Redalyc.Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Community Analysis of Microbial Sharing and Specialization in A
Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity. -
Redalyc.Nidification of Polybia Rejecta (Hymenoptera: Vespidae)
Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Magalhães de Souza, Marcos; Porfiro Pires, Epifânio; Prezoto, Fábio Nidification of Polybia rejecta (Hymenoptera: Vespidae) associated to Azteca chartifex (Hymenoptera: Formicidae) in a fragment of Atlantic Forest, in the state of Minas Gerais, southeastern Brazil Biota Neotropica, vol. 13, núm. 3, julio-septiembre, 2013, pp. 390-392 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199128991038 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 13, no. 3 Nidification of Polybia rejecta (Hymenoptera: Vespidae) associated to Azteca chartifex (Hymenoptera: Formicidae) in a fragment of Atlantic Forest, in the state of Minas Gerais, southeastern Brazil Marcos Magalhães de Souza1, Epifânio Porfiro Pires2,4 & Fábio Prezoto3 1Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas – IFSULDEMINAS, Campus Inconfidentes, CEP 37576-000, Inconfidentes, MG, Brazil 2Departamento de Entomologia, Universidade Federal de Lavras – UFLA, CEP 37200-000, Lavras, MG, Brazil 3Departamento de Zoologia, Universidade Federal de Juiz de Fora – UFJF, CEP 36036-900, Juiz de Fora, MG, Brazil 4Corresponding author: Epifânio Porfiro Pires, e-mail: [email protected] -
Resasco Etal 2014 Plosone.Pdf (1.045Mb)
Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Resasco, Julian, Shannon L. Pelini, Katharine L. Stuble, Nathan J. Sanders, Robert R. Dunn, Sarah E. Diamond, Aaron M. Ellison, Nicholas J. Gotelli, and Douglas J. Levey. 2014. “Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages.” Edited by Martin Heil. PLoS ONE 9 (2) (February 4): e88029. doi:10.1371/journal.pone.0088029. http://dx.doi.org/10.1371/ journal.pone.0088029. Published Version doi:10.1371/journal.pone.0088029 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11857773 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages Julian Resasco1*†, Shannon L. Pelini2, Katharine L. Stuble 3‡, Nathan J. Sanders3§, Robert R. Dunn4, Sarah E. Diamond4¶, Aaron M. Ellison5, Nicholas J. Gotelli6, Douglas J. Levey7 1Department of Biology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA 3Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 4Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA 5Harvard University, Harvard Forest, Petersham, MA 01366 USA 6Department of Biology, University of Vermont, Burlington, VT 05405 USA 7National Science Foundation, Arlington, VA 22230, USA † Current address: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA ‡ Current address: Oklahoma Biological Survey, 111 E. -
Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check list of ground-dwelling ants (Hymenoptera: PECIES S Formicidae) of the eastern Acre, Amazon, Brazil OF Patrícia Nakayama Miranda 1,2*, Marco Antônio Oliveira 3, Fabricio Beggiato Baccaro 4, Elder Ferreira ISTS 1 5,6 L Morato and Jacques Hubert Charles Delabie 1 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza. BR 364 – Km 4 – Distrito Industrial. CEP 69915-900. Rio Branco, AC, Brazil. 2 Instituo Federal do Acre, Campus Rio Branco. Avenida Brasil 920, Bairro Xavier Maia. CEP 69903-062. Rio Branco, AC, Brazil. 3 Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG 818, Km 6. CEP 35690-000. Florestal, MG, Brazil. 4 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ecologia. CP 478. CEP 69083-670. Manaus, AM, Brazil. 5 Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau, Laboratório de Mirmecologia – CEPEC/CEPLAC. Caixa Postal 07. CEP 45600-970. Itabuna, BA, Brazil. 6 Universidade Estadual de Santa Cruz. CEP 45650-000. Ilhéus, BA, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The ant fauna of state of Acre, Brazilian Amazon, is poorly known. The aim of this study was to compile the species sampled in different areas in the State of Acre. An inventory was carried out in pristine forest in the municipality of Xapuri. This list was complemented with the information of a previous inventory carried out in a forest fragment in the municipality of Senador Guiomard and with a list of species deposited at the Entomological Collection of National Institute of Amazonian Research– INPA. -
Zootaxa, Hymenoptera, Formicidae, Dolichoderinae
Zootaxa 776: 1–10 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 776 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) A new species of the genus Bothriomyrmex Emery, 1869 (Hymenoptera: Formicidae: Dolichoderinae) from Costa Rica DMITRY A. DUBOVIKOFF1 & JOHN T. LONGINO2 1 Department of Entomology, Faculty of Biology and Soil Sciences, Saint Petersburg State University, 7/9 Uni- versiteskaya nab., St. Petersburg, 199034, Russia, [email protected] 2 The Evergreen State College, Olympia WA 98505 USA, [email protected] Abstract Bothriomyrmex paradoxus Dubovikov and Longino sp. nov. is described from Costa Rica, based on two collections from widely separated localities. These are the first collections of the genus Bothri- omyrmex in the Americas. The genus Bothriomyrmex can be divided into Palearctic species (Both- riomyrmex s.s.) and Oriental and Australian species, based on differences in palp formula and queen wing venation. Bothriomyrmex paradoxus shares palp and wing characters with the Palearc- tic species. It is probably native to Central America and long separated from its Old World relatives. Key words: Bothriomyrmex, Formicidae, Dolichoderinae, Costa Rica Introduction The subfamily Dolichoderinae is comprised of 22 genera, the majority of which are Old World (Shattuck 1992, Bolton 2003, Brandão et al. 1999). The dolichoderine genera with significant indigenous radiations in the New World are Azteca, Dolichoderus, Dory- myrmex, Forelius, Linepithema, Liometopum, and Tapinoma. Three additional genera have been reported as rare or introduced elements. Technomyrmex, a diverse genus in the Old World, is represented in the New World by one introduced tramp species and, paradoxi- cally, one native species from Panama and Costa Rica (Wheeler 1934, Longino pers. -
Rainforest Canopy Ants: the Implications of Territoriality and Predatory Behavior Alain Dejean1,2* • Bruno Corbara3 • Jérôme Orivel2 • Maurice Leponce4
Functional Ecosystems and Communities ©2007 Global Science Books Rainforest Canopy Ants: The Implications of Territoriality and Predatory Behavior Alain Dejean1,2* • Bruno Corbara3 • Jérôme Orivel2 • Maurice Leponce4 1 CNRS-Guyane (UPS 2561 and UMRS-CNRS 5174), 16, avenue André Aron, 97300 Cayenne, France 2 Laboratoire d'Evolution et Diversité Biologique (UMR-CNRS 5174), Université Toulouse III, 118 route de Narbonne, 31062 Toulouse Cedex 9, France 3 Laboratoire de Psychologie Sociale de la Cognition (UMR-CNRS 6024), Université Blaise Pascal, 34 avenue Carnot, 63037 Clermont-Ferrand Cedex, France 4 Biological Evaluation Section, Royal Belgian Institute of Natural Sciences, 29 rue Vautier, 1000 Brussels, Belgium Corresponding author: * [email protected] ABSTRACT After first being ground-nesters and predators or scavengers, ants became arboreal with the rise of angiosperms and provided plants a biotic defense by foraging for prey on their foliage. Plants induce ants to patrol on their leaves through food rewards (e.g., extra-floral nectar and food bodies), while ants attend hemipterans for their honeydew. Most arboreal-nesting ants build their own nests, but myrmecophytes, plants that offer hollow structures that serve as nesting places to specialized “plant-ants”, illustrate the tight evolutionary bonds between ants and plants. In tree-crop plantations and in some rainforest canopies territorially-dominant arboreal ants have large colonies with large and/or polydomous nests. Their territories are defended both intra- and interspecifically, and are distributed in a mosaic pattern, creating what has become known as “arboreal ant mosaics”. They tolerate non-dominant species with smaller colonies on their territories. Arboreal ant mosaics are dynamic because ant nesting preferences differ depending on the species and the size and age of supporting trees. -
List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone -
Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests. -
Arkansas Academy of Science
Journal of the CODEN: AKASO ISBN: 0097-4374 ARKANSAS ACADEMY OF SCIENCE VOLUME 61 2007 Library Rate ARKANSAS ACADEMY OF SCIENCE ARKANSAS TECH UNIVERSITY DEPARTMENT OF PHYSICAL SCIENCES 1701 N. BOULDER RUSSELLVILLE. AR 72801-2222 Arkansas Academy ofScience, Dept. of Physical Sciences, Arkansas Tech University PAST PRESIDENTS OF THE ARKANSAS ACADEMY OF SCIENCE Charles Brookover, 1917 C. E. Hoffman, 1959 Paul Sharrah, 1984 Dwight M. Moore, 1932-33, 64 N. D. Buffaloe, 1960 William L. Evans, 1985 Flora Haas, 1934 H. L. Bogan, 1961 Gary Heidt, 1986 H. H. Hyman, 1935 Trumann McEver, 1962 Edmond Bacon, 1987 L. B. Ham, 1936 Robert Shideler, 1963 Gary Tucker, 1988 W. C. Muon, 1937 L. F. Bailey, 1965 David Chittenden, 1989 M. J. McHenry, 1938 James H. Fribourgh, 1966 Richard K. Speairs, Jr. 1990 T. L. Smith, 1939 Howard Moore, 1967 Robert Watson, 1991 P. G. Horton, 1940 John J. Chapman, 1968 Michael W. Rapp, 1992 I. A. Willis, 1941-42 Arthur Fry, 1969 Arthur A. Johnson, 1993 L. B. Roberts, 1943-44 M. L. Lawson, 1970 George Harp, 1994 JeffBanks, 1945 R. T. Kirkwood, 1971 James Peck, 1995 H. L. Winburn, 1946-47 George E. Templeton, 1972 Peggy R. Dorris, 1996 E. A. Provine, 1948 E. B. Wittlake, 1973 Richard Kluender, 1997 G. V. Robinette, 1949 Clark McCarty, 1974 James Daly, 1998 John R. Totter, 1950 Edward Dale, 1975 Rose McConnell, 1999 R. H. Austin, 1951 Joe Guenter, 1976 Mostafa Hemmati, 2000 E. A. Spessard, 1952 Jewel Moore, 1977 Mark Draganjac, 2001 Delbert Swartz, 1953 Joe Nix, 1978 John Rickett, 2002 Z. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Hymenoptera: Formicidae: Amblyoponinae) and Description of the Worker Caste
Zootaxa 3734 (3): 371–379 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3734.3.6 http://zoobank.org/urn:lsid:zoobank.org:pub:2890D856-2245-4B79-9D7D-61D265238DDB Rediscovery of the rare ant genus Bannapone (Hymenoptera: Formicidae: Amblyoponinae) and description of the worker caste BENOIT GUÉNARD1,3, BENJAMIN BLANCHARD1, CONG LIU1,2, DA-RONG YANG2 & EVAN ECONOMO1 1Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan 2Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China 3Corresponding author. E-mail: [email protected] Abstract The genus Bannapone was described in 2000 on the basis of a single dealate queen specimen. Since its original collection in Yunnan, China, no other specimen has been reported, making it one of the rarest ant genera in the world. Here we report the collection of two workers of Bannapone also from Yunnan province. The description of the worker caste is presented. Furthermore, we found significant differences with the described B. mulanae Xu, 2000 which leads us to describe the workers as a new species, B. scrobiceps n. sp.. Finally, we briefly discuss the importance of leaf-litter collection methods to collect taxa considered as “rare”. Key words: Formicidae, Amblyoponinae Introduction The subfamily Amblyoponinae includes 116 species spread over 13 genera. Most of the Amblyoponine genera exhibit a pan-tropical distribution (Guénard et al. 2011), although a few species are also known to be adapted to cooler habitats of temperate regions. -
(Hymenoptera: Formicidae) in Cecropia Glaziovii (Rosales: Urticaceae) from the Atlantic Forest Victor H
Entomological Communications, 3, 2021: ec03017 doi: 10.37486/2675-1305.ec03017 e-ISSN: 2675-1305 Open Access Full Text Article Scientific Note Natural history notes on worker size, colony size, and nest structure of Azteca muelleri Emery, 1893 (Hymenoptera: Formicidae) in Cecropia glaziovii (Rosales: Urticaceae) from the Atlantic Forest Victor H. Nagatani1 , Nathalia S. da Silva1 , Emília Z. Albuquerque2,3 , André L. Gaglioti4 , Maria S. C. Morini1 1Universidade Mogi das Cruzes, Núcleo de Ciências Ambientais, Programa de Pós-Graduação em Biotecnologia, Laboratório de Mirmecologia do Alto Tietê, Mogi das Cruzes, SP, Brazil. 2National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. 3School of Life Science, Arizona State University, Tempe, AZ, USA. 4Instituto de Botânica, Núcleo de Pesquisa e Curadoria do Herbário SP, São Paulo, SP, Brazil. Corresponding author: [email protected] Edited by: Mabel Alvarado Received: March 10, 2021. Accepted: May 24, 2021. Published: June 18, 2021. Abstract. Mutualistic association betweenAzteca Forel, 1878 ants and Cecropia Loefl. plants are one of the most studied interactions in Neotropics, however, natural history studies of Azteca species still poorly investigated due to the large effort required to conduct detailed descriptive studies. Here, we describe biological aspects of Azteca muelleri Emery, 1893 nesting inCecropia glaziovii Snethl. in a fragment of Atlantic Forest, addressing (a) colony size; (b) nest distribution on the tree; and (c) worker and queen morphometrics. We collected two C. glaziovii saplings and counted the characteristics of the nests and plants. We randomly selected 140 workers to measure and to determine whether intraspecific polymorphism occurs. Workers, immatures, and mealybugs were present in all hollow internodes of the plant, and a queen was found.