Nov. 9, 1943. E

Total Page:16

File Type:pdf, Size:1020Kb

Nov. 9, 1943. E Nov. 9, 1943. E. w. RIBLETT 2,334,033 PRODUCTION OF ALKYL HALIDES Filed July 50,­ 1940 ÈHÑL W R/BLETÍ.' INVENTOR BY LA Í# »Q ATTORNEY. Patented Nov. 9, 1943 42,334,033 UNITED STATES PATENT OFFICE 2,334,033 _PRODUCTION 0F~ ALKYL HALIDES Earl W. Rîblett, Tenañy, N. J., assignor to Process Management Company, Inc., of Wilmington, Del., a corporation of Delaware Application July 30, 1940, Serial No. 348,598 9 Claims. (Cl. 260-662) This invention relates to improvements in the cycled to the catalytic conversion zone and the production of alkyl halides. More particularly, >remaining minor proportion is recycled to the the invention relates to the reaction of chlorine thermal conversion zone. In dividing this mix or bromine with certain low molecular weight ture for recycling it is advantageous to recycle aliphatic hydrocarbons to effect conversion to the catalytic conversion operation a quantity thereof to the corresponding alkyl halides. Still of the mixture containing ra, volume of hydrogen more particularly, the invention relates to the chloride equal to the volume of chlorine charged improvements in the reaction of chlorine and to the thermal conversion operation. The re methane to produce methyl chloride. maining minor proportion of this mixture may In the improved process of the present inven 10 then be recycled to the thermal conversion zone tion, chlorine (or bromine) is reacted with a low to assist in maintaining in that zone the excess of molecular weight aliphatic hydrocarbon, such as methane which should be maintained in rela methane, in a combination of steps whereby con- ` tion to the quantity of chlorine charged thereto. version of the halogen and hydrocarbon react In accordance with a second modification of ants to alkyl halides is effected under conditions the invention, the conversion products of the of maximum efficiency, In the further explana thermal and catalytic conversion zones are sepa tion of the invention the reactants will be re rately fractionated. In accordance with this ferred to as chlorine and methane but it is to be modification the products of the thermal con understood that reference to these specific re version treatment are fractionated to separate agents is merely for purposes of simplicity. In 20 methyl chloride and all of the remaining mixture stead of chlorine, bromine may be employed, and of unconverted methane and hydrogen chloride low molecular weight aliphatic hydrocarbons is passed 4to the catalytic conversion treatment other than methane may be employed, such as as the charge therefor in admixture with oxygen ethane. ' from an external source. The product from the In accordance with the new process the re 25 catalytic conversion zone is then separately frac action is carried out in two separate zones. In tionated to remove water and methyl chloride one zone, chlorine and an excess of methane and the remaining unconverted methane is re are reacted at a relatively high temperature and cycled in its entirety to the thermal conversion for a relatively short time to eñect thermal con zone. version of the chlorine to methyl chloride and 30 The first modification of the invention de hydrogen chloride. These products are frac scribed-above is preferable in view of the fact tionated to separate the methyl chloride. The that the separate fractionation treatments in the hydrogen chloride and the unconverted methane second modification require more extensive equip are reacted in another conversion zone wherein ment and involve more complicated operations, methane, hydrogen chloride and oxygen are re 35 which render it less desirable from an economic acted in the presence of a suitable catalyst at a point of view­ Furthermore, the presence of hy- v relatively lower temperature and for a substan drogen chloride in the charge to the thermal con tially longer reaction time to eiîect conversion version zone appears to assist the reaction of the hydrogen chloride and a portion of the therein. methane to methyl chloride and water. Uncon 40 The invention will be described in more detail verted methane from this catalytic conversion by a reference to specific modifications which zone may be separated and recycled to the ther are illustrated in the flow diagram shown in the mal conversion zone for reaction with fresh sup accompanying drawing. The specific modifica plies of chlorine. tions illustrated in the drawing will be referred In accordance with one modification of the in 45 to for purposes of illustration, but it is under vention the products of both the thermal and stood that the invention is not limited by refer the catalytic conversion treatments, after re ence to such specific modifications but is capable moval of water produced in the catalytic con 4 of other modifications which may be beyond the version treatment, are fractionated in a single scope of the iiow diagram shown in the drawing. zone to separate the methyl chloride produced in 50 In the drawing the apparatus shown diagram the two conversion zones as the product of the matically includes a thermal conversion zone I process. The remaining mixture of unconverted and a catalytic conversion zone 2. The products methane and hydrogen chloride is then recycled of these conversion zones preferably are frac in part to each of the conversion zones. Pref tionated together in fractionator 3. A fraction erably a major­ proportion of this mixture is re 56 ator 4 or other suitable separating means is pro 2 2,834,033 . - vided for separating water from the product of the entrance of catalytic conversion zone 2, catalytic conversion zone 2. A third fraotionator through line I5, an amount of this mixture of E may be provided in order to effect fractionation reagents which contains a. volume of hydrogen of the products from the thermal conversion zone chloride equal to the volume of chlorine intro 2 in a zone separate from that in which frac duced through line 0. ~ tionation of the products of thermal conversion The portion of the mixture of methane and zone I is carried out. hydrogen chloride to be charged to the catalytic In the operation of the preferred modifica conversion zone 2 is transferred thereto by means tion of the invention. chlorine is introduced into of a pump I8 located in line I5. Oxygen is in thermal conversion zone I through line 6 pro 10 troduced into catalytic conversion zone 2 through vided with a pump 1. Methane is introduced into line I9 provided with pump 20 for reaction with the process through line 8 which connects with methane and hydrogen chloride in zone 2. line 9. In line 9 the methane introduced through In catalytic conversion zone 2 the reactants line 8 is mixed with additional methane, and ac­­ are subjected to the action of a suitable catalyst companying hydrogen chloride, being recycled to 15. at a temperature of 600•1000° F., preferably about thermal conversion zone I. Line 9 is provided 800° F. for a time suflicient to provide a react-ion with a pump I0 by means of which the methane time of the order of 20 to 100 seconds, prefer and accompanying hydrogen chloride are passed ably approximately 50 seconds, for the produc to the entrance of thermal conversion zone I. tion of methyl chloride. Under these conditions In thermal conversion zone I the reactants 20 there is effected almost complete conversion of are subjected to a high temperature in the range the hydrogen chloride largely to methyl chloride of 1000-1800° F. When the object is to produce and water by reaction thereof with oxygen and methyl chloride as the major product a tem methane. , perature of about 1500“ F. and a contact time of Catalysts suitable for use in conversion zone 2 the order of 0.01 second is preferable. It has 25 include a wide variety of mixed metallic oxides been found possible to use a lower temperature and chlorides, preferably on porous supports. and a longer time to eiïect the conversion but Among the metals found suitable are titanium. this has usually resulted in higher yields of sec zirconium, cerium, thorium, copper and silver. ondary, tertiary, and quarternary chlorinated Eflicacious supports are kieselguhr, silica gel, ac products at the expense of a decreased yield of 30 tivated alumina,alumina gel and pumice. From methyl chloride. Carbon tetrachloride or either an economic standpoint, the combinations of of the other two intermediate chlorinated prod cerium and pumice and of copper and pumice ucts may be made the chief product by suitable are preferable and may be made by simply soak selection of time of contact and temperature to ing the pumice in a solution of the metal chlo gether with an increased amount of chlorine rel 35 rides or agitating the pumice with a partially ative to methane. precipitated metallic salt and hydroxide suspen Under the conditions specified, 1500” F. and sion, followed by drying. 0.01 second time of contact, practically complete The reaction products are withdrawn from conversion of the chlorine to methyl chloride and catalytic conversion zone 2 through line 2| and hydrogen chloride is effected. The hot reaction 40 after suitable cooling, for example, by contact products are withdrawn from thermal conversion with the incoming charge in heat exchanger zone I through line II and are cooled, for ex 22, are introduced into fractionator 4 or other ample, by passage through heat exchanger I2 suitable means for effecting separation of water wherein they contact indirectly the incoming from the reaction products. .In fractionator 4 fresh feed to the reaction, and by other suitable ' water is condensed and separated and may be cooling means not shown, to effect condensation withdrawn therefrom through line 23.
Recommended publications
  • An Investigation of the Crystal Growth of Heavy Sulfides in Supercritical
    AN ABSTRACT OF THE THESIS OF LEROY CRAWFORD LEWIS for the Ph. D. (Name) (Degree) in CHEMISTRY presented on (Major) (Date) Title: AN INVESTIGATION OF THE CRYSTAL GROWTH OF HEAVY SULFIDES IN SUPERCRITICAL HYDROGEN SULFIDE Abstract approved Redacted for privacy Dr. WilliarriIJ. Fredericks Solubility studies on the heavy metal sulfides in liquid hydrogen sulfide at room temperature were carried out using the isopiestic method. The results were compared with earlier work and with a theoretical result based on Raoult's Law. A relative order for the solubilities of sulfur and the sulfides of tin, lead, mercury, iron, zinc, antimony, arsenic, silver, and cadmium was determined and found to agree with the theoretical result. Hydrogen sulfide is a strong enough oxidizing agent to oxidize stannous sulfide to stannic sulfide in neutral or basic solution (with triethylamine added). In basic solution antimony trisulfide is oxi- dized to antimony pentasulfide. In basic solution cadmium sulfide apparently forms a bisulfide complex in which three moles of bisul- fide ion are bonded to one mole of cadmium sulfide. Measurements were made extending the range over which the volumetric properties of hydrogen sulfide have been investigated to 220 °C and 2000 atm. A virial expression in density was used to represent the data. Good agreement, over the entire range investi- gated, between the virial expressions, earlier work, and the theorem of corresponding states was found. Electrical measurements were made on supercritical hydro- gen sulfide over the density range of 10 -24 moles per liter and at temperatures from the critical temperature to 220 °C. Dielectric constant measurements were represented by a dielectric virial ex- pression.
    [Show full text]
  • United States Patent Office 2,807,613
    United States Patent Office 2,807,613 Patented Sept. 24, 1957 s s 2 2,807,613 nol, where it may exist in the form of a hemiformal, or PREPARATION OF 6-METHYL-6-PHENYLTETRA of a revertible polymer. Usually formaldehyde is used in HYDRO-1,3-OXAZINES excess based on molar proportions referred to the a Claude 5. Schmide, Moorestown, and Richard C. Maas 5 methylstyrene, proportions from about 1.5:1 to 5:1 being field, Haddon afield, N. J., assignors to Rohm & Hiaas practical. Of course, with less than a 2:1 proportion Company, Philadelphia, Pa., a corporatica of Delaware unreacted starting materials may be present in the react ing mixture, Preferred proportions are from 2:1 to 4:1. No Drawing. Application April 3, 1955, Ammonia may be supplied as a gas or as an aqueous Serial No. 577,944 solution or in the form of ammonium chloride or bromide. 7 Claims. (C. 260-244) 0 Of course, if ammonia or ammonium hydroxide is used, This invention deals with a method for improving yields it will react with the hydrochloric or hydrobromic acid of 6-methyl-6-phenyltetrahydro-1,3-oxazines when made which is added as catalyst. The same final result is ob from an O-methylstyrene, formaldehyde, and ammonia. tained by use of the preformed ammonium halide, which In United States Patent 2,647,117, there is described 5 Supplies both the ammonia and the catalyst. The amount the reaction of olefins, including c-methylstyrene, with of ammonia or ammonium compound is usually at least ammonia and formaldehyde in the presence of hydrogen equivalent to the c-methylstyrene and may be in consid -chloride as a catalyst.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,56,31 METHOD of REDUCING and by DRO GENATING CHEMICA, COMPOUNDS by REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E
    Patented Nov. 27, 1951 2,576,31 UNITED STATES PATENT OFFICE 2,56,31 METHOD OF REDUCING AND BY DRO GENATING CHEMICA, COMPOUNDS BY REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E. Schlesirager and Albert E. Finholt, Chicago, Ill.; said Schlesinger assignor of one fourth to. Edaa, M. Schlesinger and said Fin holt assignor of one-fourth to Marion H. Finholt No Drawing. Application June 3, 1947, Serial No. 752,286 2 (Cairns. (C. 260-638) 2 This invention relates to methods of making LiAlH4. Although this new compound will be aluminum-containing hydrides and the reactions called lithium aluminum hydride in the present thereof, and also relates to products prepared by application, it may also be called lithium alumi said methods. nohydride or lithium tetrahydroaluminide. In This application is a continuation-in-part of one method of making lithium aluminum hydride, our copending application Serial No. 717,312, filed lithium hydride is reacted with an aluminum December 19, 1946, now Patent No. 2,567,972, halide such as aluminum chloride in the presence issued September 18, 1951. of a suitable liquid medium such as an ether. If We have discovered that these compounds, es the reagents are mixed in the proportions of the pecially the ether soluble lithium aluminum hy 0 following equation, or if an excess of lithium hy dride, are extremely useful chemical reagents. dride is used, the reaction proceeds as follows: - They may be employed for replacing halogens or Organic radicals by hydrogen in a great variety 4Li H--AlCl3->LiAlH4--3LiCl of compounds. As a result, their discovery has led to new methods, safer, more convenient, and 16 The liquid medium used is one in which one of more efficient than those hitherto known, for pro the reaction products, e.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Electrophilic Addition Reactions.Pdf
    Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C≡C into a range of important functional groups. Conceptually, addition is the reverse of elimination What does the term "electrophilic addition" imply ? A electrophile, E+, is an electron poor species that will react with an electron rich species (the C=C) An addition implies that two systems combine to a single entity. Depending on the relative timing of these events, slightly different mechanisms are possible: • Reaction of the C=C with E+ to give a carbocation (or another cationic intermediate) that then reacts with a Nu- • Simultaneous formation of the two σ bonds The following pointers may aid your understanding of these reactions: • Recognise the electrophile present in the reagent combination • The electrophile adds first to the alkene, dictating the regioselectivity. • If the reaction proceeds via a planar carbocation, the reaction is not stereoselective • If the two new σ bonds form at the same time from the same species, then syn addition is observed • If the two new σ bonds form at different times from different species, then anti addition is observed Hydrogenation of Alkenes Reaction Type: Electrophilic Addition Summary • Alkenes can be reduced to alkanes with H2 in the presence of metal catalysts such as Pt, Pd, Ni or Rh. • The two new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface. • The reaction is stereospecific giving only the syn addition product. • This reaction forms the basis of experimental "heats of hydrogenation" which can be used to establish the stability of isomeric alkenes.
    [Show full text]
  • ORGANIC CHEMISTRY SC-106.Pdf
    1. Structure, Bonding and Mechanism in Organic Reactions 1 Ol'l 2. Stereochemistry of Organic Compound ' - 27 ' 3. Alkynes and Cycloalkynes 43 4. Alkenes and Alkynes 58 5. Arenes and Aromaticity 76 6. Aryl Halides 117 7. Aryl Aldehydes and Ketones 137 ; 'I Syllabus B. Sc. (Part I) Chemistry CHEMISTRY-1: Organic Chemistry SC-106 UNTT-I: STRUCTURE AND BONDING AND MECHANISM OF ORGANIC REACTIONS Hybridization, bond lengths and bond angles, bond energy, vander Waals interactions, resonance, inductive and electrometric effects, hydrogen bonding, homolytic and heterolytic bond breaking. Types of reagents-electrophiles and nucleophiles. UNIT-II: STEREOCHEMISTRY OF ORGANIC COMPOUNDS Concept of isomerism. Types of isomerism Optical isomerism elements of symmetry, molecular chirality, enantiomers, optical activity, diastereomers, meso compounds, recemization. Relative and absolute configurations, D & L and R & S system of nomenclature. Geometrical isomerism determination of configuration of geometrical isomers. E & Z system of nomenclature. I UNTT-m : ALKANES AND CYCLOALKANES lUPAC noraenclatureVf branched and unbranched alkanes, the alkyl group, classification of carbon atoms in alkanes, method of formation (with special reference to Wurtz reaction. Kolbe reaction, decarboxylation of carboxylic acids). Physical properties and chemical reactions of alkanes. = Cycloalkanes Nomenclature, methods of formation, chemical reactions, Baeyer's strain theory and its limitations. UNIT-IV: ALKENES AND ALKYNES Nomenclature of alkenes, method of formation, mechanisms
    [Show full text]
  • NHC-Supported Mixed Halohydrides of Aluminium and Related Studies
    NHC-supported mixed halohydrides of aluminium and related studies A thesis submitted towards the degree of Doctor of Philosophy Sean Geoffrey Alexander November 2011 Table of Contents Abstract .........................................................................................................................................iv Declaration .....................................................................................................................................v Acknowledgements .......................................................................................................................vi Chapter 1: General Introduction .................................................................................................1 1.1 Group 13 chemistry ........................................................................................................ 1 1.2 Trihydrides of aluminium and gallium........................................................................... 3 1.2.1 Background............................................................................................................. 3 1.2.2 The thermodynamics of alane and gallane ............................................................. 4 1.2.3 Structural trends in aluminium and gallium hydride complexes............................ 5 1.3 Lewis base adducts of alane and gallane........................................................................ 6 1.4 Aluminium and gallium trihalides.................................................................................
    [Show full text]
  • Class 556 Organic Compounds -- Part of the Class 532-570 Series 556 - 1
    CLASS 556 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 556 - 1 18 ...Plural phosphori bonded This Class 556 is considered to be an directly to the same carbon or integral part of Class 260 (see the Class attached to each other by an 260 schedule for the position of this acyclic chain which chain Class in schedule hierarchy). This Class consists of carbons or of retains all pertinent definitions and carbons and chalcogens class lines of Class 260. 19 ...Carbon bonded directly to the phosphorus 20 ....Plural carbons bonded directly to the phosphorus ORGANIC COMPOUNDS (CLASS 532, 21 .....Exactly three carbons bonded SUBCLASS 1) directly to the phosphorus 1 .HEAVY METAL CONTAINING (e.g., (e.g., triphenylphosphines, Ga, In or T1, etc.) etc.) 2 ..With preservative or stabilizer 22 ......And carbon bonded directly 3 ...Compound preserved or to the heavy metal stabilized contains lead 23 ......Hydrogen or halogen bonded bonded directly to carbon directly to the heavy metal 4 ....Halogen containing 24 ...Exactly four chalcogens bonded preservative or stabilizer directly to the phosphorus 5 ....Chalcogen containing (e.g., phosphates, orthophosphates, etc.) preservative or stabilizer ....At least two of the 6 ...Nitrogen containing 25 chalcogens are sulfur (e.g., preservative or stabilizer zinc dihydrocarbyl 7 ..Boron containing dithiophosphates, etc.) 8 ...Hydrogen bonded directly to 26 ....Nitrogen or -C(=X)­ the boron containing, wherein X is 9 ..Silicon containing chalcogen 10 ...Silicon and heavy metal bonded 27 ..Aluminum containing
    [Show full text]
  • Intermolecular Interaction in Methylene Halide (CH2F2, Ch2cl2, Ch2br2 and CH2I2) Dimers
    molecules Article Intermolecular Interaction in Methylene Halide (CH2F2, CH2Cl2, CH2Br2 and CH2I2) Dimers László Almásy 1,2,* ID and Attila Bende 3,* ID 1 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 2 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly Thege út 29-33, 1121 Budapest, Hungary 3 Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania * Correspondence: [email protected] (L.A.); [email protected] (A.B.) Academic Editors: Igor Reva and Xuefeng Wang Received: 27 April 2019; Accepted: 1 May 2019; Published: 10 May 2019 Abstract: The intermolecular interaction in difluoromethane, dichloromethane, dibromomethane, and diiodomethane dimers has been investigated using high level quantum chemical methods. The potential energy curve of intermolecular interaction along the C··· C bond distance obtained using the coupled-cluster theory with singles, doubles, and perturbative triples excitations CCSD(T) were compared with values given by the same method, but applying the local (LCCSD(T)) and the explicitly correlated (CCSD(T)-F12) approximations. The accuracy of other theoretical methods—Hartree–Fock (HF), second order Møller–Plesset perturbation (MP2), and dispersion corrected DFT theory—were also presented. In the case of MP2 level, the canonical and the local-correlation cases combined with the density-fitting technique (DF-LMP2)theories were considered, while for the dispersion-corrected DFT, the empirically-corrected BLYP-D and the M06-2Xexchange-correlation functionals were applied. In all cases, the aug-cc-pVTZ basis set was used, and the results were corrected for the basis set superposition error (BSSE) using the counterpoise method.
    [Show full text]
  • A Kinetic Study of the Reaction of Diols with Hydrogen Halides 49
    A KINETIC STUDY OF THE REACTION OF DIOLS WlTH HYDROGEN HALIDES BY P. S, RADHAKRISHNAMURTIAND T. P. VISVANATHAN (Dr of Chemiatry, Khallikote College, Berhampur-Ganjam, Orissa~ India) Recr August 12, 1968 (Communicatr by Prof. S. V. Anantakrishnan, F.A.Se., F.N.I.) ABSTRACT The kinetics of th~ reaction of diols with vmious hydrogen halides is discmsed. The teaetioa ktvolves ndghbouring group participation as postulated earlier, the rate of substitution being faster fora heavier nueleophile. The reaetions are inert in aqueous systems as the X- nucleo- philicity becomes negligible as compared to the nucleophilicity of water. At and above 7.5 per eent. water these reactions do not oecur. Varia- tioa of dielectric constant also notably a#fects the process. INTRODUCTION IN our previous communieation1 we reported the kineties of this reaction with HBr and postulated that this reaction involves anchimeric assistance by the Hydroxyl group. Ir was found worthwhile to study the action of other hydrogen halides on diols. We report here certain interesting features of this reaction. EXPERIMENTAL Materials.DAll the substrates used were obtained from Fluka and checked for purity by the usual procedure. The hydrogen halides used were freshly digtiIlod azeotropic mixtarr The solvent, glacial acr acid, was purified by the usual procedure and redistilled br use. l(.inetic method.--The kinetics were followed by the procedure de- scribed r~arlier,a RESULTS AND DtSOJSSION The second ord~r tate constant,5_ ar ,ummarized in T~bles I Ÿ II. A referente to these tables shows that the reaction is fastest with hydriodie 47 48 P.S.
    [Show full text]
  • A Review of Methane Activation Reactions by Halogenation: Catalysis, Mechanism, Kinetics, Modeling, and Reactors
    processes Review A Review of Methane Activation Reactions by Halogenation: Catalysis, Mechanism, Kinetics, Modeling, and Reactors David Bajec , Matic Grom, Damjan LašiˇcJurkovi´c , Andrii Kostyniuk , Matej Huš , Miha Grilc , Blaž Likozar and Andrej Pohar * Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; [email protected] (D.B.); [email protected] (M.G.); [email protected] (D.L.J.); [email protected] (A.K.); [email protected] (M.H.); [email protected] (M.G.); [email protected] (B.L.) * Correspondence: [email protected]; Tel.: +386-1-4760-285 Received: 10 March 2020; Accepted: 6 April 2020; Published: 9 April 2020 Abstract: Methane is the central component of natural gas, which is globally one of the most abundant feedstocks. Due to its strong C–H bond, methane activation is difficult, and its conversion into value-added chemicals and fuels has therefore been the pot of gold in the industry and academia for many years. Industrially, halogenation of methane is one of the most promising methane conversion routes, which is why this paper presents a comprehensive review of the literature on methane activation by halogenation. Homogeneous gas phase reactions and their pertinent reaction mechanisms and kinetics are presented as well as microkinetic models for methane reaction with chlorine, bromine, and iodine. The catalysts for non-oxidative and oxidative catalytic halogenation were reviewed for their activity and selectivity as well as their catalytic action. The highly reactive products of methane halogenation reactions are often converted to other chemicals in the same process, and these multi-step processes were reviewed in a separate section.
    [Show full text]
  • United States Patent Office Patented Sept
    3,271,380 United States Patent Office Patented Sept. 6, 1966 2 move catalyst residues without inhibition of the removal PROCESS FOR CATALYSTRESIDUE327380 REMOVAL by undesirable hydrogen halides. Richard E. Dietz, Bartlesville, Okla., assignor to Phillips Other objects, aspects and the several advantages of the Petroleum Company, a corporation of Delaware invention will be apparent to those skilled in the art in No Drawing. Filed Apr. 1, 1963, Ser. No. 269,769 view of the following disclosure and the appended claims. 15 Claims. (C. 260-93.7) In accordance with the presence invention, I have now discovered that a major portion of the metallic catalyst This invention relates to the removal of catalyst resi residues contained in olefin polymers can be removed dues from polymers. In one aspect, this invention by treatment with (a) a halogen-containing epoxide hav relates to the removal of catalyst residues by utilizing a ing the general formula halogenated epoxide treatment of a polymer. In another O aspect, this invention relates to the removal of catalyst / N residues by utilizing a combination of a halogenated ep R-g-g-R oxide and a dicarbonyl compound as a treating agent for ly R the polymer. A further aspect of this invention relates 15 wherein R and R' are selected from the group consisting to the removal of catalyst residues by utilizing a combina of hydrogen and the nonsubstituted, epoxy-substituted, tion of a halogenated epoxide and a solid adsorbent bed and halogen-substituted alkyl, cycloalkyl, aryl, alkyl treatment of a polymer. A still further aspect of this cycloalkyl, cycloalkylalkyl, alkaryl, aralkyl, cycloalkyl invention relates to the removal of catalyst residues by aryl, and arylcycloalkyl radicals; R and R' can be joined utilizing a combination of a halogenated epoxide, a di 20 to form carbocyclic groups; and the molecule contains 2 carbonyl compound and a sorbent bed treatment of the to 20 carbon atoms, 1 to 3 halogen atoms, and 1 to 3 oxy polymer.
    [Show full text]