Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material 1 INTRODUCTION Enzymes are effectors of chemical change. Through their action, enzymes bring about the transformation of one chemical substance into another. Like all change, the chemical change brought about by enzymes involves a temporal aspect that can be expressed as the rate at which the change occurs. The systematic study of these rates defi nes the biochemical fi eld known as enzyme kinetics. In this book, I describe the various approaches that are used to study the kinetics of enzyme catalysis and inhibition. The chapters of this book are arranged in order of increasing complexity of the system under study, moving from single substrate enzy- matic reactions and their inhibition, to two substrate reactions and their inhibition. Along the way are chapters devoted to special areas, such as the utility and construction of free energy diagrams, kinetics of multi - intermediate reactions, and the kinetic analy- sis of tight - bindingCOPYRIGHTED and time - dependent inhibitors. MATERIALWhile this book should be useful to any investigator involved in kinetic examinations of enzymatic reactions, it is aimed at those involved in drug discovery research, where kinetic characterization is fundamen- tal to drug discovery programs that have enzymes as their therapeutic target. In this introductory chapter, I discuss three topics that set the stage for the remain- der of the book. I fi rst provide a historical context for our subsequent discussions of Kinetics of Enzyme Action: Essential Principles for Drug Hunters, First Edition. Ross L. Stein. © 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc. 1 cc01.indd01.indd 1 55/5/2011/5/2011 22:49:25:49:25 PPMM 2 INTRODUCTION enzyme kinetics. Here we will discuss the historical connections between enzymology and other branches of chemistry, early developments in the kinetics of enzymatic reac- tions, and several aspects of contemporary enzymology. In the second section of this chapter, we dissect the concept of “ mechanism of action ” into component parts, or “ sub - mechanisms, ” and see what is actually involved in elucidating an enzyme ’ s mech- anism. Finally, in the third section, we discuss how an accurate description of enzymatic mechanisms can emerge from kinetic data. 1.1 A BRIEF HISTORY OF ENZYMOLOGY The history I present below is incomplete; space does not permit a full historical account of enzymology. Rather, this summary was written to give the reader some sense of how enzymology developed into the sophisticated, quantitative science it has now become. More often than not, I let the many pioneering fi gures of enzymology speak for them- selves in quotations drawn from their original works. 1.1.1 A History of the Interplay between Organic and Biochemistry Since its beginning in the closing decades of the nineteenth century, enzymology has developed in close relation with both biochemistry and organic chemistry. Advances in organic chemistry have informed and enriched both biochemistry and enzymology, and there have always been strong synergistic interactions between enzymology and bio- chemistry. Organic and biochemistry are, of course, subdivisions that grew out of chemistry itself. Chemistry is the most ancient of the special sciences, with origins that can be traced to the dye and perfume makers of Mesopotamia, Egypt, India, and China of the third millennia B.C., and before that to metallurgists of prehistory. Following them were alchemists, who, in their search for the Philosopher ’ s Stone, fl ourished from the begin- ning of the common era on into medieval times. It was not until Robert Boyle published his The Sceptical Chymist in 1661 that the distinction between alchemy and chemistry was clearly articulated, the latter relying on the “ scientifi c method ” and inductive logic as laid out by Francis Bacon in the late sixteenth century. However, the birth of chem- istry is usually dated to Antoine Lavoisier ’ s discovery in 1783 of the law of conserva- tion of mass that refuted and laid to rest the phlogiston theory of combustion. Our chief concern in this section is with two subdivisions of chemistry, the allied fi elds of organic and biochemistry. The origin of organic chemistry is usually said to be Friedrich W ö hler ’ s synthesis of urea in 1828. This simple laboratory procedure produced the principal organic component of urine from the inorganic salt ammonium cyanate, and in one stroke dispelled the vitalistic notion that only living organisms have the ability to produce organic substances. Fully understanding the signifi cance of his accomplishment, W ö hler exclaimed to his mentor, the Swedish chemist J ö ns Jakob Berzelius: “ I can no longer, so to speak, hold my chemical water and must tell you that I can make urea without needing a kidney, whether of man or dog. ” cc01.indd01.indd 2 55/5/2011/5/2011 22:49:25:49:25 PPMM A BRIEF HISTORY OF ENZYMOLOGY 3 W ö hler ’ s landmark 1828 synthesis not only triggered a wave of interest in organic chemistry, especially in Germany, but also motivated scientists throughout Europe to study the chemical basis of biological phenomenon. This new fi eld of study would eventually become known as “ biochemistry, ” a term that would not exist until 1903, when it was coined by German chemist Carl Neuber. The true beginning of biochem- istry can be traced to the 1833 studies of French chemist Anselme Payen that resulted in the production of barley extracts that contained heat - labile components with the remarkable ability to convert starch into sugar. Previous to Payen ’ s studies, it was thought that activities such as these could occur only in intact organisms, such as the grain berry itself. The extracts that Payen investigated were called “ diastase, ” which we know now to be a mixture of related amylase enzymes. These early studies marked the beginnings of organic chemistry and biochemistry and were characterized by investigations of the macroscopic. During the infancy of biochemistry, we hear of “ substances ” and “ factors ” with no mention yet of molecules. For example, in the passage below from a publication that appeared in 1827, British physician and chemist William Prout fi rst introduces and then goes on to describe results of his studies that were aimed at understanding the “ organized bodies ” (i.e., starch, fat, and protein droplets and globules) that initially form during digestion of food stuffs and serve as the “ principal alimentary matters ” used by animals to extract nourishment. The subject of digestion had for a long time occupied my particular attention: and by degrees I had come to the conclusion, that the principal alimentary matters employed by man, and the more perfect animals, might be reduced to three great classes, namely, the saccharine [starch], the oily [fat], and the albuminous [protein]: hence, it was determined to investigate these in the fi rst place, and their exact composition being ascertained, to inquire afterwards into the changes induced in them by the action of the stomach and other organs during the subsequent processes of assimilation. It was known from the very infancy of chemistry, that all organized bodies, besides the elements of which they are essentially composed, contain minute quantities of different foreign bodies, such as the earthy and alkaline salts, iron, etc. These have usually been considered as mere mechanical mixtures accidentally present; but I can by no means subscribe to this opinion. Indeed, much attention to this subject for many years past has satisfi ed me that they perform the most important functions; in short, that organiza- tion cannot take place without them. Thus, starch I consider as merorganized sugar, the two substances having the same essential composition, but the starch differing from sugar by containing minute portions of other matters, which we may presume, prevent its constituent particles from arranging themselves into the crystalline form, and thus cause it to assume different sensible properties. (Prout 1827 ; italics in the original) We see here not a hint of Prout using molecular theory to describe the macromol- ecules (i.e., carbohydrates, lipids, and proteins) that concern him. Similarly, German chemist Moritz Traube explained fermentation and related pro- cesses in terms of substances and not molecules: “ The putrefaction and decay ferments are defi nite chemical compounds arising from the reaction of the protein substances with water, arising thus from a chemical process ” (Traube 1858a ). We see here that cc01.indd01.indd 3 55/5/2011/5/2011 22:49:25:49:25 PPMM 4 INTRODUCTION while Traub recognized that the underlying bases of fermentation and putrefaction were chemical, he did not describe the results of his experiments in molecular terms as the chemical transformation of molecules. Like Traub, many chemists of the mid - nineteenth century were reluctant to accept the existence of entities that that they could not see with their own eyes. This reluctance was despite the fact that Amedeo Avogadro fi rst proposed the existence of molecules in 1811 and the enormous inroads that Friedrich Kekul é made from 1850 – 1870 into the understanding of carbon ’ s multivalency and thus its ability to form complex struc- ture; that is, “ molecules. ” It would not be until the beginning of the twentieth century that molecular theory, fi nally embraced by most organic chemists during the closing decades of the nineteenth century, would become part of the interpretational apparatus of biochemical studies. In 1902, Franz Hofmeister reports that “ the protein molecule is mainly built - up from amino acids ” (Hofmeister 1902 ; italics mine). Three years later, a paper appeared in fi rst volume of the American publication Journal of Biological Chemistry by biochemist Phoebus A. T. Levene that extended Hofmeister ’ s observations to try to understand how differences in amino acid composition of various proteins render them more or less susceptible to degradation by the action of trypsin and other digestive enzymes of the gut.
Recommended publications
  • Anti-Duhring
    Friedrich Engels Herr Eugen Dühring’s Revolution in Science Written: September 1876 - June 1878; Published: in Vorwärts, Jan 3 1877-July 7 1878; Published: as a book, Leipzig 1878; Translated: by Emile Burns from 1894 edition; Source: Frederick Engels, Anti-Dühring. Herr Eugen Dühring’s Revolution in Science, Progress Publishers, 1947; Transcribed: [email protected], August 1996; Proofed and corrected: Mark Harris 2010. Formerly known as Herr Eugen Dühring's Revolution in Science, Engels’ Anti-Dühring is a popular and enduring work which, as Engels wrote to Marx, was an attempt “to produce an encyclopaedic survey of our conception of the philosophical, natural-science and historical problems.” Marx and Engels first became aware of Professor Dühring with his December 1867 review of Capital, published in Ergänzungsblätter. They exchanged a series of letters about him from January-March 1868. He was largely forgotten until the mid-1870s, at which time Dühring entered Germany's political foreground. German Social-Democrats were influenced by both his Kritische Geschichte der Nationalökonomie und des Sozialismus and Cursus der Philosophie als streng wissenschaftlicher Weltanschauung und Lebensgestaltung. Among his readers were included Johann Most, Friedrich Wilhelm Fritzsche, Eduard Bernstein – and even August Bebel for a brief period. In March 1874, the Social-Democratic Workers’ Party paper Volksstaat ran an anonymous article (actually penned by Bebel) favorably reviewing one of Dühring's books. On both February 1 and April 21, 1875, Liebknecht encouraged Engels to take Dühring head-on in the pages of the Volksstaat. In February 1876, Engels fired an opening salvo with his Volksstaat article “Prussian Vodka in the German Reichstag”.
    [Show full text]
  • Reader 19 05 19 V75 Timeline Pagination
    Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.
    [Show full text]
  • Zur Erinnerung an Den Berliner Chemiker Wilhelm Traube (1866–1942)
    Zur Erinnerung an den Berliner Chemiker Wilhelm Traube (1866–1942) Prof. Dr. habil. Dietmar Linke, Kienbergstraße 51, 12685 Berlin <[email protected] Eindringlich dokumentiert ist das tragische persönliche Schicksal des vor 150 Jahren geborenen Universitätsprofessors, der im September 1942 an den Folgen der Misshandlungen bei seiner Festnahme zur beabsichtigten Deportation ver- starb.1 Meist weniger bewusst ist man sich dagegen der vielfältigen fachlichen Leistungen von Wilhelm Traube. Im Anschluss an einige Angaben zu seiner Her- kunft und zu seinem akademischen Werdegang soll hier deshalb vorrangig eine Auswahl aus seinen Arbeiten behandelt werden. Wegen seiner ganz unterschiedlichen, teilweise parallel verfolgten Ziele und In- teressen ist eine pauschale Zuordnung von Wilhelm Traube zu einem der übli- chen Teilgebiete der Chemie, etwa als Organiker, Anorganiker oder Analytiker, nicht möglich. Das schließt natürlich nicht aus, dass er zeitweise doch das eine oder andere der drei genannten Felder bevorzugte. Dass er nicht selten, so bei Ute Deichmann, als „Organiker“ eingestuft wird, ist allerdings verständlich ange- sichts der nach ihm benannten2 Traubesche Synthese.3 Vielleicht hängt es mit dem Wechsel zwischen den Fachgebieten zusammen, dass Wilhelm Traube als Generalist in der Fachliteratur etwas im Schatten seines Vaters und seines älteren Bruders steht. In Lexika ist er jedenfalls deutlich seltener präsent als diese bei- den. Manchmal begünstigen Fehler auch Verwechslungen, zum Beispiel bei sei- nem Vornamen; so wird ergelegentlich Wilhelm Isidor genannt.4 Mit den Chemikern Isidor Traube (1860–1943) und Arthur Traube (1878–1948) istWi l- helm Traube nicht verwandt. Herkunft und akademische Laufbahn von Wilhelm Traube Die nachfolgende genealogische Tabelle erläutert die Zugehörigkeit von Wilhelm Traube zu einer bekannten Wissenschaftlerfamilie.
    [Show full text]
  • Moritz Traube
    Moritz Traube Moritz Traube (* 12. Februar 1826 in Ratibor, Oberschlesien, heute Racibórz, Polen; † 28. Juni 1894 in Berlin) war ein deutscher Chemiker (physiologische Chemie) und universeller Privatgelehrter. Inhaltsverzeichnis Allgemeines Biografische Angaben Studium Ratiborer Zeit (1849–1866) Breslauer Zeit (1866–1891) Berliner Zeit (1891–1894) Wissenschaftliche Leistungen Medizin und klinische Chemie Gärung und Fermentwirkungen Pflanzenphysiologie und Entdeckung semipermeabler Membranen Pathophysiologie, Bakteriologie und Hygiene Lehre von der biologischen Oxidation Wirkungen, Ehrungen und Würdigungen Moritz Traube – Porträt, Quelle: Ber. d. deutschen chem. Gesellsch. 28 Bibliografie (1895) S. 1085 Literatur Weblinks Einzelnachweise Allgemeines Das breite Spektrum von Traubes Schaffen umfasste physiologisch-chemische, medizinische, pflanzenphysiologische und pathophysiologische Fragen, erstreckte sich u. a. auf Hygiene, physikalische Chemie und chemische Grundlagenforschung. Dabei stellte er sich, obwohl nicht an einer Universität, sondern als Weinhändler tätig, erfolgreich gegen Theorien führender Wissenschaftler seiner Zeit (u. a. Justus von Liebig, Louis Pasteur, Felix Hoppe-Seyler, Julius Sachs), und entwickelte experimentell gestützte und für die Forschung bedeutsame Theorien. Die Chemie des Sauerstoffs und dessen Bedeutung für die Organismen war der zentrale Untersuchungsgegenstand und das Verbindungsglied fast aller wissenschaftlichen Arbeiten Traubes. Moritz Traube war ein jüngerer Bruder des bekannten Berliner Arztes Ludwig Traube, des Mitbegründers der experimentellen Pathologie in Deutschland. Moritz Traubes Sohn Wilhelm Traube entwickelte ein bedeutsames Verfahren zur Purinsynthese. Hermann Traube, ein weiterer Sohn, war Mineraloge. Biografische Angaben Studium Der Vater Traubes war ein nicht sehr begüterter jüdischer Weinkaufmann, Enkel eines Krakauer Rabbiners. Das Gymnasium in Ratibor schloss Traube bereits mit 16 Jahren ab. Auf Rat des älteren Bruders Ludwig Traube absolvierte er von 1842 bis 1844 in Berlin ein naturwissenschaftliches Studium.
    [Show full text]
  • The "Cycle of Life" in Ecology
    The “Cycle of Life” in Ecology: Sergei Vinogradskii’s Soil Microbiology, 1885-1940 by Lloyd T. Ackert Jr., Ph.D. Whitney Humanities Center Yale University 53 Wall Street P.O. Box 208298 New Haven, CT 06520-8298 Office (203)-432-3112 [email protected] Abstract Historians of science have attributed the emergence of ecology as a discipline in the late nineteenth century to the synthesis of Humboldtian botanical geography and Darwinian evolution. In this essay, I begin to explore another, largely-neglected but very important dimension of this history. Using Sergei Vinogradskii’s career and scientific research trajectory as a point of entry, I illustrate the manner in which microbiologists, chemists, botanists, and plant physiologists inscribed the concept of a “cycle of life” into their investigations. Their research transformed a longstanding notion into the fundamental approaches and concepts that underlay the new ecological disciplines that emerged in the 1920s. Pasteur thus joins Humboldt as a foundational figure in ecological thinking, and the broader picture that emerges of the history of ecology explains some otherwise puzzling features of that discipline—such as its fusion of experimental and natural historical methodologies. Vinogradskii’s personal “cycle of life” is also interesting as an example of the interplay between Russian and Western European scientific networks and intellectual traditions. Trained in Russia to investigate nature as a super-organism comprised of circulating energy, matter, and life; over the course of five decades—in contact with scientists and scientific discourses in France, Germany, and Switzerland—he developed a series of research methods that translated the concept of a “cycle of life” into an ecologically- conceived soil science and microbiology in the 1920s and 1930s.
    [Show full text]
  • Edaurd Buchner
    E DUARD B U C H N E R Cell-free fermentation Nobel Lecture, December 11, 1907 I would first ask the assembled company to allow me to express my sincere gratitude for having been so highly honoured with the distinction of speak- ing today before the Royal Swedish Academy of Sciences, to which at one time a Scheele and a Berzelius belonged and which at the present time counts Arrhenius among its members, all men whose achievements fill every chem- ist with admiration. The work on which I have to report lies on the bounda- ry between animate and inanimate nature. I therefore have reason to hope that I can interest not only the chemists but also the wide circles of all those who follow the advance of biological science with close attention. It is diffi- cult, however, for a person to be comprehensible and at the same time re- main scientific, so I must ask you to bear with me. If fruit juices or sugar solutions are left to stand in the open air, they show after a few days the processes which are covered by the name of fermenta- tion phenomena. Gas is seen to develop, the clear solution becomes cloudy and a deposit appears which is called yeast. At the same time the sweet taste disappears and the liquid acquires an intoxicating effect. These observations are as old as the hills ; at any rate, these processes have been used since the most ancient times of the human race for the production offermented liquors. It is, however, only since the end of the eighteenth century - i.e.
    [Show full text]
  • History of the Membrane (Pump) Theory of the Living Cell from Its
    Physiol. Chem. Phys. & Med. NMR (2007) 39:1–67 History of the Membrane (Pump) Theory of the Living Cell from Its Beginning in Mid-19th Century to Its Disproof 45 Years Ago — though Still Taught Worldwide Today as Established Truth Gilbert Ling Damadian Foundation for Basic and Cancer Research Tim and Kim Ling Foundation for Basic and Cancer Research E-mail: [email protected] Abstract: The concept that the basic unit of all life, the cell, is a membrane-enclosed soup of (free) water, (free) K+ (and native) proteins is called the membrane theory. A careful examination of past records shows that this theory has no author in the true sense of the word. Rather, it grew mostly out of some mistaken ideas made by Theodor Schwann in his Cell Theory. (This is not to deny that there is a membrane theory with an authentic author but this authored membrane theory came later and is much more narrowly focussed and accordingly can at best be regarded as an offshoot of the broader and older membrane theory without an author.) However, there is no ambiguity on the demise of the membrane theory, which occurred more than 60 years ago, when a flood of converging evidence showed that the asymmetrical distribution of K+ and Na+ observed in virtually all living cells is not the result of the presence of a membrane barrier that permits some solutes like water and K+ to move in and out of the cell, while barring — ab- solutely and permanently — the passage of other solutes like Na+. To keep the membrane theory afloat, submicroscopic pumps were installed across the cell mem- brane to maintain, for example, the level of Na+ in the cell low and the level of K+ high by the cease- less pumping activities at the expense of metabolic energy.
    [Show full text]
  • Unit 1 Cells and Multicellular Organisms
    UNIT 1 QCE BIOLOGY UNIT 1 CELLS AND MULTICELLULAR ORGANISMS Kerri Humphreys © Science Press 2019 First published 2019 Science Press All rights reserved. No part of this publication Unit 7, 23-31 Bowden Street may be reproduced, stored in a retrieval system, Alexandria NSW 2015 Australia or transmitted in any form or by any means, Tel: +61 2 9020 1840 Fax: +61 2 9020 1842 electronic, mechanical, photocopying, recording [email protected] or otherwise, without the prior permission of www.sciencepress.com.au Science Press. ABN 98 000 073 861 Contents Introduction v 35 Developing the Cell Theory 52 Words to Watch vi 36 Experiment – The Light Microscope 54 37 Experiment – Using a Light Microscope 55 Topic 1 Cells As the Basis Of Life 38 Experiment – Making a Wet Mount 56 39 Experiment – Drawing Biological Diagrams 57 1 Assumed Knowledge Topic 1 4 40 Measurement 58 2 Development Of the Model Of the Cell Membrane 5 41 Drawing Scaled Diagrams 60 3 The Current Cell Membrane Model 7 42 Writing a Practical Report 61 4 Membrane Proteins and Cholesterol 9 43 Experiment – Plant Cells 63 5 Passive Transport 10 44 Experiment – Animal Cells 64 6 Diffusion and Osmosis 11 45 The Light Microscope and Cell Organelles 65 7 Experiment – Membranes, Diffusion and Osmosis 13 46 The Electron Microscope and Cell Organelles 67 8 Experiment – Plasmolysis 14 47 Mitochondria 68 9 Energy and Active Transport 15 48 Chloroplasts 69 10 Active Transport 16 49 Golgi Bodies 70 11 Exocytosis 17 50 Cell Organelles Summary 71 12 Endocytosis 19 51 Comparing Prokaryotes
    [Show full text]
  • Wilhelm Friedrich Phillip Pfeffer (1845-1920) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Wilhelm Friedrich Phillip Pfeffer (1845-1920) [1] By: Parker, Sara Keywords: Pfeffer Zelle [2] Pfeffer cell [3] Wilhelm Friedrich Phillip Pfeffer studied plants in Germany during the late nineteenth and early twentieth centuries. He started his career as an apothecary, but Pfeffer also studied plant physiology, including how plants move and react to changes in light, temperature, and osmotic pressure. He created the Pfeffer Zelle apparatus, also known as the Pfeffer Cell, to study osmosis in plants. Pfeffer’s experiments led to new theories about the structure and development of plants. Pfeffer was born in Grebenstein, Germany, on 9 March 1845 to Louise Theobald andW ilhelm Pfeffer [4]. His father owned an apothecary shop inherited from Pfeffer’s grandfather and planned for his son to be the third generation owner. His father also owned a large herbarium, a place to house dried plant specimens that are mounted and arranged systematically, and often took his son on expeditions to the countryside. By age six, Pfeffer started his own collection of pressed flowers. Pfeffer’s uncle, Gottfried Theobald, also introduced him to nature and the natural sciences, and took him on trips into the Alps starting at age twelve. According to his biographer, Gloria Robinson, Pfeffer was fearless when exploring in the Alps and would search for certain specimens of mosses and rare plants in difficult locations. Pfeffer was one of the first people to climb the Matterhorn, a mountain in the Pennine Alps on the border between Switzerland and Italy. Pfeffer attended grammar school in Grebenstein until age twelve.
    [Show full text]
  • The Artificial Cell, the Semipermeable Membrane, and the Life That Never
    DANIEL LIU* The Artificial Cell, the Semipermeable Membrane, and the Life that Never Was, 1864—1901 ABSTRACT Since the early nineteenth century, a membrane or wall has been central to the cell’s identity as the elementary unit of life. Yet the literally and metaphorically marginal status of the cell membrane made it the site of clashes over the definition of life and the proper way to study it. In this article I show how the modern cell membrane was conceived of by analogy to the first “artificial cell,” invented in 1864 by the chemist Moritz Traube (1826–1894), and reimagined by the plant physiologist Wilhelm Pfeffer (1845–1920) as a precision osmometer. Pfeffer’s artificial cell osmometer became the conceptual and empirical basis for the law of dilute solutions in physical chemistry, but his use of an artificial analogue to theorize the existence of the plasma membrane as distinct from the cell wall prompted debate over whether biology ought to be more closely unified with the physical sciences, or whether it must remain independent as the science of life. By examining how the histories of plant physiology and physical chemistry intertwined through the artificial cell, I argue that modern biology relocated vitality from protoplasmic living matter to non-living chemical sub- stances—or, in broader cultural terms, that the disenchantment of life was accompa- nied by the (re)enchantment of ordinary matter. KEY WORDS: cell membrane, protoplasm, plant physiology, colloid chemistry, biophysics, physical chemistry, osmosis, materialism INTRODUCTION Since the 1950s it has been known that most cell membranes are 7–10 nm (70–100 A˚) thick, about half of which is the iconic heads-out tails-in lipid *ICI Berlin Institute for Cultural Inquiry, Christinenstr.
    [Show full text]
  • Stéphane Leduc and the Vital Exception in the Life Sciences Raphaël Clément *
    Stéphane Leduc and the vital exception in the Life Sciences Raphaël Clément * Institut de Biologie du Développement de Marseille Aix-Marseille Université / CNRS UMR7288 13009 Marseille, France Abstract Embryogenesis, the process by which an organism forms and develops, has long been and still is a major field of investigation in the natural sciences. By which means, which forces, are embryonic cells and tissues assembled, deformed, and eventually organized into an animal? Because embryogenesis deeply questions our understanding of the mechanisms of life, it has motivated many scientific theories and philosophies over the course of history. While genetics now seems to have emerged as a natural background to study embryogenesis, it was intuited long ago that it should also rely on mechanical forces and on the physical properties of cells and tissues. In the early 20th century, Stéphane Leduc proposed that biology was merely a subset of fluid physics, and argued that biology should focus on how forces act on living matter. Rejecting vitalism and life-specific approaches, he designed naïve experiments based on osmosis and diffusion to mimic shapes and phenomena found in living systems, in order to identify physical mechanisms that could support the development of the embryo. While Leduc’s ideas then had some impact in the field, notably on later acclaimed D’Arcy Thompson, they fell into oblivion during the later 20th century. In this article I give an overview of Stéphane Leduc’s physical approach to life, and show that the paradigm that he introduced, although long forsaken, becomes more and more topical today, as developmental biology increasingly turns to physics and self-organization theories to study the mechanisms of embryogenesis.
    [Show full text]
  • The Cell Membrane: a Historical Narration
    Review DOI: 10.14235/bas.galenos.2019.3131 Bezmialem Science 2020;8(1):81-8 The Cell Membrane: A Historical Narration Hücre Membranının Keşfi: Tarihsel Bir Bakış Kübra Tuğçe KALKAN, Mukaddes EŞREFOĞLU Bezmialem Vakıf University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey ABSTRACT ÖZ The discovery of the structural elements of the cell has been entirely Hücrenin yapısal elemanlarının keşfi tamamen teknolojik buluşlara dependent on technological inventions. Although the discovery bağımlı olmuştur. Her ne kadar hücre membranlarının keşfinin of cell membranes is thought to be in parallel with the discovery mikroskopların keşfiyle paralel olduğu düşünülse de bu tam olarak of microscopes, this is not exactly true. In the early 1660s, Robert doğru değildir. Bin altı yüz altmışlı yılların başında Robert Hooke Hooke made his first observation using a light microscope. In 1665, ilk ışık mikroskobik gözlemini gerçekleştirmiştir. 1665 yılında he examined a piece of fungus under a light microscope and he ışık mikroskop altında bir mantar parçasını inceleyerek gördüğü called each space as “cellula”. It was not already possible for him to boşlukları “cellula” olarak isimlendirmiştir. Bu incelemede kullandığı see cell membranes with the primitive light microscope he used in ilkel ışık mikroskobu ile hücre membranlarını görmesi zaten this study. Also because the cells he was trying to study were plant mümkün değildi. Ayrıca incelemeye çalıştığı hücreler bitki hücreleri cells, the lines that actually bounded the “cellula” were not the cell olduğu için, aslında hücreleri sınırlayan çizgiler hücre membranı membrane, but the cell wall.In the following years,in addition to değil, hücre duvarıydı. İlerleyen yıllarda mikroskobik gözlemlere the microscopic observations, various physio-chemical studies were ilaveten çeşitli fizyokimyasal çalışmalarla hücre membranlarının done in order to explore the structural and functional properties of yapısal ve fonksiyonel özellikleri açıklanmaya çalışıldı.
    [Show full text]