The Artificial Cell, the Semipermeable Membrane, and the Life That Never
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Droplet Microfluidics for Tumor Drug‐Related Studies And
REVIEW www.global-challenges.com Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells Pantelitsa Dimitriou,* Jin Li, Giusy Tornillo, Thomas McCloy, and David Barrow* robotics, have promoted the use of in vitro Anticancer drug development is a crucial step toward cancer treatment, tumor models in high-throughput drug that requires realistic predictions of malignant tissue development and screenings.[2,3] High-throughput screens sophisticated drug delivery. Tumors often acquire drug resistance and drug for anticancer drugs have been, for a long efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. time, limited to 2D culture of tumor cells, grown as a monolayer on the bottom of On the other hand, 3D cultures, including multicellular tumor spheroids a well of a microtiter plate. Compared to (MCTSs), mimic the in vivo cellular arrangement and provide robust 2D cell cultures, 3D culture systems can platforms for drug testing when grown in hydrogels with characteristics more faithfully model cell-cell interactions, similar to the living body. Microparticles and liposomes are considered smart matrix deposition and tumor microenvi- drug delivery vehicles, are able to target cancerous tissue, and can release ronments, including more physiological flow conditions, oxygen and nutrient gra- entrapped drugs on demand. Microfluidics serve as a high-throughput dients.[4] Therefore, 3D cultures have tool for reproducible, flexible, and automated production of droplet-based recently begun to be incorporated into microscale constructs, tailored to the desired final application. In this high-throughput drug screenings, with the review, it is described how natural hydrogels in combination with droplet aim of better predicting drug efficacy and microfluidics can generate MCTSs, and the use of microfluidics to produce improving the prioritization of candidate tumor targeting microparticles and liposomes. -
Anti-Duhring
Friedrich Engels Herr Eugen Dühring’s Revolution in Science Written: September 1876 - June 1878; Published: in Vorwärts, Jan 3 1877-July 7 1878; Published: as a book, Leipzig 1878; Translated: by Emile Burns from 1894 edition; Source: Frederick Engels, Anti-Dühring. Herr Eugen Dühring’s Revolution in Science, Progress Publishers, 1947; Transcribed: [email protected], August 1996; Proofed and corrected: Mark Harris 2010. Formerly known as Herr Eugen Dühring's Revolution in Science, Engels’ Anti-Dühring is a popular and enduring work which, as Engels wrote to Marx, was an attempt “to produce an encyclopaedic survey of our conception of the philosophical, natural-science and historical problems.” Marx and Engels first became aware of Professor Dühring with his December 1867 review of Capital, published in Ergänzungsblätter. They exchanged a series of letters about him from January-March 1868. He was largely forgotten until the mid-1870s, at which time Dühring entered Germany's political foreground. German Social-Democrats were influenced by both his Kritische Geschichte der Nationalökonomie und des Sozialismus and Cursus der Philosophie als streng wissenschaftlicher Weltanschauung und Lebensgestaltung. Among his readers were included Johann Most, Friedrich Wilhelm Fritzsche, Eduard Bernstein – and even August Bebel for a brief period. In March 1874, the Social-Democratic Workers’ Party paper Volksstaat ran an anonymous article (actually penned by Bebel) favorably reviewing one of Dühring's books. On both February 1 and April 21, 1875, Liebknecht encouraged Engels to take Dühring head-on in the pages of the Volksstaat. In February 1876, Engels fired an opening salvo with his Volksstaat article “Prussian Vodka in the German Reichstag”. -
Osmotic Investigations: Studies on Cell Mechanics (1877), by Wilhelm Pfeffer [1]
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Osmotic Investigations: Studies on Cell Mechanics (1877), by Wilhelm Pfeffer [1] By: Parker, Sara Keywords: Pfeffer cell [2] Wilhelm Pfeffer [3] published his book Osmotische Untersuchungen: Studien Zur Zellmechanik (Osmotic Investigations: Studies on Cell Mechanics) in 1877 during his time as a professor of botany at the University of Basel [4] in Basel, Switzerland. Gordon R. Kepner and Eduard J. Stadelmann translated the book into English in 1985. Verlag von Wilhelm Engelmann in Leipzig [5], Germany, published the original book in German in 1877 and Van Nostrand Reinhold Company in New York, New York, published the English version in 1985. The book focuses on the cell mechanics of osmotic processes to explain why high pressure exists in plant cells. The book also provides one of the earliest detailed descriptions of the Pfeffer Cell, a devise Pfeffer had created to model and study osmosis in plant cells. The model helped Pfeffer propose theories for how osmosis affected metabolism, growth, and development of plant cells. Osmotic Investigations explores the functions of osmosis and osmotic pressures in plants. Pfeffer had worked and studied at several universities including the University of Basel [4], where he wrote this book, the University of Bonn [6] in Bonn, Germany, and the University of Leipzig [7] in Leipzig [5], Germany. One scientist that influenced Pfeffer was Carl Wilhelm von Nägeli, who studied plant physiology at the University of Zurich [8] in Zurich, Switzerland, in the mid nineteenth century. Pfeffer noted in his 1858 book Pflanzenphysiologische Untersuchungen (Physiology Investigations of Plants), that Nägeli had showed how the cell wall grows in surface area and thickness. -
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Unstill Life: The Emergence and Evolution of Time-Lapse Photography Permalink https://escholarship.org/uc/item/2q89f608 Author Boman, James Stephan Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Unstill Life: The Emergence and Evolution of Time-Lapse Photography A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Film and Media Studies by James Stephan Boman Committee in charge: Professor Janet Walker, Chair Professor Charles Wolfe Professor Peter Bloom Professor Colin Gardner September 2019 The dissertation of James Stephan Boman is approved. ___________________________________________________ Peter Bloom ___________________________________________________ Charles Wolfe ___________________________________________________ Colin Gardner ___________________________________________________ Janet Walker, Committee Chair March 2019 Unstill Life: The Emergence and Evolution of Time-Lapse Photography Copyright © 2019 By James Stephan Boman iii ACKNOWLEDGMENTS I would like to thank my friends and colleagues at UC Santa Barbara, including the fellow members of my cohort—Alex Champlin, Wesley Jacks, Jennifer Hessler, and Thong Winh—as well as Rachel Fabian, with whom I shared work during our prospectus seminar. I would also like to acknowledge the diverse and outstanding faculty members with whom I had the pleasure to work as a student at UCSB, including Lisa Parks, Michael Curtin, Greg Siegel, and the rest of the faculty. Anna Brusutti was also very important to my development as a teacher. Ross Melnick has been a source of unflagging encouragement and a fount of advice in my evolution within and beyond graduate school. -
Academic Year 2017- 2018 First Term Biology Revision Sheet
Academic Year 2017- 2018 First Term Biology Revision Sheet Name: ____________________________ Date: _______________ Grade 9 Section: ______________ Q1: Choose the letter of the best answer ___ 1.What is the main function of the Golgi apparatus? A. communicates with another cell B. convert solar energy to chemical energy C. process and deliver proteins D. copy genetic material. ___2. Which of the following organelles can be found in cytoplasm and on the surface of the endoplasmic reticulum A. mitochondria B. centrosomes C. ribosomes D.centrioles ___ 3. What type of membrane allows some, but not all materials A. diffusible B. permeable C. impermeable D. selectively permeable ____4. What materials makes up a cell membrane? A. Phospholipids and cholesterol B. Cholesterol and protein C. Phospholipid, cholesterol and protein D. Phospholipid, protein and amino acid Page 1 of 7 ____5. What type of receptor is within a cell? A. Membrane receptor B. Intracellular receptor C. Intercellular receptor D. Ligand receptor ____6. Which part of phospholipid is hydrophobic? A. Glycerol B. fatty acid tail C. entire phospholipid molecule D. phosphate group only ____7. A ligand produces a response in a cell if it finds the right kind of A. carbohydrate. B. hormone. C. membrane. D.receptor. ____8. What is the term for the diffusion of water across a semipermeable membrane? A. osmosis B.equilibrium C.transport D.isotonic ____9.The movement of molecules down a concentration gradient through transport proteins in the cell membrane is a type of A. selective transport. B.osmosis C.energy expenditure. D.facilitated diffusion. ___10.Nucleus act as a A. -
1.4 Solar Cell Losses and Design in This Final Introduction Video on Photo
1.4 Solar cell losses and design In this final introduction video on photovoltaic energy conversion, we will discuss the various parts of a solar cell and the losses that occur in a solar cell. The losses in solar cells will provide an important framework to put everything we learn over the course of the next couple of weeks in context. The learning objective for this video are to understand the main function of the various parts of a solar cell. We will discuss the main losses that occur in solar cells and we will come to understand how these losses lead to the design rules for solar cells. Shown here is a standard silicon wafer based solar cell. These are the most common type of solar cells, accounting for about 93 % of the total production in 2015. We will base this solar cell on a p-type silicon absorber even though some silicon cells can be made with an n-type absorber layer. The purpose of this absorber layer, as its name implies, is to absorb light. Through this absorption, minority and majority charge charge carriers are formed. In the case of a p-type absorber, electrons are the minority carriers and holes are the majority carriers. Next is the emitter layer. The emitter layer is crucial for charge carrier separation and collection. The emitter layer functions as an selective membrane, that allows minority charge carriers, in this case electrons, to move through, but resists the movement of majority carriers, in this case holes. Without the emitter layer, generated charge carriers would simply move around in the absorber layer until they recombine. -
United States Patent to 11, 3,996,141 Updike 45 Dec
United States Patent to 11, 3,996,141 Updike 45 Dec. 7, 1976 54 DALYSIS MEMBRANE 2,971,850 2/1961 Barton ............................. 195/63 X 3, 158,532 11/1964 Pall et al. ... ... 210/503 X 75 Inventor: Stuart J. Updike, Madison, Wis. 3,282,702 1 1/1966 Schreiner ........................ 195/63 X (73) Assignee: Wisconsin Alumni Research 3,327,859 6/1967 Pall .............. ........ 210/266 3,526,481 9/1970 Rubricius ........... ... 210/321 X Foundation, Madison, Wis. 3,766,013 10/1973 Forgione et al. .................... 195/63 22) Filed: Jan. 17, 1974 3,809,613 5/1974 Vieth et al. ...................... 195/68 X 3,824, 150 7/1974 Lilly et al. ... ... 195/DIG. l l X 21 ) Appl. No.: 434,231 3,846,236 1 1/1974 Updike ......................... 23/258.5 X Related U.S. Application Data Primary Examiner-Frank A. Spear, Jr. (63) Continuation-in-part of Ser. No. 191,720, Oct. 22, Attorney, Agent, or Firm-McDougall, Hersh & Scott 1971, Pat. No. 3,846,236. 57 ABSTRACT 52 U.S. Cl. ................................ 210/501; 427/245 (51) Int. Cl. ......................................... B01D 13/04 A semi-permeable membrane containing a catalyst for 58 Field of Search .............. 210/22, 23, 321,500, conversion of hydrogen peroxide introduced from one side of the semi-permeable membrane to molecular 210/501, 502; 23/258.5; 195/18, 63; oxygen which is released from the opposite side of the 106/194; 264/41, 49; 427/245 semi-permeable membrane. The catalyst is preferably 56) References Cited in the form of a ruthenium oxide or sulfide and prefer UNITED STATES PATENTS ably in assymetrical distribution in the membrane. -
Electrochemistry: Elektrolytic and Galvanic Cell Co08 Galvanic Series (Beketov, Cca 1860)
1/26 Electrochemistry: Elektrolytic and galvanic cell co08 Galvanic series (Beketov, cca 1860): Li, Ca, Al, Mn, Cr Zn, Cd Fe, Pb, [H2], Cu, Ag, Au ≈ ≈ ⊕ Cell = system composed of two electrodes and an electrolyte. electrolytic cell: electric energy chemical reaction ! galvanic cell: chemical reaction electric energy ! reversible galvanic cell (zero current) Electrodes anode = electrode where oxidation occurs Cu Cu2+ + 2 e ! − 2 Cl Cl2 + 2 e − ! − cathode = electrode where reduction occurs 2 Cu + + 2 e Cu credit: Wikipedia (free) − ! Cl2 + 2 e 2 Cl − ! − Oxidation and reduction are separated in a cell. The charge flows through the circuit. 2/26 Anode and cathode co08 electrolytic cell galvanic cell '$ '$ - - ⊕&% &% ⊕ Cl2 Cu2+ Cu2+ Pt Cl ! ! 2 Cu Cl Cl − Cu − CuCl2(aq) CuCl2(aq) anode cathode anode cathode “anions go to the anode” 3/26 Galvanic cells: electrodes, convention co08 Electrodes(= half-cells) may be separated by a porous separator, polymeric mem- brane, salt bridge. Cathode is right (reduction) ⊕ Anode is left (oxidation) negative electrode (anode) positive electrode (cathode) ⊕ liquid junction phase boundary . (porous separator) j salt bridge .. semipermeable membrane k Examples: 3 Cu(s) CuCl2(c = 0.1 mol dm ) Cl2(p = 95 kPa) Pt j − j j ⊕ Ag s AgCl s NaCl m 4 mol kg 1 Na(Hg) ( ) ( ) ( = − ) j j j 1 NaCl(m = 0.1 mol kg ) AgCl(s) Ag(s) j − j j ⊕ 2 3 4 3 3 3 Pt Sn +(0.1 mol dm ) + Sn +(0.01 mol dm ) Fe +(0.2 mol dm ) Fe j − − jj − j ⊕ 4/26 Equilibrium cell potential co08 Also: electromotive potential/voltage, electromo- tive force (EMF). -
Biological Atomism and Cell Theory
Studies in History and Philosophy of Biological and Biomedical Sciences 41 (2010) 202–211 Contents lists available at ScienceDirect Studies in History and Philosophy of Biological and Biomedical Sciences journal homepage: www.elsevier.com/locate/shpsc Biological atomism and cell theory Daniel J. Nicholson ESRC Research Centre for Genomics in Society (Egenis), University of Exeter, Byrne House, St. Germans Road, Exeter EX4 4PJ, UK article info abstract Keywords: Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activ- Biological atomism ity of a living organism is thus conceived as the result of the activities and interactions of its elementary Cell theory constituents, each of which individually already exhibits all the attributes proper to life. This paper sur- Organismal theory veys some of the key episodes in the history of biological atomism, and situates cell theory within this Reductionism tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory’s conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the phys- icochemical reductionism of mechanistic biology. -
Development of Artificial Cell Culture Platforms Using Microfluidics
DEVELOPMENT OF ARTIFICIAL CELL CULTURE PLATFORMS USING MICROFLUIDICS By HANDE KARAMAHMUTOĞLU Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for the degree of Master of Science Sabanci University July 2019 DEVELOPMENT OF ARTIFICIAL CELL CULTURE PLATFORMS USING MICROFLUIDICS APPROVED BY Assoc. Prof. Dr. Meltem Elita¸s .............................................. (Thesis Supervisor) Assist. Prof. Dr. Murat Kaya Yapıcı .............................................. Assoc. Prof. Dr. Ali Özhan Aytekin .............................................. DATE OF APPROVAL: .............................................. ii © Hande Karamahmutoğlu 2019 All Rights Reserved iii ABSTRACT DEVELOPMENT OF ARTIFICIAL CELL CULTURE PLATFORMS USING MICROFLUIDICS HANDE KARAMAHMUTOGLU Mechatronics Engineering, MSc, Thesis, July 2019 Thesis Supervisor: Assoc. Prof. Dr. Meltem Elitas Key Words: Cell Culture, Cancer, Microfluidics, Lab-on-a-chip and Single-cell resolution. Acquiring quantitative data about cells, cell-cell interactions and cellular responses to surrounding environments are crucial for medical diagnostics, treatment and cell biology research. Nowadays, this is possible through microfluidic cell culture platforms. These devices, lab-on-a-chip (LOC), are capable of culturing cells with the feature of mimicking in vivo cellular conditions. Through the control of fluids in small volumes, LOC closely mimics the nature of cells in the tissues compared to conventional cell culturing platforms -
Development of an Artificial Cell, from Self- INAUGURAL ARTICLE Organization to Computation and Self-Reproduction
Development of an artificial cell, from self- INAUGURAL ARTICLE organization to computation and self-reproduction Vincent Noireauxa, Yusuke T. Maedab, and Albert Libchaberb,1 aUniversity of Minnesota, 116 Church Street SE, Minneapolis, MN 55455; and bThe Rockefeller University, 1230 York Avenue, New York, NY 10021 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2007. Contributed by Albert Libchaber, November 22, 2010 (sent for review October 13, 2010) This article describes the state and the development of an artificial the now famous “Omnis cellula e cellula.” Not only is life com- cell project. We discuss the experimental constraints to synthesize posed of cells, but also the most remarkable observation is that a the most elementary cell-sized compartment that can self-reproduce cell originates from a cell and cannot grow in situ. In 1665, Hooke using synthetic genetic information. The original idea was to program made the first observation of cellular organization in cork mate- a phospholipid vesicle with DNA. Based on this idea, it was shown rial (8) (Fig. 1). He also coined the word “cell.” Schleiden later that in vitro gene expression could be carried out inside cell-sized developed a more systematic study (9). The cell model was finally synthetic vesicles. It was also shown that a couple of genes could fully presented by Schwann in 1839 (10). This cellular quantiza- be expressed for a few days inside the vesicles once the exchanges tion was not a priori necessary. Golgi proposed that the branched of nutrients with the outside environment were adequately intro- axons form a continuous network along which the nervous input duced. -
Reader 19 05 19 V75 Timeline Pagination
Plant Trivia TimeLine A Chronology of Plants and People The TimeLine presents world history from a botanical viewpoint. It includes brief stories of plant discovery and use that describe the roles of plants and plant science in human civilization. The Time- Line also provides you as an individual the opportunity to reflect on how the history of human interaction with the plant world has shaped and impacted your own life and heritage. Information included comes from secondary sources and compila- tions, which are cited. The author continues to chart events for the TimeLine and appreciates your critique of the many entries as well as suggestions for additions and improvements to the topics cov- ered. Send comments to planted[at]huntington.org 345 Million. This time marks the beginning of the Mississippian period. Together with the Pennsylvanian which followed (through to 225 million years BP), the two periods consti- BP tute the age of coal - often called the Carboniferous. 136 Million. With deposits from the Cretaceous period we see the first evidence of flower- 5-15 Billion+ 6 December. Carbon (the basis of organic life), oxygen, and other elements ing plants. (Bold, Alexopoulos, & Delevoryas, 1980) were created from hydrogen and helium in the fury of burning supernovae. Having arisen when the stars were formed, the elements of which life is built, and thus we ourselves, 49 Million. The Azolla Event (AE). Hypothetically, Earth experienced a melting of Arctic might be thought of as stardust. (Dauber & Muller, 1996) ice and consequent formation of a layered freshwater ocean which supported massive prolif- eration of the fern Azolla.