Report on a Pumice Resource Estimate Vulcan Mineral
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustainable Resource Management Plan
Sustainable Resource Management Plan Biodiversity Chapter for Meager Landscape Unit July 2004 Prepared by: Jim Roberts Harry Gill Bernice Patterson Land Use Planner GIS Analyst B&B Forestry Ministry of Sustainable Ministry of Sustainable Consultant to: Resource Management Resource Management C.R.B. Logging Co. Ltd. Coast Region Coast Region Squamish - Pemberton Lucy Stad, R.P.F. Greg George, R.P. Bio. Planning Forester Forest Ecosystem Specialist Ministry of Sustainable Ministry of Sustainable Resource Management Resource Management Coast Region Coast Region Table of Contents 1.0 Introduction 1 2.0 Landscape Unit Objectives 1 3.0 Landscape Unit Description 3 3.1 Biophysical Description 3 3.2 Significant Resource Values 4 4.0 Biodiversity Management Goals and Strategies 7 4.1 General Biodiversity Management Goals 7 4.2 Specific Biodiversity Management Goals and Strategies 8 4.21 Biodiversity Management Goals 8 4.22 Biodiversity Management Strategies 9 4.3 OGMA Boundary Mapping 9 4.4 Auditing Wildlife Tree Retention 9 5.0 Mitigation of Timber Supply Impacts 9 5.1 OGMA Amendment Procedures 10 List of Tables Table Required Levels for Old Seral Representation 2 1 Table Non-contributing, Constrained THLB and Unconstrained THLB 2 2 Components of Meager LU OGMAs Table Wildlife Species of Specific Management Concern 4 3 List of Appendices Appendix I: Biodiversity Emphasis Option Ranking Criteria 11 Appendix II: Public Consultation Summary 19 Appendix III: Acronyms 20 Appendix IV: OGMA Summary and Rationale Description 21 Appendix V: Preliminary Comments/Rating for OGMAs 27 Meager LU Plan i 1.0 Introduction This report provides background information used during the preparation of the Sustainable Resource Management Plan and associated proposed legal objectives for the Meager Landscape Unit (LU). -
Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg ment the proposed use of the material is in the interests of scholar ship. In all other instances, however, permission must be obtained from the author. -
Geology and Tectonic Setting of the Kamloops Group, South
GEOLOGY AND TECTONIC SETTING OF THE KAMLOOPS GROUP, SOUTH- CENTRAL BRITISH COLUMBIA by THOMAS EDWARD EWING B.A., The Colorado College, 1975 M.S., New Mexico Institute of Mining and Technology, 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1981 © Thomas Edward Ewing, 1981 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of r.pnlnpiVal Sri PTirp.S The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date February 17, 1981 ABSTRACT The Kamloops Group is a widespread assemblage of Eocene volcanic and sedimentary rocks in south-central British Columbia. Detailed mapping of the type area near Kamloops has resulted in its subdivision into two formations and thirteen formal and informal members. The Tranquille Formation, 0-450 metres thick, consists of lacustrine sediments which grade upward into pillowed flows, hyaloclastite breccia and aquagene tuff. The overlying Dewdrop Flats Formation, with nine members, consists of up to 1000 metres of basalt to andesite phreatic breccia, flow breccia and flat-lying flows. -
GEOLOGY of the SLEETMUTE A-5, A-6, B-5, and B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R
GEOLOGY OF THE SLEETMUTE A-5, A-6, B-5, AND B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R. Reifenstuhl, M.S. Robinson, C.F. Waythomas, and J.G. Clough Professional Report 99 1995 Published by Alaska Department of State of Alaska Department of Natural Resources NATURAL DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS GEOLOGY OF THE SLEETMUTE A-5, Ad, B-5, AND B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R. Reifenstuhl, M.S. Robinson, C.F. Waythomas, and J.G. Clough Professional Report 99 Division of Geological & Geophysical Surveys Cover photo: Northwest-vergent isocline of veryfine-grained sandstone of the Lower(?) and Upper Cretaceous Kuskokwim Group. The outcrop of medium- bedded sandstone is 1.5 miles west of Kiokluk Lake in the Sleetmute B-6 Quadrangle (map unit Kkm). The hammer handle in the photo is 46 cm Fairbanks, Alaska long. Photo by R.R. Reifenstuhl. 1995 STATE OF ALASKA Tony Knowles, Governor DEPARTMENT OF NATURAL RESOURCES John Shively, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Milton A. Wiltse, Acting Director and State Geologist Division of Geological & Geophysical Surveys publications may be in- spected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 321 1 Providence Drive 794 University Avenue, Suite 200 Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3645 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 222 W. 7th Avenue Fairbanks, Alaska 99775-1005 Anchorage, Alaska 995 13-7589 Alaska State Library State Office Building, 8th Floor 333 Willoughby Avenue Juneau, Alaska 998 11-057 1 This publication released by the Division of Geological & Geophysical Surveys, text was produced and printed in Fairbanks, Alaska by Graphics North and maps were printed in Colorado Springs, Colorado by Pikes Peak Lithographing Co., at a cost of $9.50 per copy. -
Deadhorse Creek Rare Earth Property
Deadhorse Creek Rare Earth Property Walsh and Grain Townships Thunder Bay Mining Division, Ontario 48° 51' 7.671" N, 86 39' 45.028" W NTS Mapsheet 42D and 42E Assessment Report Prepared for Canadian International Minerals Inc. Suite 950 – 789 West Pender Street Vancouver, B.C., V6C 1H2 Report Prepared by: 31 October, 2011 1 Contents 1 Contents 1 Contents .......................................................................................................................................................................... 1 2 Figures ............................................................................................................................................................................. 2 3 Tables .............................................................................................................................................................................. 4 4 Summary ......................................................................................................................................................................... 5 5 Introduction .................................................................................................................................................................... 6 6 Reliance on other experts ............................................................................................................................................... 6 7 Property description and location ................................................................................................................................. -
Plate Tectonics, Volcanic Petrology, and Ore Formation in the Santa Rosalia Area, Baja California, Mexico
Plate tectonics, volcanic petrology, and ore formation in the Santa Rosalia area, Baja California, Mexico Item Type text; Thesis-Reproduction (electronic) Authors Schmidt, Eugene Karl, 1947- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 01:50:58 Link to Item http://hdl.handle.net/10150/555057 PLATE TECTONICS, VOLCANIC PETROLOGY, AND ORE FORMATION IN THE SANTA ROSALIA AREA, BAJA CALIFORNIA, MEXICO by Eugene Karl Schmidt A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 5 z- STATEMENT BY AUTHOR This thesis has been submitted in partial ful fillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate ac knowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manu script in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. -
Igneous Rocks —!Some Minerals Form During Weathering Processes
Minerals Give Clues To Their Environment Of Formation !!Can be a unique set of conditions to form a particular mineral or rock !!Temperature and pressure determine conditions to form diamond or graphite (polymorphs) !! Diamonds require pressures and temperatures equivalent to those in the mantle at least 150 km below Earth’s surface. !! Diamond is metastable Figure 3.31 Also Rocks: Mixtures of Minerals !!Clues to climate: !!Igneous rocks —!Some minerals form during weathering processes. !!Formed by solidification of magma. —!Past climates can be determined from the kinds of !!Sedimentary rocks minerals preserved in sedimentary rocks. !! !!Clues to seawater composition: Formed by sedimentation of materials transported in solution or suspension. —!The content of past seawater can be determined from minerals formed when the seawater evaporated and !!Metamorphic rocks deposited its salts. !!Formed by the alteration of preexisting sedimentary or igneous rocks in response to increased pressure and temperature. Distinguishing The Three Rock Types Texture and Mineral Assemblage The differences among rock types are identified !!A systematic description of a rock includes both by two features. texture and mineral assemblage. !!Texture: !!Megascopic textural features of rocks are those —!The overall appearance of a rock due to the size, shape, that we can see with the unaided eye. and arrangement of its constituent mineral grain. !!Microscopic textural features of rocks are those !!Mineral assemblage: that require high magnification to be viewed. —!The type and abundance of the minerals making up a rock. Figure 3.32 Figure 3.32 A B Figure 3.32 Figure 3.32 D C Mineral Concentration !!Two common processes of concentration: !!Fluids released by a cooling body of magma. -
Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera
GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 Natural Resources Ressources naturelles Canada Canada GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 ©Her Majesty the Queen in Right of Canada 2008 Available from Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8 Jessop, A. 2008: Review of National Geothermal Energy Program; Phase 2 – Geothermal Potential of the Cordillera; Geological Survey of Canada, Open File 5906, 88p. Open files are products that have not gone through the GSC formal publication process. The Meager Cree7 Hot Springs 22 Fe1ruary 1273 CONTENTS REVIEW OF NATIONAL GEOTHERMAL ENERGY PROGRAM PHASE 2 - THE CORDILLERA OF WESTERN CANADA CHAPTER 1 - THE NATURE OF GEOTHERMAL ENERGY INTRODUCTION 1 TYPES OF GEOTHERMAL RESOURCE 2 Vapour-domi ate reservoirs 3 Fluid-domi ated reservoirs 3 Hot dry roc) 3 PHYSICAL QUANTITIES IN THIS REPORT 3 UNITS 4 CHAPTER 2 - THE GEOTHERMAL ENERGY PROGRAMME 6 INTRODUCTION THE GEOTHERMAL ENERGY PROGRAMME 6 Ob.ectives 7 Scie tific base 7 Starti 1 the Geothermal E er1y Pro1ram 8 MA4OR PRO4ECTS 8 Mea1er Mou tai 8 Re1i a 9 ENGINEERING AND ECONOMIC STUDIES 9 GRO6 TH OF OUTSIDE INTEREST 10 THE GEOTHERMAL COMMUNITY 10 Tech ical groups a d symposia 10 ASSESSMENT OF THE RESOURCE 11 i CHAPTER 3 - TECTONIC AND THERMAL STRUCTURE OF THE CORDILLERA 12 TECTONIC HISTORY 12 HEAT FLO6 AND HEAT -
GRANNY, a Data Bank of Chemical Analyses of Laramide and Younger
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GRANNY A data bank of chemical analyses of Laramide and younger h1gh-s1Uca rhyoMtes and granites from Colorado and north-central New Mexico by 1X ?/ 3/ Celia H. Steigerwald, Felix E. Mutschler, and Steve Ludlngton Open-File Report 83-516 This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey editorial standards and stratIgraphic nomenclature 1983 1/ Eastern Washington University* Cheney, WA 99004 21 Eastern Washington University and U.S.G.S*, Denver* CO 80225 3/ U.S. Geological Survey* Reston, VA 22092 CONTENTS Page Abstract ........................ 1 Introduction ...................... 2 Acknowledgements .................... 2 Description of GRANNY ................. ? Variable descriptions ... ..» 3 Tape description, data formats, coding form, and program listings . 35 References .».. ... »» .». 52 Appendix Data bank GRANNY, hardcopy version . 53 FIGURE Page 1. Index map showing areas represented by major group codes ............. 5 TABLES Page 1. Listing of major group codes, secondary group codes, and sources of analyses for each major group code .......... 7 2* Rock names and codes ................ 28 3. Mineral names and codes . 30 A. Occurrence and petrographic descriptor codes . 32 5. Variable names and formats for GRANNY ....... 36 6. DATATRIEVE programs, procedures, and tables . 40 ?. GRANNY input coding form .............. 50 1 GRANNY A data bank of chemical analyses of Laramide and younger high-silica rhyolites and -
Definitions from Skinner and Porter
Journal of Geoscience Education, v. 50, n. 1, p. 89-99, January 2002 (edits, June 2005) Computational Geology 19 Classification and the Combination of Sets H.L. Vacher, Department of Geology, University of South Florida, 4202 E. Fowler Ave., Tampa FL, 33620 Topics this issue- Mathematics: Complement, intersection, union; partitions; De Morgan's Laws. Geology: Classification of rocks; aphanitic vs. phaneritic Prerequisite: CG-10, "The Algebra of Deduction," Mar 2000; CG-18, "Definition and the Concept of Set," Sept. 2001. Introduction The special issue of this journal (Nov. 2000) that was devoted to “Some Great Ideas for Geoscience Courses,” included nine ideas under the heading “Earth materials.” Six of those papers involved classification (Thomas and Thomas, 2000; Dowse, 2000; Reynolds and Semken, 2000; Harper, 2000; Christman, 2000; Niemitz, 2000). Classification of rocks and minerals is obviously a necessary component of introductory geology courses. Classification of rocks and minerals is taught in geology courses in order to understand geology better and to provide a basis for communication. Classification of rocks and minerals also provides a rich illustration of mathematical concepts involved in classification in general. These concepts, which are staples of courses in logic, occur in the mathematics curriculum in courses on discrete mathematics. This column is the second on the connection between sets and geological terminology. The context for the first (CG-18) was planets and moons. The context for this one is rocks. Getting Started As discussed in CG-18, a set can be defined either by listing all of its members or by stating a requisite property of its members. -
Samarium-Neodymium Isotope and Trace-Element Analysis Of
Samarium-Neodymium Isotope and Trace-Element Analysis of Metavolcanic Rocks from the Vicinity of Fort Bragg, North Carolina: A Pilot Study of Artifact Source Quarry Discrimination Report Prepared by: Brent V. Miller Isotope Geochemistry Laboratory Mitchell Hall, CB# 3315 University of North Carolina - Chapel Hill Chapel Hill, NC 27599 Prepared For: Vin Steponaitis Research Laboratories of Archaeology University of North Carolina Chapel Hill, NC 27599-3120 October 14, 2002 Introduction Fifty rock samples, of either metamorphosed volcanic flows (dacite, andesite, and rhyolite) or metamorphosed volcanic-sedimentary detritus of similar composition (e.g., mudstones of water-lain ash), were selected from archaeological quarry sites in south- central North Carolina (Fig. 1). Twenty-two sites are cataloged with the North Carolina Office of State Archaeology (Table 1) and two sites have not yet received official site numbers. Each site is identified as a potential raw-material source quarry for prehistoric Native American artifacts found on Ft. Bragg. The sites are grouped into eight quarry clusters based on geographic proximity (Fig. 1). One quarry cluster (Uwharries 1) was sampled extensively to test for smaller-scale variability within a quarry group, and samples from this group are sub-divided based on geological map unit (Fig. 2). This report documents the results of a pilot study conducted to test methods of geochemical and isotopic discrimination, or "fingerprinting", of the prehistoric quarry sites. Such fingerprints could be used as a highly sensitive tool for tracing Native Peoples' trading and travel routes in the southeastern United States. Background The present study of lithic sources in south-central North Carolina is the outgrowth of more than a decade of multi-disciplinary collaboration between archaeology researchers at Ft. -
LAVAS of HA Wail and THEIR RELATIONS·
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMrL'J:I, DIRECTOR '· PROFESSIONAL PAPER 88 LAVAS OF HA_ WAil AND THEIR RELATIONS· BY WHITMAN CllOSS WASHINGTON GOVERNMENT PRINTING OFFICE 1915 • CONTENTS. Page. Introduction ......................................... , .. _, ................................... : .......... 7 Publications cited ..................... ·_ .............................................................. _. ... 8 Petrography ....................................... _... ____ . ________ .. _.... __________ .. _____ ...... _____ ... 9 ~'he lesser islands ................................................................................... 9 Island of ](u.uai .................................................................................... 9 bccu.rrence and sources of material studied ...............................· ........................ 9 Olivine-plu.gioclase basalt ....................................................................... 10 Genet·al characters.~ ............................ -.- ............... : .......................... 10 Chemical composition ....................................................................... 10 Quu.ntitative classification .................................................................. 12 Helation of norm and mode in rocks analyzed ................................................ 12 Plu.gioclase basalt (poor in olivine) .......................· ......................................... 13 ]~itnburgite .......................... ~ ........ -..