Class 556 Organic Compounds -- Part of the Class 532-570 Series 556 - 1

Total Page:16

File Type:pdf, Size:1020Kb

Class 556 Organic Compounds -- Part of the Class 532-570 Series 556 - 1 CLASS 556 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 556 - 1 18 ...Plural phosphori bonded This Class 556 is considered to be an directly to the same carbon or integral part of Class 260 (see the Class attached to each other by an 260 schedule for the position of this acyclic chain which chain Class in schedule hierarchy). This Class consists of carbons or of retains all pertinent definitions and carbons and chalcogens class lines of Class 260. 19 ...Carbon bonded directly to the phosphorus 20 ....Plural carbons bonded directly to the phosphorus ORGANIC COMPOUNDS (CLASS 532, 21 .....Exactly three carbons bonded SUBCLASS 1) directly to the phosphorus 1 .HEAVY METAL CONTAINING (e.g., (e.g., triphenylphosphines, Ga, In or T1, etc.) etc.) 2 ..With preservative or stabilizer 22 ......And carbon bonded directly 3 ...Compound preserved or to the heavy metal stabilized contains lead 23 ......Hydrogen or halogen bonded bonded directly to carbon directly to the heavy metal 4 ....Halogen containing 24 ...Exactly four chalcogens bonded preservative or stabilizer directly to the phosphorus 5 ....Chalcogen containing (e.g., phosphates, orthophosphates, etc.) preservative or stabilizer ....At least two of the 6 ...Nitrogen containing 25 chalcogens are sulfur (e.g., preservative or stabilizer zinc dihydrocarbyl 7 ..Boron containing dithiophosphates, etc.) 8 ...Hydrogen bonded directly to 26 ....Nitrogen or -C(=X)­ the boron containing, wherein X is 9 ..Silicon containing chalcogen 10 ...Silicon and heavy metal bonded 27 ..Aluminum containing directly to the same chalcogen 28 ..Plural diverse heavy metals 11 ...Heavy metal bonded directly to containing unsaturated five-membered 29 ...Heavy metal double bonded carbocyclic ring directly to heavy metal 12 ...At least three carbons bonded 30 ...Arsenic, antimony, or bismuth directly to silicon containing (As, Sb, or Bi) 13 ..Phosphorus containing 31 ...Containing -C(=X)-, wherein X 14 ...Additional diverse heavy metal is chalcogen (e.g., carbonyl or aluminum containing containing, etc.) 15 ...The heavy metal is bonded 32 ..Nitrogen double bonded directly directly to the carbon of a - to carbon C(=X)- group, wherein X is 33 ...Carbocyclic ring bonded chalcogen (e.g., directly to the nitrogen cyclopentadienyl manganese (e.g., azomethines, etc.) dicarbonyl triphenyl phosphine, etc.) 34 ....Additonal carbon double bonded to nitrogen (e.g., 16 ....Iron, cobalt, nickel, bisazomethines, etc.) ruthenium, rhodium, palladium, osmium, iridium, or platinum 35 ...Additional nitrogen bonded containing (Fe, Co, Ni, Ru, directly to the carbon or Rh, Pd, Os, Ir or Pt) nitrogen 17 ...Plural phosphori bonded 36 ....Guanidines directly to the same nitrogen 37 ...Chalcogen bonded directly to or chalcogen (e.g., the carbon or nitrogen (e.g., pyrophosphates, etc.) oximes, etc.) October 2004 556 - 2 CLASS 556 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 38 ..Nitrogen and plural sulfurs 51 ..Titanium, zirconium, or hafnium bonded directly to the same containing (Ti, Zr, or Hf) carbon (e.g., thiocarbamates, 52 ...Carbon bonded directly to the etc.) metal 39 ...Plural nitrogens bonded 53 ....Plural unsaturated 5-membered directly to the same carbon or carbocyclic rings bonded attached to each other by a directly to the metal chain consisting of carbons, 54 ...Plural chalcogens bonded which carbons may be part of a directly to the metal (e.g., ring (e.g., ethylene bis­ alkyl titanates, titanic dithiocarbamates, etc.) esters, etc.) 40 ..Plural -C(=X)- groups, wherein 55 ....Containing -C(=X)X-, wherein X is chalcogen, bonded the X's are the same or directly to the same non­ diverse chalcogens benzenoid carbons, or the 56 ....Nitrogen or halogen enolate thereof. (e.g., beta­ containing diketone chelates, 57 ..Chromium, molybdenum, or acetylacetonates, etc.) tungsten containing (Cr, Mo, 41 ...Carbon or halogen bonded or directly to the metal 58 ...Carbon bonded directly to the 42 ..Vanadium, niobium, or tantalum metal containing (V, Nb, or Ta) 59 ....Chalcogen double bonded 43 ...Carbon bonded directly to the directly to the carbon (e.g., metal (e.g., cyclopentadienyl molybdenum pentacarbonyls, vanadium tetracarbonyl, etc.) etc.) 44 ...The metal is bonded directly 60 .....Carbocyclic ring bonded to X of a -C(=X)X- group, directly to the metal wherein the X's are the same 61 ...Containing -C(=X)X-, wherein or diverse chalcogens (e.g., the X's are the same or vanadyl xanthate, etc.) diverse chalcogens 45 ..Manganese or rhenium containing 62 ....The carbons of plural - (Mn or Re) C(X=)X- groups, are bonded 46 ...Carbon bonded directly to the directly to each other, to the metal (e.g., ethyl same acyclic carbon, (e.g., thiomanganese tricarbonyl, chromium oxalates, etc.) etc.) 63 ....Nitrogen or halogen 47 ....The metal is bonded directly containing to an unsaturated 5-membered 64 ..Arsenic, antimony, or bismuth carbocyclic ring and to at containing (As, Sb, or Bi) least three -C(=X)- groups, 65 ...Arsenic double bonded directly wherein X is chalcogen (e.g., to arsenic (e.g., cyclopentadienyl manganese arsenobenzenes, etc.) tricarbonyl, indenyl manganese 66 ....Containing two benzene rings tricarbonyl, etc.) each having nitrogen, 48 .....Chalcogen or -C(=X)-, chalcogen and one of the wherein X is chalcogen, bonded arsenics bonded directly directly to the unsaturated 5- thereto (e.g., arsphenamines, membered carbocyclic ring etc.) 49 ...The metal is bonded directly 67 .....Sulfur double bonded to X of a -C(=X)X- group, directly to chalcogen (e.g., wherein the X's are the same neoarsphenamines, etc.) or diverse chalcogens (e.g., manganese acetate, etc.) 50 ....Nitrogen containing October 2004 CLASS 556 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 556 - 3 68 ...Tricyclo ring system having a 84 ....Exactly three carbons bonded six-membered ring, which directly to each of the metals includes heavy metal and (e.g., bis tributyl tin nitrogen or chalcogen, as one oxides, etc.) of the cyclos (e.g., 85 ...Sulfur double bonded directly phenoxarsines, phenarsazines, to chalcogen etc.) 86 ....Exactly three carbons bonded 69 ...Sulfur double bonded directly directly to the metal to chalcogen 87 ...Carbon bonded directly to the 70 ...Carbon bonded directly to the metal metal 88 ....Chalcogen bonded directly to 71 ....Chalcogen bonded directly to the metal the metal (e.g., arsine 89 .....Plural chalcogens bonded oxides, etc.) directly to the metal 72 .....Plural chalcogens bonded 90 ......At least one of the directly to the metal chalcogens is part of a - 73 ......Exactly three chalcogens C(=X)X- group, wherein the X's bonded directly to the metal are the same or diverse (e.g., arsonic acids, chalcogens arsonates, etc.) 91 .......Sulfur containing (e.g., 74 .......Nitrogen and the metal organotinmercaptio carboxylic bonded directly to the same acid ester sulfides, etc.) benzene ring (e.g., arsanilic 92 .......Acyclic carbon to carbon acids, etc.) unsaturation containing (e.g., 75 ........Having -C(=X)-, wherein X diorganotin maleates, etc.) is chalcogen, attached 93 ......Having -C(=X)X-, are the directly or indirectly to the same or diverse chalcogens, nitrogen by acyclic nononic attached indirectly to the bonding metal by nonionic bonding 76 ...Chalcogen bonded directly to (e.g., dialkyl tin the metal thioglycollic acid esters, 77 ....Containing -C(=X)X-, wherein etc.) the X's are the same or 94 .....The chalcogen is part of a - diverse chalcogens C(=X)X- group, wherein the X's 78 .....Carbocyclic ring bonded are the same or diverse directly to the carbon of the chalcogens -C(=X)X- group 95 ....The compound consists of the 79 .....The carbons of plural - metal, carbon and hydrogen or C(=X)X- groups are bonded the metal, carbon, hydrogen directly to each other, to the and halogen (e.g., same carbon, or to a chain tetraalkylleads, etc.) consisting of carbons, which 96 .....Preparing by utilizing a carbons may be part of a ring magnesium containing material (e.g., bismuth tartrates, (e.g., Grignard reagent, etc.) etc.) 97 .....Preparing by interchange of 80 ....Carbocyclic ring bonded radicals between heavy metal directly to the chalcogen atoms (e.g., redistribution, 81 ..Germanium, tin, or lead disproportionation, etc.) containing (Ge, Sn, or Pb) 98 .....Preparing by reacting free 82 ...Tin bonded directly to tin or heavy metal or heavy metal lead bonded directly to lead containing alloy with 83 ...Plural heavy metals bonded hydrocarbyl halide (e.g., directly to the same chalcogen reacting Pb-Na alloy with (e.g., two germaniums bonded hydrocarbyl chloride, etc.) directly to the same oxygen, etc.) October 2004 556 - 4 CLASS 556 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES 99 ......Additional heavy metal 119 ...Sulfur double bonded directly containing material or to chalcogen aluminum containing material 120 ....Containing -C(=X)-, wherein X utilized is chalcogen (e.g., zinc 100 ......Phosphorus containing formaldehyde sulphoxylates, material or organic nitrogen etc.) containing compound utilized 121 ...Carbon bonded directly to the 101 ......Organic chalcogen metal containing compound or 122 ....Chalcogen bonded directly to additional organic halogen the metal containing utilized 123 .....The carbon is part of a 102 .....Preparing by utilizing carbocyclic ring (e.g., phenyl boron, aluminum, gallium, mercury nitrate, phenyl indium, or thallium mercury phenolates, etc.) 103 .....Purification or recovery 124 ......Hydrogen or -C(=X)-, 104 .....Halogen bonded directly to wherein X is chalcogen, bonded the metal
Recommended publications
  • 5 Heavy Metals As Endocrine-Disrupting Chemicals
    5 Heavy Metals as Endocrine-Disrupting Chemicals Cheryl A. Dyer, PHD CONTENTS 1 Introduction 2 Arsenic 3 Cadmium 4 Lead 5 Mercury 6 Uranium 7 Conclusions 1. INTRODUCTION Heavy metals are present in our environment as they formed during the earth’s birth. Their increased dispersal is a function of their usefulness during our growing dependence on industrial modification and manipulation of our environment (1,2). There is no consensus chemical definition of a heavy metal. Within the periodic table, they comprise a block of all the metals in Groups 3–16 that are in periods 4 and greater. These elements acquired the name heavy metals because they all have high densities, >5 g/cm3 (2). Their role as putative endocrine-disrupting chemicals is due to their chemistry and not their density. Their popular use in our industrial world is due to their physical, chemical, or in the case of uranium, radioactive properties. Because of the reactivity of heavy metals, small or trace amounts of elements such as iron, copper, manganese, and zinc are important in biologic processes, but at higher concentrations they often are toxic. Previous studies have demonstrated that some organic molecules, predominantly those containing phenolic or ring structures, may exhibit estrogenic mimicry through actions on the estrogen receptor. These xenoestrogens typically are non-steroidal organic chemicals released into the environment through agricultural spraying, indus- trial activities, urban waste and/or consumer products that include organochlorine pesticides, polychlorinated biphenyls, bisphenol A, phthalates, alkylphenols, and parabens (1). This definition of xenoestrogens needs to be extended, as recent investi- gations have yielded the paradoxical observation that heavy metals mimic the biologic From: Endocrine-Disrupting Chemicals: From Basic Research to Clinical Practice Edited by: A.
    [Show full text]
  • Tracing Contamination Sources in Soils with Cu and Zn Isotopic Ratios Z Fekiacova, S Cornu, S Pichat
    Tracing contamination sources in soils with Cu and Zn isotopic ratios Z Fekiacova, S Cornu, S Pichat To cite this version: Z Fekiacova, S Cornu, S Pichat. Tracing contamination sources in soils with Cu and Zn isotopic ratios. Science of the Total Environment, Elsevier, 2015, 517, pp.96-105. 10.1016/j.scitotenv.2015.02.046. hal-01466186 HAL Id: hal-01466186 https://hal.archives-ouvertes.fr/hal-01466186 Submitted on 19 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tracing contamination sources in soils with Cu and Zn isotopic ratios Fekiacova, Z.1, Cornu, S.1, Pichat, S.2 1 INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence, France 2 Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon, France Abstract Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are im- portant micronutrients. Human activities contribute to the input of these metals to soils in dif- ferent chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution.
    [Show full text]
  • Health Concerns of Heavy Metals (Pb; Cd; Hg) and Metalloids (As)
    Health concerns of the heavy metals and metalloids Chris Cooksey • Toxicity - acute and chronic • Arsenic • Mercury • Lead • Cadmium Toxicity - acute and chronic Acute - LD50 Trevan, J. W., 'The error of determination of toxicity', Proc. Royal Soc., 1927, 101B, 483-514 LD50 (rat, oral) mg/kg CdS 7080 NaCl 3000 As 763 HgCl 210 NaF 52 Tl2SO4 16 NaCN 6.4 HgCl2 1 Hodge and Sterner Scale (1943) Toxicity Commonly used term LD50 (rat, oral) Rating 1 Extremely Toxic <=1 2 Highly Toxic 1 - 50 3 Moderately Toxic 50 - 500 4 Slightly Toxic 500 - 5000 5 Practically Non-toxic 5000 - 15000 6 Relatively Harmless >15000 GHS - CLP LD50 Category <=5 1 Danger 5 - 50 2 Danger 50 - 300 3 Danger 300 - 2000 4 Warning Globally Harmonised System of Classification and Labelling and Packaging of Chemicals CLP-Regulation (EC) No 1272/2008 Toxicity - acute and chronic Chronic The long-term effect of sub-lethal exposure • Toxicity - acute and chronic • Arsenic • Mercury • Lead • Cadmium Arsenic • Pesticide o Inheritance powder • Taxidermy • Herbicide o Agent Blue • Pigments • Therapeutic uses Inorganic arsenic poisoning kills by allosteric inhibition of essential metabolic enzymes, leading to death from multi- system organ failure. Arsenicosis - chronic arsenic poisoning. Arsenic LD50 rat oral mg/kg 10000 1000 LD50 100 10 1 Arsine Arsenic acid Trimethylarsine Emerald green ArsenicArsenious trisulfide oxideSodium arsenite MethanearsonicDimethylarsinic acid acid Arsenic poisoning by volatile arsenic compounds from mouldy wall paper in damp rooms • Gmelin (1839) toxic mould gas • Selmi (1874) AsH3 • Basedow (1846) cacodyl oxide • Gosio (1893) alkyl arsine • Biginelli (1893) Et2AsH • Klason (1914) Et2AsO • Challenger (1933) Me3As • McBride & Wolfe (1971) Me2AsH or is it really true ? William R.
    [Show full text]
  • An Investigation of the Crystal Growth of Heavy Sulfides in Supercritical
    AN ABSTRACT OF THE THESIS OF LEROY CRAWFORD LEWIS for the Ph. D. (Name) (Degree) in CHEMISTRY presented on (Major) (Date) Title: AN INVESTIGATION OF THE CRYSTAL GROWTH OF HEAVY SULFIDES IN SUPERCRITICAL HYDROGEN SULFIDE Abstract approved Redacted for privacy Dr. WilliarriIJ. Fredericks Solubility studies on the heavy metal sulfides in liquid hydrogen sulfide at room temperature were carried out using the isopiestic method. The results were compared with earlier work and with a theoretical result based on Raoult's Law. A relative order for the solubilities of sulfur and the sulfides of tin, lead, mercury, iron, zinc, antimony, arsenic, silver, and cadmium was determined and found to agree with the theoretical result. Hydrogen sulfide is a strong enough oxidizing agent to oxidize stannous sulfide to stannic sulfide in neutral or basic solution (with triethylamine added). In basic solution antimony trisulfide is oxi- dized to antimony pentasulfide. In basic solution cadmium sulfide apparently forms a bisulfide complex in which three moles of bisul- fide ion are bonded to one mole of cadmium sulfide. Measurements were made extending the range over which the volumetric properties of hydrogen sulfide have been investigated to 220 °C and 2000 atm. A virial expression in density was used to represent the data. Good agreement, over the entire range investi- gated, between the virial expressions, earlier work, and the theorem of corresponding states was found. Electrical measurements were made on supercritical hydro- gen sulfide over the density range of 10 -24 moles per liter and at temperatures from the critical temperature to 220 °C. Dielectric constant measurements were represented by a dielectric virial ex- pression.
    [Show full text]
  • Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System
    International Journal of Environmental Science and Development, Vol. 3, No. 4, August 2012 Removal of Heavy Metals from Aqueous Solution by Zeolite in Competitive Sorption System Sabry M. Shaheen, Aly S. Derbalah, and Farahat S. Moghanm rich volcanic rocks (tuff) with fresh water in playa lakes or Abstract—In this study, the sorption behaviour of natural by seawater [5]. (clinoptilolite) zeolites with respect to cadmium (Cd), copper The structures of zeolites consist of three-dimensional (Cu), nickel (Ni), lead (Pb) and zinc (Zn) has been studied in frameworks of SiO and AlO tetrahedra. The aluminum ion order to consider its application to purity metal finishing 4 4 wastewaters. The batch method has been employed, using is small enough to occupy the position in the center of the competitive sorption system with metal concentrations in tetrahedron of four oxygen atoms, and the isomorphous 4+ 3+ solution ranging from 50 to 300 mg/l. The percentage sorption replacement of Si by Al produces a negative charge in and distribution coefficients (Kd) were determined for the the lattice. The net negative charge is balanced by the sorption system as a function of metal concentration. In exchangeable cation (sodium, potassium, or calcium). These addition lability of the sorbed metals was estimated by DTPA cations are exchangeable with certain cations in solutions extraction following their sorption. The results showed that Freundlich model described satisfactorily sorption of all such as lead, cadmium, zinc, and manganese [6]. The fact metals. Zeolite sorbed around 32, 75, 28, 99, and 59 % of the that zeolite exchangeable ions are relatively innocuous added Cd, Cu, Ni, Pb and Zn metal concentrations (sodium, calcium, and potassium ions) makes them respectively.
    [Show full text]
  • Heavy Metals Toxicity. Int J Health Sci Res
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Review Article Heavy Metals Toxicity Shikha Bathla, Tanu Jain Research Scholar, Department of Food and Nutrition, Punjab Agricultural University, Ludhiana-141004. Corresponding Author: Shikha Bathla Received: 15/02/2016 Revised: 13/04/2016 Accepted: 18/04/2016 ABSTRACT A heavy metal is a member of a loosely defined subset of elements that exhibit metallic properties. It mainly includes the transition metals, some metalloids, lanthanides, and actinides. Many different definitions have been proposed based on density, atomic number or atomic weight, and some on chemical properties. Heavy metal toxicity can result in damaged central nervous function, lower energy levels, and damage to blood composition, lungs, kidneys, liver, and other vital organs. Long- term exposure may result in slowly progressing physical, muscular, and neurological degenerative diseases. Exposure to toxic or heavy metals comes from many sources like in fish, chicken, vegetables, vaccinations, dental fillings and deodorants. Remedies to combat heavy metal toxicity can be to adopt the practice of kitchen gardening and also to ensure plethora supply of antioxidant includes fruits and vegetables in the diet Increase intake of miso soup (made from soya) and garlic and regular exercise and brisk walking. Increase intake of water to detoxify the harmful effect of heavy metals. Use of lead free paints and avoids carrying metal accessories. Key words: heavy metals, lead, selenium, mercury, silicon. INTRODUCTION in body with ligands containing oxygen Metals occurrence in the (OH, -COO,-OPO3H, >C=O) sulphur (-SH, environment has become a concern because -S-S-), and nitrogen (-NH and >NH) and the globe is experiencing a silent epidemic affect the body by interaction with essential of environmental poisoning, from the ever metals, formation of metal protein complex, increasing amounts of metals released into age and stage of development, lifestyle the biosphere.
    [Show full text]
  • United States Patent Office 2,807,613
    United States Patent Office 2,807,613 Patented Sept. 24, 1957 s s 2 2,807,613 nol, where it may exist in the form of a hemiformal, or PREPARATION OF 6-METHYL-6-PHENYLTETRA of a revertible polymer. Usually formaldehyde is used in HYDRO-1,3-OXAZINES excess based on molar proportions referred to the a Claude 5. Schmide, Moorestown, and Richard C. Maas 5 methylstyrene, proportions from about 1.5:1 to 5:1 being field, Haddon afield, N. J., assignors to Rohm & Hiaas practical. Of course, with less than a 2:1 proportion Company, Philadelphia, Pa., a corporatica of Delaware unreacted starting materials may be present in the react ing mixture, Preferred proportions are from 2:1 to 4:1. No Drawing. Application April 3, 1955, Ammonia may be supplied as a gas or as an aqueous Serial No. 577,944 solution or in the form of ammonium chloride or bromide. 7 Claims. (C. 260-244) 0 Of course, if ammonia or ammonium hydroxide is used, This invention deals with a method for improving yields it will react with the hydrochloric or hydrobromic acid of 6-methyl-6-phenyltetrahydro-1,3-oxazines when made which is added as catalyst. The same final result is ob from an O-methylstyrene, formaldehyde, and ammonia. tained by use of the preformed ammonium halide, which In United States Patent 2,647,117, there is described 5 Supplies both the ammonia and the catalyst. The amount the reaction of olefins, including c-methylstyrene, with of ammonia or ammonium compound is usually at least ammonia and formaldehyde in the presence of hydrogen equivalent to the c-methylstyrene and may be in consid -chloride as a catalyst.
    [Show full text]
  • Calcium Hydride, Grade S
    TECHNICAL DATA SHEET Date of Issue: 2016/09/02 Calcium Hydride, Grade S CAS-No. 7789-78-8 EC-No. 232-189-2 Molecular Formula CaH₂ Product Number 455150 APPLICATION Calcium hydride is used primarily as a source of hydrogen, as a drying agent for liquids and gases, and as a reducing agent for metal oxides. SPECIFICATION Ca total min. 92 % H min. 980 ml/g CaH2 Mg max. 0.8 % N max. 0.2 % Al max. 0.01 % Cl max. 0.5 % Fe max. 0.01 % METHOD OF ANALYSIS Calcium complexometric, impurities by spectral analysis and special analytical procedures. Gas volumetric determination of hydrogen. Produces with water approx. 1,010 ml hydrogen per gram. PHYSICAL PROPERTIES Appearance powder Color gray white The information presented herein is believed to be accurate and reliable, but is presented without guarantee or responsibility on the part of Albemarle Corporation and its subsidiaries and affiliates. It is the responsibility of the user to comply with all applicable laws and regulations and to provide for a safe workplace. The user should consider any health or safety hazards or information contained herein only as a guide, and should take those precautions which are necessary or prudent to instruct employees and to develop work practice procedures in order to promote a safe work environment. Further, nothing contained herein shall be taken as an inducement or recommendation to manufacture or use any of the herein materials or processes in violation of existing or future patent. Technical data sheets may change frequently. You can download the latest version from our website www.albemarle-lithium.com.
    [Show full text]
  • Heavy Metals'' with ``Potentially Toxic Elements'
    It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research Olivier Pourret, Andrew Hursthouse To cite this version: Olivier Pourret, Andrew Hursthouse. It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research. International Journal of Environmental Research and Public Health, MDPI, 2019, 16 (22), pp.4446. 10.3390/ijerph16224446. hal-02889766 HAL Id: hal-02889766 https://hal.archives-ouvertes.fr/hal-02889766 Submitted on 5 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Letter It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research Olivier Pourret 1,* and Andrew Hursthouse 2,* 1 UniLaSalle, AGHYLE, 19 rue Pierre Waguet, 60000 Beauvais, France 2 School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK * Correspondence: [email protected] (O.P.); [email protected] (A.H.) Received: 28 October 2019; Accepted: 12 November 2019; Published: date Abstract: Even if the Periodic Table of Chemical Elements is relatively well defined, some controversial terms are still in use.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,56,31 METHOD of REDUCING and by DRO GENATING CHEMICA, COMPOUNDS by REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E
    Patented Nov. 27, 1951 2,576,31 UNITED STATES PATENT OFFICE 2,56,31 METHOD OF REDUCING AND BY DRO GENATING CHEMICA, COMPOUNDS BY REACTING WITE: ALUMNUM-CONAN NG BYOFREDES Hermann E. Schlesirager and Albert E. Finholt, Chicago, Ill.; said Schlesinger assignor of one fourth to. Edaa, M. Schlesinger and said Fin holt assignor of one-fourth to Marion H. Finholt No Drawing. Application June 3, 1947, Serial No. 752,286 2 (Cairns. (C. 260-638) 2 This invention relates to methods of making LiAlH4. Although this new compound will be aluminum-containing hydrides and the reactions called lithium aluminum hydride in the present thereof, and also relates to products prepared by application, it may also be called lithium alumi said methods. nohydride or lithium tetrahydroaluminide. In This application is a continuation-in-part of one method of making lithium aluminum hydride, our copending application Serial No. 717,312, filed lithium hydride is reacted with an aluminum December 19, 1946, now Patent No. 2,567,972, halide such as aluminum chloride in the presence issued September 18, 1951. of a suitable liquid medium such as an ether. If We have discovered that these compounds, es the reagents are mixed in the proportions of the pecially the ether soluble lithium aluminum hy 0 following equation, or if an excess of lithium hy dride, are extremely useful chemical reagents. dride is used, the reaction proceeds as follows: - They may be employed for replacing halogens or Organic radicals by hydrogen in a great variety 4Li H--AlCl3->LiAlH4--3LiCl of compounds. As a result, their discovery has led to new methods, safer, more convenient, and 16 The liquid medium used is one in which one of more efficient than those hitherto known, for pro the reaction products, e.
    [Show full text]
  • Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Procedia Engineering 47 ( 2012 ) 322 – 325 Proc. Eurosensors XXVI, September 9-12, 2012, Kraków, Poland Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals H. Ikena, D. Kirsanovb,c, A. Leginb,c and M.J. Schöninga,d,* a Institute of Nano- and Biotechnologies (INB), FH Aachen, Jülich Campus, Germany b Sensor Systems, LLC, St. Petersburg, Russia c Laboratory of Chemical Sensors, St. Petersburg University, St. Petersburg, Russia d Peter Grünberg Institute (PGI-8), Research Centre Jülich GmbH, Jülich, Germany Abstract A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively. © 20122012 The Published Authors. by Published Elsevier by Ltd. Elsevier Ltd. Selection and/or peer-review under responsibility of the Symposium Cracoviense Sp. z.o.o.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]