Reptiles & Amphibians

Total Page:16

File Type:pdf, Size:1020Kb

Reptiles & Amphibians Snakes (Reptiles) Reptiles & Amphibians Lizards (Reptiles) Black Racer Broad Head Skink Toads and Frogs (Amphibians) Brown Snake Eastern Fence Lizard Eastern Narrowmouth Toad Brown Water Snake Eastern Glass Lizard Eastern Spadefoot Toad *Canebreak Rattlesnake* Eastern Slender Glass Lizard The Canebreak is on the Virginia Turtles (Reptiles) Fowlers Toad Endangered Species List Five-Lined Skink *Cottonmouth* Oak Toad Coastal Plain Cooter Ground Skink Eastern Garter Snake Southern Toad Diamond Back Terrapin Six-Lined Racerunner Eastern Hognose Snake Brimley’s Chorus Frog Eastern Box Turtle Southeastern Five-Lined Skink Eastern Kingsnake Bullfrog Eastern Mud Turtle Crocodilians (Reptiles) Carpenter Frog Eastern Milk Snake Eastern Musk Turtle American Alligator Costal Plain Cricket Frog Eastern Ribbon Snake Northern Red-Bellied Cooter Rare in this area due to the colder climate; they have been seen on occasion in the canal Cope’s Gray Treefrog Mud Snake Painted Turtle and the Northwest River. Green Treefrog *Northern Copperhead* Snapping Turtle Salamanders (Amphibians) Little Grass Frog Northern Scarlet Snake Spotted Turtle Eastern Newt Northern Water Snake Northern Cricket Frog Striped Mud Turtle Greater Siren Pickerel Frog Rainbow Snake Yellow-Bellied Slider Lesser Siren Rat Snake Pine Woods Treefrog Mabee’s Salamander Redbelly Snake *VENOMOUS* Southern Chorus Frog Many-Lined Salamander ⇒ Don't ever step, sit, or put your hands in an area Redbelly Water Snake you have not carefully looked at first! Southern Leopard Frog Marbled Salamander Rough EarthSnake ⇒ Use caution in areas with berries, small animals Spring Peeper Mud Salamander Rough Green Snake that eat the berries are food for snakes. Squirrel Treefrog Northern Duskey Salamander Scarlet Kingsnake ⇒ Don’t get in striking range! Snakes can bite at a distance of 1/2 their body length or more. Redback Salamander Smooth Earth Snake ⇒ Do not touch any live or dead snakes! Slimey Salamander Southern Ringneck Snake Southern Dusky Salamander ⇒ If you are bitten by any snake; seek Information taken from “A Night Hike” By Dr. Dean Bohon Bohon Dean Dr. By Hike” Night “A from taken Information Worm Snake professional medical attention immediately! Two-Toed Amphiuma Dismal Swamp Canal Trail Venomous Snakes Please don’t litter! Chesapeake, VA In Chesapeake, • From Greenbrier area Of all the snakes in this area, only take I-64 ISMAL three are venomous. All of them are towards Suffolk. pit vipers; they have facial pits and Take Exit 291B for WAMP Rt. 17-SOUTH. vertical cat-like eyes. Follow Rt. 17 South beyond intersection ANAL w/Rt. 165 Turn RIGHT onto Rt. 17 Bus RAIL (George Washington Hwy.) About 1/2 mile to trail; REPTILES & AMPHIBIANS Cope’s Gray Treefrog entrance on LEFT. Photo by Marvin Powers Powers Marvin by Photo Photo Kevin Kaul Kaul Kevin Photo • From Elizabeth City NC take Rt. 17 NORTH. Canebreak Rattlesnake Reptiles Turn LEFT onto 17 Bus oday there are 6,800 reptile (George Washington Hwy.) About 1/2 mile to trail; T species on earth; the major entrance on LEFT. groups are crocodilians , turtles, lizards, and snakes. All reptiles are cold-blooded, which is why they warm Yellow-Belly Slider themselves in the sun, and have Take a break. Recre-8!™ bodies covered in dry, horny scales. Explore the Some reptiles lay eggs; others give Great Dismal Swamp birth to live young. Copperhead from our 8.5 miles of safe, paved, multiuse trail! The only Amphibians one of it’s kind in the U.S. ike many other animals and fishes, Rich in history, the Great Dismal L amphibians are vertebrates; Swamp has intrigued man creatures with a backbone and an for centuries. internal skeleton. Amphibians live part The trail is open year round from of their life in water and part on land. sunrise to sunset. This park contains rare and Even those species that lay eggs on For more information contact endangered species! Cottonmouth land start life in a fluid-filled egg, Chesapeake Parks and Recreation Please proceed with care. at 382-6411. breathing through gills. Do not attempt to feed or It is illegal to capture or harm any By Outdoor Programmer, Kevin Kaul approach any wild animals! animal, even venomous ones! .
Recommended publications
  • Nonnative Reptilies in South Florida ID Guide
    Nonnative Reptiles in South Florida Identification Guide • The nonnative reptiles shown here are native to Central and South America, Asia, and Nonnative species are Africa. They were introduced to south Florida by human activity. sometimes confused with • Invasive species harm native species through direct predation, competition for resources, the Florida natives shown spread of disease, and disruption of natural ecosystems. Many of the nonnative reptiles on because their colorations this guide are, or have the potential to become, invasive. and patterns are very • Use this guide to identify invasive species and immediately report sightings of the black similar. Pay attention to the and white tegu, Nile monitor, and all invasive snakes to 1-888-IVE-GOT1. Take a distinct characteristics and photo and note the location relative to street intersections or with a GPS if possible. typical adult sizes listed on this guide to avoid • More photos can be found at www.flmnh.ufl.edu/herpetology/herpetology.htm. confusion when you • Be certain that an animal is a nonnative species before removing it. Warning-most encounter these animals. reptiles will bite or scratch if provoked. Nonnative Lizards NATIVE :- • ,,.., •· t ..... Look-a-Likes . ... ·-tt-..... • •. .. l . 1 '\..\ =- ' . ----.....·~·-· - - ',-<•'-' ' . \:,' . <! •.t'- . ,. '\. Dav id 13,irbsv ~ ·- ~ 9111'.', o:'"' w:' Black and White Tegu 2 to 3 ft. Dark bands with plentiful white dots between them Eastern Fence Lizard 3.5 to 7.5 in. Northern Curly-Tailed Lizard 7 to 10.5 in . Gray to tan with curled tail Florida Scrub Lizard 3.5 to 5.5 in. American Alligator 6 to 9 ft. Nile Monitor 4 to 6 ft.
    [Show full text]
  • Amphibian Identification Guide
    Amphibian Migrations & Road Crossings Amphibian Identification Guide The NYSDEC Hudson River Estuary Program and Cornell University are working with communities to conserve forests, woodland pools, and the wildlife that depend on these critical habitats. This guide is designed to help volunteers of the Amphibian Migrations & Road Crossings Project identify species they observe during spring migrations, when many salamanders and frogs move from forest habitat to woodland pools for breeding. For more information about the project, visit http://www.dec.ny.gov/lands/51925.html. spotted salamander* (Ambystoma maculatum) Black to dark gray body with two rows of yellow spots. Widespread distribution in the Hudson Valley. Total length 5.0-8.0 in. Jefferson/blue-spotted salamander complex* (Ambystoma jeffersonianum x laterale) Brown to grayish black with blue-silver flecking. Less common. Note: Hybridization between Jefferson and blue-spotted salamander has created very variable appearances and individuals may have features of both species. Because even experts have difficulty distinguishing these two species in the field, we consider any sightings to be the ‘complex.’ Total length 3.0-7.5 in. marbled salamander* (Ambystoma opacum) Black or grayish-black body with white or gray crossbars along length of body. Stout body with wide head. Less common. (Breeds in the fall.) Total length 3.5-5.0 in. *Woodland pool breeding species. 0 inches 1 2 3 4 5 6 7 Amphibian Migrations & Road Crossings: Amphibian Identification Guide Page 2 of 4 eastern newt (Notophthalmus viridescens) Terrestrial “red eft” stage of newt (above) is reddish-orange with two rows of reddish spots with black borders.
    [Show full text]
  • Prey Records for the Eastern Indigo Snake {Drymarchon Couperi)
    2010 SOUTHEASTERN NATURALIST 9(1):1-18 Prey Records for the Eastern Indigo Snake {Drymarchon couperi) Dirk J. Stevenson'*, M. Rebecca Bolt^ Daniel J. Smith', Kevin M. Enge^ Natalie L. Hyslop'^ Terry M. Norton'•^ and Karen J. Abstract - Prey items for the federally protected Easteni Indigo Snake (Drymarchort couperi) were compiled from published and gray literature, field observations, necrop- sies, dissection of museum specimens, and personal communications from reliable sources. One hundred and eighty-six records were obtained for 48 different prey spe- cies. Anurans, Gopher Tortoises, snakes, and rodents comprised ca. 85% of the prey items. Most records (n = 143) that mentioned size were from adult indigos; 17 were from juveniles. Prey records were collected from 1940-2008 and were available for all months of the year. These data confirm that Eastern Indigo Snakes eat a wide assortment of prey of varying sizes. This strategy allows D. couperi to potentially forage success- fully in many different types of habitats and under fluctuating environmental conditions, a valuable trait for a lop-level predator that requires a large home range. IatroducHon Drymarchon couperi Holbrook (Eastern Indigo Snake), with a maximum recorded total length of 2629 mm, is one of the largest snakes in North America (Conant and Collins 1991). It has been federally listed as Threat- ened since 1978 under the Endangered Species Act (US Fish and Wildlife Service 1978). Drymarchon couperi is diurnal and mostly terrestrial (Layne and Steiner 1996, US Fish and Wildlife Service 2008). Of the two main hunt- ing strategies employed by snakes (ambush predator vs. active forager; see Mushinsky 1987), D.
    [Show full text]
  • Contributions of Intensively Managed Forests to the Sustainability of Wildlife Communities in the South
    CONTRIBUTIONS OF INTENSIVELY MANAGED FORESTS TO THE SUSTAINABILITY OF WILDLIFE COMMUNITIES IN THE SOUTH T. Bently Wigley1, William M. Baughman, Michael E. Dorcas, John A. Gerwin, J. Whitfield Gibbons, David C. Guynn, Jr., Richard A. Lancia, Yale A. Leiden, Michael S. Mitchell, Kevin R. Russell ABSTRACT Wildlife communities in the South are increasingly influenced by land use changes associated with human population growth and changes in forest management strategies on both public and private lands. Management of industry-owned landscapes typically results in a diverse mixture of habitat types and spatial arrangements that simultaneously offers opportunities to maintain forest cover, address concerns about fragmentation, and provide habitats for a variety of wildlife species. We report here on several recent studies of breeding bird and herpetofaunal communities in industry-managed landscapes in South Carolina. Study landscapes included the 8,100-ha GilesBay/Woodbury Tract, owned and managed by International Paper Company, and 62,363-ha of the Ashley and Edisto Districts, owned and managed by Westvaco Corporation. Breeding birds were sampled in both landscapes from 1995-1999 using point counts, mist netting, nest searching, and territory mapping. A broad survey of herpetofauna was conducted during 1996-1998 across the Giles Bay/Woodbury Tract using a variety of methods, including: searches of natural cover objects, time-constrained searches, drift fences with pitfall traps, coverboards, automated recording systems, minnow traps, and turtle traps. Herpetofaunal communities were sampled more intensively in both landscapes during 1997-1999 in isolated wetland and selected structural classes. The study landscapes supported approximately 70 bird and 72 herpetofaunal species, some of which are of conservation concern.
    [Show full text]
  • Red-Spotted Newt Fact Sheet
    WILDLIFE IN CONNECTICUT WILDLIFE FACT SHEET DENNIS QUINN Eastern Red-spotted Newt Notophthalmus v. viridescens Background and Range The red-spotted newt (also commonly referred to as the eastern newt) is widespread and familiar in many areas of Connecticut. Newts have four distinct life stages: egg, aquatic larvae, terrestrial juvenial (or “eft”), and aquatic adult. Their life cycle is one of the most complex of all the salamanders; starting as an egg, hatching into a larvae with external gills, then migrating to terrestrial habitats as juveniles where gills are replaced with lungs, and returning a few years later to their aquatic habitats as adults which retain their lungs. In Connecticut, the newt is found statewide, but more prominently west of the Connecticut River. The red-spotted newt has many subspecies and an extensive range throughout the United States. Description The adult red-spotted newt has smooth skin that is overall greenish in color, with small black dots scattered on the back and a row of several black-bordered reddish-orange spots on each side of the back. Male newts have black rough patches on the inside of their thighs and on the bottom tip of their hind toes during the breeding season. Adult newts are usually 3 to 5 inches in length. The juvenile, or eft, stage of the red-spotted newt is bright orange in color with small black dots scattered on the back and a row of larger, black-bordered orange spots on each side of the back. The skin is rough and dry compared to the moist and smooth skin of adults and larvae.
    [Show full text]
  • A Safe and Efficient Technique for Handling Siren Spp. and Amphiuma
    Herpetological Review, 2009, 40(2), 169–170. © 2009 by Society for the Study of Amphibians and Reptiles A Safe and Efficient Technique for Handling Siren spp. and Amphiuma spp. in the Field DONALD J. BROWN* and MICHAEL R. J. FORSTNER Department of Biology, Texas State University-San Marcos 601 University Drive, San Marcos, Texas 78666, USA e-mail (MRJF): [email protected] FIG. 1. Siren texana being restrained for measurements using a snake Corresponding author; e-mail: [email protected] tube. Siren spp. and Amphiuma spp. are large eel-like salamanders sary data on a given individual in under ten minutes. A potential distributed throughout the coastal plain of the southeastern United drawback of this method is that the salamanders will never be States (Conant and Collins 1998). Much has been reported on perfectly linear due to the necessity of having enough space to capture methods for these species. Common methods include min- facilitate movement into the tube. However, once an individual is now and crayfish traps (Sorensen 2004), hoop nets (Snodgrass et placed in a given tube, a smaller tube can be inserted at the anterior al. 1999), dip nets (Fauth and Resetarits 1991), and baited hooks end and the salamander can be coerced into it by touching its tail, (Hanlin 1978). Recently, a trap capable of sampling these species resulting in a tighter fit and more accurate measurements. The at depths up to 70 cm was developed (Luhring and Jennison 2008). handling method we used was effective for collecting standard Because of their slippery skin and irritable nature, Siren spp.
    [Show full text]
  • Species Results from Database Search
    Species Results From Database Search Category Reptiles Common Name Alabama Map Turtle Scientific Name Graptemys pulchra LCC Global Trust N No. of States 1 Habitat_Feature Category Reptiles Common Name Black Kingsnake Scientific Name Lampropeltis getula nigra LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Black Racer Scientific Name Coluber constrictor constrictor LCC Global Trust N No. of States 1 Habitat_Feature Category Reptiles Common Name Black Rat Snake Scientific Name Elaphe obsoleta LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Bog turtle Scientific Name Clemmys (Glyptemys) muhlen LCC Global Trust Y No. of States 4 Habitat_Feature Monday, January 28, 2013 Page 1 of 14 Category Reptiles Common Name Broadhead Skink Scientific Name Eumeces laticeps LCC Global Trust N No. of States 5 Habitat_Feature Category Reptiles Common Name Coal Skink Scientific Name Eumeces anthracinus LCC Global Trust Y No. of States 8 Habitat_Feature Category Reptiles Common Name Common Five-lined Skink Scientific Name Eumeces fasciatus LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Common Map Turtle Scientific Name Graptemys geographica LCC Global Trust N No. of States 6 Habitat_Feature Category Reptiles Common Name Common Musk Turtle Scientific Name Sternotherus odoratus LCC Global Trust N No. of States 2 Habitat_Feature Monday, January 28, 2013 Page 2 of 14 Category Reptiles Common Name Common Ribbonsnake Scientific Name Thamnophis sauritus sauritus LCC Global Trust N No. of States 6 Habitat_Feature Category Reptiles Common Name Common Snapping Turtle Scientific Name Chelydra serpentina LCC Global Trust N No. of States 2 Habitat_Feature Category Reptiles Common Name Corn snake Scientific Name Elaphe guttata guttata LCC Global Trust N No.
    [Show full text]
  • Wildlife Habitat Plan
    WILDLIFE HABITAT PLAN City of Novi, Michigan A QUALITY OF LIFE FOR THE 21ST CENTURY WILDLIFE HABITAT PLAN City of Novi, Michigan A QUALIlY OF LIFE FOR THE 21ST CENTURY JUNE 1993 Prepared By: Wildlife Management Services Brandon M. Rogers and Associates, P.C. JCK & Associates, Inc. ii ACKNOWLEDGEMENTS City Council Matthew C. Ouinn, Mayor Hugh C. Crawford, Mayor ProTem Nancy C. Cassis Carol A. Mason Tim Pope Robert D. Schmid Joseph G. Toth Planning Commission Kathleen S. McLallen, * Chairman John P. Balagna, Vice Chairman lodia Richards, Secretary Richard J. Clark Glen Bonaventura Laura J. lorenzo* Robert Mitzel* Timothy Gilberg Robert Taub City Manager Edward F. Kriewall Director of Planning and Community Development James R. Wahl Planning Consultant Team Wildlife Management Services - 640 Starkweather Plymouth, MI. 48170 Kevin Clark, Urban Wildlife Specialist Adrienne Kral, Wildlife Biologist Ashley long, Field Research Assistant Brandon M. Rogers and Associates, P.C. - 20490 Harper Ave. Harper Woods, MI. 48225 Unda C. lemke, RlA, ASLA JCK & Associates, Inc. - 45650 Grand River Ave. Novi, MI. 48374 Susan Tepatti, Water Resources Specialist * Participated with the Planning Consultant Team in developing the study. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS iii PREFACE vii EXECUTIVE SUMMARY viii FRAGMENTATION OF NATURAL RESOURCES " ., , 1 Consequences ............................................ .. 1 Effects Of Forest Fragmentation 2 Edges 2 Reduction of habitat 2 SPECIES SAMPLING TECHNIQUES ................................ .. 3 Methodology 3 Survey Targets ............................................ ., 6 Ranking System ., , 7 Core Reserves . .. 7 Wildlife Movement Corridor .............................. .. 9 FIELD SURVEY RESULTS AND RECOMMENDATIONS , 9 Analysis Results ................................ .. 9 Core Reserves . .. 9 Findings and Recommendations , 9 WALLED LAKE CORE RESERVE - DETAILED STUDy.... .. .... .. .... .. 19 Results and Recommendations ............................... .. 21 GUIDELINES TO ECOLOGICAL LANDSCAPE PLANNING AND WILDLIFE CONSERVATION.
    [Show full text]
  • Hybridization Between Multiple Fence Lizard Lineages in an Ecotone
    Molecular Ecology (2007) 16, 1035–1054 doi: 10.1111/j.1365-294X.2006.03194.x HybridizationBlackwell Publishing Ltd between multiple fence lizard lineages in an ecotone: locally discordant variation in mitochondrial DNA, chromosomes, and morphology ADAM D. LEACHÉ* and CHARLES J. COLE†‡ *Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3160, USA, †Department of Herpetology, American Museum of Natural History, New York, NY 10024-5192, USA Abstract We investigated a hybrid zone between two major lineages of fence lizards (Sceloporus cowlesi and Sceloporus tristichus) in the Sceloporus undulatus species complex in eastern Arizona. This zone occurs in an ecotone between Great Basin Grassland and Conifer Wood- land habitats. We analysed spatial variation in mtDNA (N = 401; 969 bp), chromosomes (N = 217), and morphology (N = 312; 11 characters) to characterize the hybrid zone and assess species limits. A fine-scale population level phylogenetic analysis refined the boundaries between these species and indicated that four nonsister mtDNA clades (three belonging to S. tristichus and one to S. cowlesi) are sympatric at the centre of the zone. Esti- mates of cytonuclear disequilibria in the population closest to the centre of the hybrid zone suggest that the S. tristichus clades are randomly mating, but that the S. cowlesi haplotype has a significant nonrandom association with nuclear alleles. Maximum-likelihood cline- fitting analyses suggest that the karyotype, morphology, and dorsal colour pattern clines are all coincident, but the mtDNA cline is skewed significantly to the south. A temporal comparison of cline centres utilizing karyotype data collected in the early 1970s and in 2002 suggests that the cline may have shifted by approximately 1.5 km to the north over a 30-year period.
    [Show full text]
  • Checklist Reptile and Amphibian
    To report sightings, contact: Natural Resources Coordinator 980-314-1119 www.parkandrec.com REPTILE AND AMPHIBIAN CHECKLIST Mecklenburg County, NC: 66 species Mole Salamanders ☐ Pickerel Frog ☐ Ground Skink (Scincella lateralis) ☐ Spotted Salamander (Rana (Lithobates) palustris) Whiptails (Ambystoma maculatum) ☐ Southern Leopard Frog ☐ Six-lined Racerunner ☐ Marbled Salamander (Rana (Lithobates) sphenocephala (Aspidoscelis sexlineata) (Ambystoma opacum) (sphenocephalus)) Nonvenomous Snakes Lungless Salamanders Snapping Turtles ☐ Eastern Worm Snake ☐ Dusky Salamander (Desmognathus fuscus) ☐ Common Snapping Turtle (Carphophis amoenus) ☐ Southern Two-lined Salamander (Chelydra serpentina) ☐ Scarlet Snake1 (Cemophora coccinea) (Eurycea cirrigera) Box and Water Turtles ☐ Black Racer (Coluber constrictor) ☐ Three-lined Salamander ☐ Northern Painted Turtle ☐ Ring-necked Snake (Eurycea guttolineata) (Chrysemys picta) (Diadophis punctatus) ☐ Spring Salamander ☐ Spotted Turtle2, 6 (Clemmys guttata) ☐ Corn Snake (Pantherophis guttatus) (Gyrinophilus porphyriticus) ☐ River Cooter (Pseudemys concinna) ☐ Rat Snake (Pantherophis alleghaniensis) ☐ Slimy Salamander (Plethodon glutinosus) ☐ Eastern Box Turtle (Terrapene carolina) ☐ Eastern Hognose Snake ☐ Mud Salamander (Pseudotriton montanus) ☐ Yellow-bellied Slider (Trachemys scripta) (Heterodon platirhinos) ☐ Red Salamander (Pseudotriton ruber) ☐ Red-eared Slider3 ☐ Mole Kingsnake Newts (Trachemys scripta elegans) (Lampropeltis calligaster) ☐ Red-spotted Newt Mud and Musk Turtles ☐ Eastern Kingsnake
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Snakes of the Everglades Agricultural Area1 Michelle L
    CIR1462 Snakes of the Everglades Agricultural Area1 Michelle L. Casler, Elise V. Pearlstine, Frank J. Mazzotti, and Kenneth L. Krysko2 Background snakes are often escapees or are released deliberately and illegally by owners who can no longer care for them. Snakes are members of the vertebrate order Squamata However, there has been no documentation of these snakes (suborder Serpentes) and are most closely related to lizards breeding in the EAA (Tennant 1997). (suborder Sauria). All snakes are legless and have elongated trunks. They can be found in a variety of habitats and are able to climb trees; swim through streams, lakes, or oceans; Benefits of Snakes and move across sand or through leaf litter in a forest. Snakes are an important part of the environment and play Often secretive, they rely on scent rather than vision for a role in keeping the balance of nature. They aid in the social and predatory behaviors. A snake’s skull is highly control of rodents and invertebrates. Also, some snakes modified and has a great degree of flexibility, called cranial prey on other snakes. The Florida kingsnake (Lampropeltis kinesis, that allows it to swallow prey much larger than its getula floridana), for example, prefers snakes as prey and head. will even eat venomous species. Snakes also provide a food source for other animals such as birds and alligators. Of the 45 snake species (70 subspecies) that occur through- out Florida, 23 may be found in the Everglades Agricultural Snake Conservation Area (EAA). Of the 23, only four are venomous. The venomous species that may occur in the EAA are the coral Loss of habitat is the most significant problem facing many snake (Micrurus fulvius fulvius), Florida cottonmouth wildlife species in Florida, snakes included.
    [Show full text]