y5 C6 with C Ricci-flat such that ds = dr + r ds ↔ 6 C6 Y5 SUSY preserved Y5 is Sasaki-Einstein ( C6 is Ricci-flat ⇔ ⇔ and Kähler (Calabi-Yau 3-fold))

5 6 Examples: Y5 = S , C6 = C

1,1 SU(2) SU(2) Y = T = × , C6 is the conifold 5 U(1) p,q Y5 = Y ,p,q coprime integers (includes quasi- regular and irregular SE manifolds) Dual to N=1 SCFTs arising from a stack of D3-branes ↔ sitting at the tip of the CY cone

miércoles 29 de agosto de 2012 4. More on T-duality

4.1. D-branes from open strings 4.2. T-duality for more general backgrounds 4.3. Non-Abelian T-duality

miércoles 29 de agosto de 2012 4. More on T-duality

4.1. D-branes from open strings 4.2. T-duality for more general backgrounds 4.3. Non-Abelian T-duality

4.1. D-branes from open strings Closed strings in a toroidal compactification:

i Solution of the equations of motion: ∂+∂ X =0 + − boundary condition Xi(τ, σ +2π)=Xi(τ, σ)+2πnR :

i i m X (τ, σ)=X + α￿ τ + nRσ + .. 0 R

miércoles 29 de agosto de 2012 α￿ i i T-duality transformation: R ∂+X ∂+X → R → i i m n ⇔ ∂ X ∂ X ↔ − →− − (d d : Hodge duality) →∗

miércoles 29 de agosto de 2012 α￿ i i T-duality transformation: R ∂+X ∂+X → R → i i m n ⇔ ∂ X ∂ X ↔ − →− − (d d : Hodge duality) For open strings: σ [0, π] →∗ ∈

Boundary: m2 ∂Σ = σ = constant { }

/ 0 m1

µ Neumann boundary conditions: ∂σX ∂Σ =0 | (zero flux at the end points)

miércoles 29 de agosto de 2012 α￿ i i T-duality transformation: R ∂+X ∂+X → R → i i m n ⇔ ∂ X ∂ X ↔ − →− − (d d : Hodge duality) For open strings: σ [0, π] →∗ ∈

Boundary: m2 ∂Σ = σ = constant { }

/ 0 m1

µ Neumann boundary conditions: ∂σX ∂Σ =0 | (zero momentum flux at the end points)

Dirichlet boundary conditions: X˙ i =0; i = p +1,...,9 |∂Σ

miércoles 29 de agosto de 2012 Xµ = Xm,Xi m =0,...,p non-compact { } The end-points of the strings are fixed on a (p+1) dimensional hypersurface Dp-brane ≡

D0D1 D2

miércoles 29 de agosto de 2012 Xµ = Xm,Xi m =0,...,p non-compact { } The end-points of the strings are fixed on a (p+1) dimensional hypersurface Dp-brane ≡

D0D1 D2

Open strings T-duality Dp-branes

miércoles 29 de agosto de 2012 Xµ = Xm,Xi m =0,...,p non-compact { } The end-points of the strings are fixed on a (p+1) dimensional hypersurface Dp-brane ≡

D0D1 D2

Open strings T-duality Dp-branes

Dynamical due to the open strings attached

miércoles 29 de agosto de 2012 4.2. T-duality for more general backgrounds

(Buscher’88; Rocek, Verlinde’92)

The fundamental string couples to the metric, NS-NS 2-form and dilaton through a non-linear sigma-model:

1 µ ν µ ν 1 (2) S = gµν dX dX + Bµν dX dX + R φ 4πα￿ ∧∗ ∧ 4π ￿ ￿ ￿ ￿

miércoles 29 de agosto de 2012 4.2. T-duality for more general backgrounds

(Buscher’88; Rocek, Verlinde’92)

The fundamental string couples to the metric, NS-NS 2-form and dilaton through a non-linear sigma-model:

1 µ ν µ ν 1 (2) S = gµν dX dX + Bµν dX dX + R φ 4πα￿ ∧∗ ∧ 4π ￿ ￿ ￿ ￿

In the presence of an Abelian isometry: δXµ = ￿ kµ / g =0, B = dω ,i dφ =0 Lk Lk k

miércoles 29 de agosto de 2012 4.2. T-duality for more general backgrounds

(Buscher’88; Rocek, Verlinde’92)

The fundamental string couples to the metric, NS-NS 2-form and dilaton through a non-linear sigma-model:

1 µ ν µ ν 1 (2) S = gµν dX dX + Bµν dX dX + R φ 4πα￿ ∧∗ ∧ 4π ￿ ￿ ￿ ￿

In the presence of an Abelian isometry: δXµ = ￿ kµ / g =0, B = dω ,i dφ =0 Lk Lk k i) Go to adapted coordinates: Xµ = θ,Xα such that { } θ θ + ￿ and ∂ (backgrounds) = 0 → θ

miércoles 29 de agosto de 2012 ii) Gauge the isometry: dθ Dθ = dθ + A → A non-dynamical gauge field / δA = d￿ −

miércoles 29 de agosto de 2012 ii) Gauge the isometry: dθ Dθ = dθ + A → A non-dynamical gauge field / δA = d￿ −

iii) Add a Lagrange multiplier term: θ˜dA , such that

θ˜ dA =0 A exact D → ⇒ ￿ (in a topologically trivial worldsheet) + fix the gauge: A =0 Original theory →

miércoles 29 de agosto de 2012 ii) Gauge the isometry: dθ Dθ = dθ + A → A non-dynamical gauge field / δA = d￿ −

iii) Add a Lagrange multiplier term: θ˜dA , such that

θ˜ dA =0 A exact D → ⇒ ￿ (in a topologically trivial worldsheet) + fix the gauge: A =0 Original theory →

iv) Integrate the gauge field + fix the gauge: θ =0 Dual : → θ,Xα θ˜,Xα and { } → { }

miércoles 29 de agosto de 2012 1 B0α g0αg0β B0αB0β g˜00 = ;˜g0α = ;˜gαβ = gαβ − g00 g00 − g00

g0α g0αB0β g0βB0α B˜0α = ; B˜αβ = Bαβ − g00 − g00

φ˜ = φ log g Buscher’s formulae − 00

miércoles 29 de agosto de 2012 1 B0α g0αg0β B0αB0β g˜00 = ;˜g0α = ;˜gαβ = gαβ − g00 g00 − g00

g0α g0αB0β g0βB0α B˜0α = ; B˜αβ = Bαβ − g00 − g00

φ˜ = φ log g Buscher’s formulae − 00

2 - Conformally invariant (to first in ls )

miércoles 29 de agosto de 2012 1 B0α g0αg0β B0αB0β g˜00 = ;˜g0α = ;˜gαβ = gαβ − g00 g00 − g00

g0α g0αB0β g0βB0α B˜0α = ; B˜αβ = Bαβ − g00 − g00

φ˜ = φ log g Buscher’s formulae − 00

2 - Conformally invariant (to first order in ls ) - Involutive transformation: S˜ S θ˜ θ˜ + ￿ →

miércoles 29 de agosto de 2012 1 B0α g0αg0β B0αB0β g˜00 = ;˜g0α = ;˜gαβ = gαβ − g00 g00 − g00

g0α g0αB0β g0βB0α B˜0α = ; B˜αβ = Bαβ − g00 − g00

φ˜ = φ log g Buscher’s formulae − 00

2 - Conformally invariant (to first order in ls ) - Involutive transformation: S˜ S θ˜ θ˜ + ￿ → - (M,M˜ ) different and For ex. M = S3 ; M˜ = S2 S1 × (Alvarez, Alvarez-Gaumé, Barbón, Y.L.’93)

miércoles 29 de agosto de 2012 - Arbitrary ? (symmetry of string perturbation theory):

(a)(b) Non-trivial topologies + compact isometry orbits ⇒

miércoles 29 de agosto de 2012 - Arbitrary worldsheets? (symmetry of string perturbation theory):

(a)(b) Non-trivial topologies + compact isometry orbits ⇒

Large gauge transformations: d￿ =2πn ; n Z ∈ ￿γ

miércoles 29 de agosto de 2012 - Arbitrary worldsheets? (symmetry of string perturbation theory):

(a)(b) Non-trivial topologies + compact isometry orbits ⇒

Large gauge transformations: d￿ =2πn ; n Z γ ∈ To fix them: ￿

miércoles 29 de agosto de 2012 - Arbitrary worldsheets? (symmetry of string perturbation theory):

(a)(b) Non-trivial topologies + compact isometry orbits ⇒

Large gauge transformations: d￿ =2πn ; n Z γ ∈ To fix them: ￿ Multivalued Lagrange multiplier: dθ˜ =2πm ; m Z ∈ such that ￿γ

[exact] dA =0 + [harmonic] A exact → ⇒ ￿ ￿

miércoles 29 de agosto de 2012 - Arbitrary worldsheets? (symmetry of string perturbation theory):

(a)(b) Non-trivial topologies + compact isometry orbits ⇒

Large gauge transformations: d￿ =2πn ; n Z γ ∈ To fix them: ￿ Multivalued Lagrange multiplier: dθ˜ =2πm ; m Z ∈ such that ￿γ

[exact] dA =0 + [harmonic] A exact → ⇒ ￿ ￿ The gauging procedure works for all genera ⇒ (Alvarez, Alvarez-Gaumé, Barbón, Y.L.’93)

miércoles 29 de agosto de 2012 In fact, going to space: L(θ, θ˙,Xα) H(θ,P ,Xα) → θ

miércoles 29 de agosto de 2012 In fact, going to phase space: L(θ, θ˙,Xα) H(θ,P ,Xα) → θ ˜ The canonical transformation from θ,Pθ θ,P˜ : { } → { θ} P = θ˜￿ θ − generates the dual background! P˜ = θ￿ θ − (Alvarez, Alvarez-Gaumé, Y.L.´94)

miércoles 29 de agosto de 2012 In fact, going to phase space: L(θ, θ˙,Xα) H(θ,P ,Xα) → θ ˜ The canonical transformation from θ,Pθ θ,P˜ : { } → { θ} P = θ˜￿ θ − generates the dual background! P˜ = θ￿ θ − (Alvarez, Alvarez-Gaumé, Y.L.´94)

`Minimal´approach to Abelian T-duality ⇒

miércoles 29 de agosto de 2012 In fact, going to phase space: L(θ, θ˙,Xα) H(θ,P ,Xα) → θ ˜ The canonical transformation from θ,Pθ θ,P˜ : { } → { θ} P = θ˜￿ θ − generates the dual background! P˜ = θ￿ θ − (Alvarez, Alvarez-Gaumé, Y.L.´94)

`Minimal´approach to Abelian T-duality ⇒ In this set-up: ∂ Xi ∂ Xi + → + is generalized to ∂ Xi ∂ Xi − →− − ∂ θ˜ = g ∂ θ +(g B ) ∂ Xα + 00 + 0α − 0α + α ∂ θ˜ = (g00 ∂ θ +(g0α + B0α) ∂ X ) − − − −

miércoles 29 de agosto de 2012

For the open strings: Neumann boundary conditions are generalized to

α α g θ￿ + g X ￿ B X˙ =0 00 0α − 0α β β g θ￿ + g X ￿ + B θ˙ B X˙ =0 0α αβ 0α − αβ

miércoles 29 de agosto de 2012

For the open strings: Neumann boundary conditions are generalized to

α α g θ￿ + g X ￿ B X˙ =0 00 0α − 0α β β g θ￿ + g X ￿ + B θ˙ B X˙ =0 0α αβ 0α − αβ and they are mapped to ˙ θ˜ =0 β ˙ β g˜ θ˜￿ +˜g X ￿ + B˜ θ˜ B˜ X˙ =0 0α αβ 0α − αβ

miércoles 29 de agosto de 2012

For the open strings: Neumann boundary conditions are generalized to

α α g θ￿ + g X ￿ B X˙ =0 00 0α − 0α β β g θ￿ + g X ￿ + B θ˙ B X˙ =0 0α αβ 0α − αβ and they are mapped to ˙ θ˜ =0 β ˙ β g˜ θ˜￿ +˜g X ￿ + B˜ θ˜ B˜ X˙ =0 0α αβ 0α − αβ

θ˜ : Dirichlet ⇒ D-branes Xα : Neumann ⇒ (Borlaf, Y.L.’96)

miércoles 29 de agosto de 2012

For the open strings: Neumann boundary conditions are generalized to

α α g θ￿ + g X ￿ B X˙ =0 00 0α − 0α β β g θ￿ + g X ￿ + B θ˙ B X˙ =0 0α αβ 0α − αβ and they are mapped to ˙ θ˜ =0 β ˙ β g˜ θ˜￿ +˜g X ￿ + B˜ θ˜ B˜ X˙ =0 0α αβ 0α − αβ

θ˜ : Dirichlet ⇒ D-branes Xα : Neumann ⇒ (Borlaf, Y.L.’96) Suitable for the study of boundary conditions (also )

miércoles 29 de agosto de 2012 i i Quantum mechanically: HeF = He˜ F implies:

i [θ,θ˜] ψ [θ˜]=N(k) θ(σ) e F φ [θ(σ)] k D k ￿ In our case: 1 = dσ(θ￿θ˜ θθ˜￿) F 2 1 − ￿S Derive global properties Arbitrary genus Riemann surfaces

miércoles 29 de agosto de 2012 4.3. Non-Abelian T-duality

(De la Ossa, Quevedo’93; Alvarez, Alvarez-Gaume, Y.L.’95)

miércoles 29 de agosto de 2012 4.3. Non-Abelian T-duality

(De la Ossa, Quevedo’93; Alvarez, Alvarez-Gaume, Y.L.’95)

Non-Abelian continuous isometry: Xm gmXn ,g G → n ∈

miércoles 29 de agosto de 2012 4.3. Non-Abelian T-duality

(De la Ossa, Quevedo’93; Alvarez, Alvarez-Gaume, Y.L.’95)

Non-Abelian continuous isometry: Xm gmXn ,g G → n ∈ i) Gauge it: dXm DXm = dXm + AmXn → n 1 A of G A g(A + d)g− ∈ →

miércoles 29 de agosto de 2012 4.3. Non-Abelian T-duality

(De la Ossa, Quevedo’93; Alvarez, Alvarez-Gaume, Y.L.’95)

Non-Abelian continuous isometry: Xm gmXn ,g G → n ∈ i) Gauge it: dXm DXm = dXm + AmXn → n 1 A Lie algebra of G A g(A + d)g− ∈ → ii) Add a Lagrange multiplier term: Tr(χF ) F = dA A A − ∧ 1 χ Lie Algebra of G χ gχg− , such that ∈ , → χ F =0 A exact D → ⇒ ￿ (in a topologically trivial worldsheet) + fix the gauge: A =0 Original theory ⇒

miércoles 29 de agosto de 2012 iii) Integrate the gauge field + fix the gauge Dual theory →

miércoles 29 de agosto de 2012 iii) Integrate the gauge field + fix the gauge Dual theory → General properties: - Loss of symmetries in the dual Non-involutive ⇒ - Original and dual very different geometrically

miércoles 29 de agosto de 2012 iii) Integrate the gauge field + fix the gauge Dual theory → General properties: - Loss of symmetries in the dual Non-involutive ⇒ - Original and dual very different geometrically

Example: Principal with group SU(2):

Geometrically: S3

1 1 L = Tr(g− dg g− dg); g SU(2) ∧∗ ∈ Invariant under: g h gh ; h ,h SU(2) → 1 2 1 2 ∈ Choose: g hg ; h SU(2) → ∈

miércoles 29 de agosto de 2012 1 L˜ = δ ￿ χk + χ χ dχi dχj 1+χ2 ij − ijk i j ∧∗ ￿ ￿ 1 Invariant under χ hχh− ; h SU(2) → ∈

miércoles 29 de agosto de 2012 1 L˜ = δ ￿ χk + χ χ dχi dχj 1+χ2 ij − ijk i j ∧∗ ￿ ￿ 1 Invariant under χ hχh− ; h SU(2) → ∈

A - Higher genus generalization? Set to zero Wγ = Pe γ ￿

miércoles 29 de agosto de 2012 1 L˜ = δ ￿ χk + χ χ dχi dχj 1+χ2 ij − ijk i j ∧∗ ￿ ￿ 1 Invariant under χ hχh− ; h SU(2) → ∈

A - Higher genus generalization? Set to zero Wγ = Pe γ ￿ - Global properties?

miércoles 29 de agosto de 2012 1 L˜ = δ ￿ χk + χ χ dχi dχj 1+χ2 ij − ijk i j ∧∗ ￿ ￿ 1 Invariant under χ hχh− ; h SU(2) → ∈

A - Higher genus generalization? Set to zero Wγ = Pe γ ￿ - Global properties? - Conformal invariance not proved in general

miércoles 29 de agosto de 2012 1 L˜ = δ ￿ χk + χ χ dχi dχj 1+χ2 ij − ijk i j ∧∗ ￿ ￿ 1 Invariant under χ hχh− ; h SU(2) → ∈

A - Higher genus generalization? Set to zero Wγ = Pe γ ￿ - Global properties? - Conformal invariance not proved in general - Non-involutive

miércoles 29 de agosto de 2012 1 L˜ = δ ￿ χk + χ χ dχi dχj 1+χ2 ij − ijk i j ∧∗ ￿ ￿ 1 Invariant under χ hχh− ; h SU(2) → ∈

A - Higher genus generalization? Set to zero Wγ = Pe γ ￿ - Global properties? - Conformal invariance not proved in general - Non-involutive

True symmetry in String Theory?

miércoles 29 de agosto de 2012 Partial results about its realization as a canonical transformation: (Y.L.’95)

miércoles 29 de agosto de 2012 Partial results about its realization as a canonical transformation: (Y.L.’95) A system of coordinates adapted to the non-commuting isometries does not exist

miércoles 29 de agosto de 2012 Partial results about its realization as a canonical transformation: (Y.L.’95) A system of coordinates adapted to the non-commuting isometries does not exist For principal chiral models: 1 1 L = Tr(g− dg g− dg); g G ∧∗ ∈ 1 a Use Maurer-Cartan forms: g− dg Ωa(θ)dθ ≡ Then: 1 ak bk k k a b H = ω ω Π Π + Ω Ω θ ￿θ ￿ 4 a b a b

k k ak i ki Ωa = ΩaT , ω (θ)Ωa(θ)=δ

miércoles 29 de agosto de 2012 The generating functional

a [χ, θ]= dσ Tr (χ Ωa(θ)∂σθ ) F 1 ￿S generates the canonical transformation that gives the dual: δ Π = F a −δθa δ Π˜ = F i δχi

miércoles 29 de agosto de 2012 The generating functional

a [χ, θ]= dσ Tr (χ Ωa(θ)∂σθ ) F 1 ￿S generates the canonical transformation that gives the dual: δ Π = F a −δθa δ Π˜ = F i δχi

In this approach: - Involutive - Generalize to arbitrary genus Riemann surfaces - Global properties

miércoles 29 de agosto de 2012 Interesting as a solution generating technique (Sfetsos, Thompson’10; Y.L., O Colgain, Sfetsos, Thompson’11; Itsios, Y.L., O Colgain, Sfetsos’12):

miércoles 29 de agosto de 2012 Interesting as a solution generating technique (Sfetsos, Thompson’10; Y.L., O Colgain, Sfetsos, Thompson’11; Itsios, Y.L., O Colgain, Sfetsos’12): In the context of gauge/gravity duality: Apply it to the AdS S5 Type IIB background: 5 ×

miércoles 29 de agosto de 2012 Interesting as a solution generating technique (Sfetsos, Thompson’10; Y.L., O Colgain, Sfetsos, Thompson’11; Itsios, Y.L., O Colgain, Sfetsos’12): In the context of gauge/gravity duality: Apply it to the AdS S5 Type IIB background: 5 × 2 2 2 5 ds = ds (AdS5)+ds (S ) ds2(S5) = 4(dθ2 +sin2 θdφ2) + cos2 θ ds2(S3)

5 F5 = 2Vol(AdS5) 2Vol(S ) F = dC − 5 4

miércoles 29 de agosto de 2012 Interesting as a solution generating technique (Sfetsos, Thompson’10; Y.L., O Colgain, Sfetsos, Thompson’11; Itsios, Y.L., O Colgain, Sfetsos’12): In the context of gauge/gravity duality: Apply it to the AdS S5 Type IIB background: 5 × 2 2 2 5 ds = ds (AdS5)+ds (S ) ds2(S5) = 4(dθ2 +sin2 θdφ2) + cos2 θ ds2(S3)

5 F5 = 2Vol(AdS5) 2Vol(S ) F = dC − 5 4 Dual Type IIA background: dr2 r2 cos2 θ ds˜2 = ds2(AdS ) + 4(dθ2 +sin2 θdφ2)+ + ds2(S2) 5 cos2 θ cos4 θ + r2 F ,F ,F ,F =0 2 4 6 8 ￿

miércoles 29 de agosto de 2012 Less supersymmetric background related to some N=2 SCFT’s

miércoles 29 de agosto de 2012 Less supersymmetric background related to some N=2 SCFT’s In general, less SUSY backgrounds with no clear dual CFT.

miércoles 29 de agosto de 2012 Less supersymmetric background related to some N=2 SCFT’s In general, less SUSY backgrounds with no clear dual CFT.

Progress about the non-invertibility:

miércoles 29 de agosto de 2012 Less supersymmetric background related to some N=2 SCFT’s In general, less SUSY backgrounds with no clear dual CFT.

Progress about the non-invertibility:

T Type IIA SUGRA Type IIB SUGRA Abelian (Bergshoeff, Hull, S1 S1 Ortín’95) 9 dim SUGRA

miércoles 29 de agosto de 2012 Less supersymmetric background related to some N=2 SCFT’s In general, less SUSY backgrounds with no clear dual CFT.

Progress about the non-invertibility:

T Type IIA SUGRA Type IIB SUGRA Abelian (Bergshoeff, Hull, S1 S1 Ortín’95) 9 dim SUGRA

T Type IIA SUGRA Type IIB SUGRA

Non-Abelian 2 3 S R S × 7 dim SUGRA

miércoles 29 de agosto de 2012 5. Conclusions

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

Mainly focused on T-duality

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

Mainly focused on T-duality In fact, although physically they are very different, S-duality can also be formulated as d d : →∗

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

Mainly focused on T-duality In fact, although physically they are very different, S-duality can also be formulated as d d : →∗

In an Abelian gauge theory of 1-forms in d dim: A1 A˜d 3 ↔ −

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

Mainly focused on T-duality In fact, although physically they are very different, S-duality can also be formulated as d d : →∗

In an Abelian gauge theory of 1-forms in d dim: A1 A˜d 3 ↔ − In Maxwell theory: A A˜ 1 ↔ 1

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

Mainly focused on T-duality In fact, although physically they are very different, S-duality can also be formulated as d d : →∗

In an Abelian gauge theory of 1-forms in d dim: A1 A˜d 3 ↔ − In Maxwell theory: A A˜ 1 ↔ 1 In String Theory?

miércoles 29 de agosto de 2012 5. Conclusions

Many of the most important recent developments in String Theory are based on duality relations

Mainly focused on T-duality In fact, although physically they are very different, S-duality can also be formulated as d d : →∗

In an Abelian gauge theory of 1-forms in d dim: A1 A˜d 3 ↔ − In Maxwell theory: A A˜ 1 ↔ 1 In String Theory? Look at the worldvolume of D-branes

miércoles 29 de agosto de 2012 For a D3-brane: A1 A˜1 D3-brane at strong coupling ↔ →

miércoles 29 de agosto de 2012 For a D3-brane: A1 A˜1 D3-brane at strong coupling ↔ → For a D1-brane: A1 A˜ 1 q F1 ((p,q) strings) ↔ − →

miércoles 29 de agosto de 2012 For a D3-brane: A1 A˜1 D3-brane at strong coupling ↔ → For a D1-brane: A1 A˜ 1 q F1 ((p,q) strings) ↔ − → For a D2-brane: A1 A˜0 M2-brane ↔ →

miércoles 29 de agosto de 2012 For a D3-brane: A1 A˜1 D3-brane at strong coupling ↔ → For a D1-brane: A1 A˜ 1 q F1 ((p,q) strings) ↔ − → For a D2-brane: A1 A˜0 M2-brane ↔ → .... (Y.L.’95; 96)

miércoles 29 de agosto de 2012 For a D3-brane: A1 A˜1 D3-brane at strong coupling ↔ → For a D1-brane: A1 A˜ 1 q F1 ((p,q) strings) ↔ − → For a D2-brane: A1 A˜0 M2-brane ↔ → .... (Y.L.’95; 96)

Thanks!

miércoles 29 de agosto de 2012 miércoles 29 de agosto de 2012 Towards the formulation of M-theory (See M.P. García del Moral’s talk) Extensions and applications of gauge/gravity duality Recent developments: Double field formalism: Reformulate ten dim SUGRA such that the T-duality group is manifest: Combine string fields and their T-duals: dXI =(dXµ,dX˜ µ) 1 1 1 Expand the tangent space from T Λ (M) to T Λ (M) T Λ∗ (M) ⊕ Metric on this generalized space transforms under O(d, d) Doubled geometry → Mathematics of doubled geometry being developed

miércoles 29 de agosto de 2012 Towards the formulation of M-theory (See M.P. García del Moral’s talk) Extensions and applications of gauge/gravity duality

Thanks!

miércoles 29 de agosto de 2012