Bhm117 - Principles of Food Science

Total Page:16

File Type:pdf, Size:1020Kb

Bhm117 - Principles of Food Science PRINCIPLES OF FOOD SCIENCE BHM117 - PRINCIPLES OF FOOD SCIENCE HOURS ALLOTED: 30 MAXIMUM MARKS: 100 S.No. Topic Hours Weight age 01 Definition and scope of food science and 02 5% It’s inter-relationship with food chemistry, food microbiology and food processing. 02 CARBOHYDRATES 04 15% A. Introduction B. Effect of cooking (gelatinisation and retrogradation) C. Factors affecting texture of carbohydrates (Stiffness of CHO gel & dextrinization D. Uses of carbohydrates in food preparations 03 FAT & OILS 05 20% A. Classification (based on the origin and degree of saturation) B. Autoxidation (factors and prevention measures) C. Flavour reversion D. Refining, Hydrogenation & winterisation E. Effect of heating on fats & oils with respect to smoke point F. Commercial uses of fats (with emphasis on shortening value of different fats) 04 PROTEINS 04 15% A. Basic structure and properties B. Type of proteins based on their origin (plant/animal) C. Effect of heat on proteins (Denaturation, coagulation) D. Functional properties of proteins (Gelation, Emulsification, IHM –BANGALORE [2014] Page 1 PRINCIPLES OF FOOD SCIENCE Foamability, Viscosity) E. Commercial uses of proteins in different food preparations(like Egg gels, Gelatin gels, Cakes, Confectionary items, Meringues, Souffles, Custards, Soups, Curries etc.) 05 FOOD PROCESSING 03 10% A. Definition B. Objectives C. Types of treatment D. Effect of factors like heat, acid, alkali on food constituents 06 EVALUATION OF FOOD 03 10% A. Objectives B. Sensory assessment of food quality C. Methods D. Introduction to proximate analysis of Food constituents E. Rheological aspects of food 07 EMULSIONS 03 10% A. Theory of emulsification B. Types of emulsions C. Emulsifying agents D. Role of emulsifying agents in food emulsions 08 COLLOIDS 02 5% Definition IHM –BANGALORE [2014] Page 2 PRINCIPLES OF FOOD SCIENCE Application of colloid systems in food preparation 09 FLAVOUR 02 5% Definition Description of food flavours (tea, coffee, wine, meat, fish spices 10 BROWNING 02 5% Types (enzymatic and non-enzymatic) Role in food preparation Prevention of undesirable browning TOTAL 30 100% Definition and scope of food science Food Science Food Science: The study of food science involves understanding the nature, composition and behavior of food materials under varying conditions of storage, processing and use. Thus, it helps us to find answers to questions such as what is food, what happens to it when it is stored, processed, preserved, cooked and what determines its acceptability. Food science embraces many disciplines. Chemical and biochemical methods are used to determine food composition. Knowledge of food composition helps us to use food intelligently to fulfill our nutritional needs. Retention of food quality and preservation of foods are based on food microbiology. The changes that occur in foods during preparation such as volume and texture are physical ones. Study of food acceptability is based on the understanding of socio cultural background. The principles of economics help us to manage food budget efficiently. Thus the basic sciences of physics, chemistry and biology are all involved as also the sciences of biochemistry and microbiology. In addition, one needs understanding of social sciences such as psychology, sociology and economics. Yet food science is more than the sum of these separate disciplines, because it is a subject with its own character. There has been a tremendous increase in our population in the last twenty years. The gains of “Green Revolution” and “White Revolution” have been nullified in the process. The per capita availability of food has decreased in this period. There is an urgent need to conserve foods produced by reducing post-harvest losses to derive maximum benefit from IHM –BANGALORE [2014] Page 3 PRINCIPLES OF FOOD SCIENCE foods produced. In practice, it means we must utilize all edible parts of plant and animal foods and avoid wastage of food, both at personal and institutional level. Effect of Preparation and Processing on Food Components A number of changes occur in the food components as a result of preparation. It is necessary to understand and manipulate the changes to obtain an acceptable food product. The major constituents of food are carbohydrates, proteins, fats and their derivatives and water. In addition, a number of inorganic mineral components and a diverse group of organic substances are present in very small amounts in foods. These include pigments, flavour components, vitamins, acids, enzymes, etc. Let us consider their properties and the changes that occur in these components during handling, cooking and processing. Carbohydrates Starch, sugars, pectins, gums, celluloses and hemi-celluloses are the important carbohydrates found in food. Starches are the major component of cereals, millets, dals, roots, tubers and sago. Starches are bland in taste, not readily soluble in cold water but absorb water when soaked in hot water. When starch granules are added to cold water, a temporary suspension is formed, the starch tends to settle out as soon as the mixture is allowed to stand. When dry starch is mixed with warm or hot water, the part which comes in contact with water becomes sticky and the starch granules cling together in lumps. Heating does not help to separate the granules, because once formed the lumps stay intact. If one of these lumps is broken open, raw starch is found inside. Lump formation can be prevented by mixing starch with a little cold water before introducing it into the hot water; roasting a little before addition of hot water or addition of a little fat, helps to separate the starch granules and allows them to gelatinise separately. The starches take up water, swell and burst on cooking. When a starch and water mixture is heated, it becomes translucent and forms a paste. This change is accompanied by a change IHM –BANGALORE [2014] Page 4 PRINCIPLES OF FOOD SCIENCE in viscosity. This property is used when starch is used as a thickener in soups, starch puddings and other preparations. A gel is formed at a higher concentration of starch, e.g., puddings. The water is held in a physical bond by the starch. The change in texture, colour and physical state, which occurs when starch is heated in water,is known as gelatinisation of starch. In roots and tubers, the presence of starch, which absorbs the water during cooking, results in retention of size. Sugars About 5-11 per cent are present in ripe fruits, malted beverages and in milk. Sucrose, the sugar we use in food preparations is one of the pure, manufactured (extracted) foods we use daily. It is manufactured from sugarcane or sugar beet. Sugar is sweet and is usually used in foods for its sweetening power. Sugar dissolves in water and when heated this solution easily forms a syrup. When the solution is supersaturated and cooled, crystallisation occurs. This is the process used to prepare sweets such as laddus, candies etc. When a high concentration of sugar is used, it acts as a preservative by binding moisture, e.g., preserves such as murrabbas, jams and jellies. In the presence of acids, the sugar (sucrose) is partially hydrolysed to form glucose and fructose, which is known as invert sugar, which is more soluble than sucrose. If sugar is heated beyond its melting point it caramelises or browns. The caramel formed has a bitter, astringent flavour. Sugars are readily fermented by microorganisms, thus causing spoilage of food products containing it. Pectins and gums are responsible for holding the plant cells together. These are found in fruits and vegetables in a very small amount. Pectins and gums form colloidal solution when extracted in hot water and contribute to the viscosity of the product to which they are added. Therefore, these are used as thickeners and stabilisers in food preparation and processing. Pectins form gels in the presence of an appropriate amount of sugar and acid, e.g., fruit jellies. Amla, guava, citrus fruits, papaya and apples contain pectin as soluble fibre. These fruits can be used to make fruit jellies. It is reported that pectin can lower total cholesterol and low-density lipoproteins in the blood. Celluloses and hemicelluloses, the fibrous parts of vegetables and fruits are not soluble in cold or hot water. These soften as the water trapped in their tissues is released and used in cooking or processing. Thus there is a decrease in volume, especially of leafy vegetables. Celluloses are not digested by man even after cooking but as it has the capacity to bind moisture, it is helpful in smooth movement of the food through the digestive tract. IHM –BANGALORE [2014] Page 5 PRINCIPLES OF FOOD SCIENCE Proteins Egg, fish, poultry and meat are good examples of protein foods. In dals and pulses, the presence of a large amount of starch (50–60 per cent) masks the reactions of proteins during preparation. The effect of preparation on food proteins can be clearly observed in egg, fish, poultry and meat, as these contain mainly proteins, water and variable amounts of fat. All proteins are first denatured and then coagulated by heat. The coagulation occurs between and 90°C. The temperature of coagulation increases with the addition of other ingredients. For example, egg proteins coagulate at 65°–70° C but egg custard coagulates at 85°–90° C. Cooking results in softening of proteins in foods such as eggs, fish, poultry, meat, as water is bound in the process of coagulation. If the coagulated protein is heated further, it loses moisture and becomes dry and rubbery. Therefore it is important to monitor the temperature and time while preparing these food Proteins are precipitated by change of pH, e.g., addition of lemon juice to milk to prepare paneer. Proteins bind water, if the coagulation is gradual, e.g., addition of lactic inocculum results in the formation of solid curd from liquid milk.
Recommended publications
  • Food Science and Human Nutrition (FSN)
    Bachelor of Arts in Business Administration Area of Specialization: Food Science and Human Nutrition (FSN) Description The Food Science and Human Nutrition Department in the College of Agricultural and Life Sciences offers this area of specialization to students seeking employment in food corporations. It provides a basic foundation in food science and nutrition without requiring an extensive science background, and will benefit students interested in food-related careers in market research, production management, and purchasing and sales. For career information view: http://www.crc.ufl.edu/ Requirements Students are required to have a minimum of four classes totaling 12 hours from any of the 3000-4000 level courses listed below and maintain a minimum 2.0 Area of Specialization GPA. Be sure to check course prerequisite requirements. Course Title Prerequisites Offered FOS3042 Introductory Food Science (3 credits) None. Fall, Spring, Summer A FOS 4202 Food Safety and Sanitation (2 credits) MCB2000 with Fall lab MCB2000L FOS 4722C Quality Control in Food Systems (3 credits) STA2023 Fall FOS 4731 Government Regulations and Food (2 credits) FOS3042 Spring FOS 4936 HACCP Systems (2 credits) None. Fall Odd years (FOS4936); Or ALS 4932 Spring (ALS4932) Contact Information You are always welcome to meet with an Advisor in the School of Business, however, advising specifically related to Food Science and Human Nutrition is available through the department in the College of Agricultural & Life Sciences. For registration, scheduling, and area-specific questions, please contact: Undergraduate Advising 352-294-3700 103 FSHN Building (FSN on the UF Campus Map) Department Website: http://fshn.ifas.ufl.edu/undergraduate-program/undergraduate-advising/ Minor Option To complete the Food Science minor, students must earn 15 credits with a minimum C grade in each class.
    [Show full text]
  • Role of Microbes in Dairy Industry
    Mini review Nutri Food Sci Int J Volume 3 Issue 3 - September 2017 Copyright © All rights are reserved by Anil Kumar DOI: 10.19080/NFSIJ.2017.03.555612 Role of Microbes in Dairy Industry Anil Kumar* and Nikita Chordia School of Biotechnology, Devi Ahilya University, India Submission: March 3, 2017; Published: September 22, 2017 *Corresponding author: Anil Kumar, School of Biotechnology, Devi Ahilya University, Khandwa Rd., Indore-452001,India, Email: Abstract Milk represents a good source of nutrients and liquid for hydration and is known to humanity thousands of years ago. The fermentation of milk provides a simple way to increase its shelf-life while improving its safety. Different strains of bacteria and fungi are used for fermentation of are used for coagulation of milk and thereafter, these can be processed for diverse products. milk in order to produce a wide variety of dairy products viz. curd, yogurt, cheese, kefir and kumis. The main bacteria are lactic acid bacteria that Introduction Since ancient times, dairy products have been part of human diet. These serve as good source of calcium, vitamin D, proteins coagulated under the influence of certain microorganisms. By producing bacteria. and other essential nutrients. These products also provide luck it was having harmless, acidifying type and non toxin- phosphorus, potassium, magnesium, and various vitamins viz. vitamin A (retinols), vitamin B12 (cyanocobalamin), and have been developed in all parts of the world each with its own Various types of fermented milks and derived products characteristic history. Their nature depends very much on using different microbial strains. Microbes ferment the the type of milk used, on the pre-treatment of the milk, on the riboflavin.
    [Show full text]
  • Minnesota FACS Frameworks for Food Science
    FOOD SCIENCE Minnesota Department of Education Academic Standards Course Framework Food Science Program: 090101 Program Name: Food and Food Industries Course Code: 21, 22 Food Science is a course that provides students with opportunities to participate in a variety of activities including laboratory work. This is a standards-based, interdisciplinary science course that integrates biology, chemistry, and microbiology in the context of foods and the global food industry. Students enrolled in this course formulate, design, and carry out food-base laboratory and field investigations as an essential course component. Students understand how biology, chemistry, and physics principles apply to the composition of foods, the nutrition of foods, food and food product development, food processing, food safety and sanitation, food packaging, and food storage. Students completing this course will be able to apply the principles of scientific inquiry to solve problems related to biology, physics, and chemistry in the context of highly advanced industry applications of foods. Recommended Prerequisites: Fundamentals of Food Preparation, Nutrition and Wellness Application of Content and Multiple Hour Offerings Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally. Career and Technical Student Organizations Career and Technical Student Organizations (CTSO) are considered a powerful instructional tool when integrated into Career and Technical Education programs.
    [Show full text]
  • Food Science in an Era of Environmental Concern
    CHAPTER 1 Food Science in an Era of Environmental Concern Irana Hawkins, PhD, MPH, RD Chapter Objectives THE STUDENT WILL BE EMPOWERED TO: • Summarize the topics encompassed by the food science discipline. • Define nutrition ecology, environmental nutrition, sustainable diets, ecosystem services, and ecological footprint—and demonstrate how these concepts relate to the study of food science. • Provide examples of anthropogenic effects on the natural environment and on food systems. • Discuss the potential impacts of planetary health, planetary boundaries, climate change, and biodiversity loss on food science, and the potential role of diet in protecting our planetary boundaries and mitigating climate change. • Discuss current challenges to sustainably feeding the world. • Explain the concept of nutrition transitions and give examples of global and national transitions currently under way. • Give specific examples of how the principles of nutrition ecology, environmental nutrition, and sustainable diets can be applied to reduce human impact on the natural environment. © smereka/Shutterstock. 9781284136470_CH01_Edelstein.indd 3 14/11/17 3:53 pm 4 CHAPTER 1 FOOD SCIENCE IN AN ERA OF ENVIRONMENTAL CONCERN Historical, Cultural, and Ecological Significance of Food Production and Consumption s biologist and researcher Dr. Martha Crouch has noted, “our relation- A ship with food is the most intimate of all the connections we have with other beings, for we take it into our mouths and actually incorporate it into our cells.”1 Today there are more than 311 million people living in the United States and approximately 7 billion people inhabiting the planet.2 The global population is expected to increase to more than 9 billion people by 2044.3 Understanding the projected impact of this population growth on the natural environment is paramount, as human health is inextricably linked to that of the natural environment.4 Sustaining human life requires an array of resources, with the most impor- tant being food and water.
    [Show full text]
  • Food Allergy
    Information Statement Food Allergy The Institute of Food Science & Technology has authorised the following Information Statement, dated January 2009, which cancels and replaces the version dated October 2005. SUMMARY The problem of food allergens is part of a wider problem, that of all kinds of adverse reactions to foods, which can also result from microbial and chemical food poisoning, psychological aversions and specific non-allergenic responses. Food allergy is now recognised as an important food safety issue. Dealing with at least the major serious food allergens is an essential part of Good Manufacturing Practice. The greatest care must be taken by food manufacturers • to formulate foods so as to avoid, wherever possible, inclusion of unnecessary major allergens as ingredients; • to organise raw material supplies, production, production schedules and cleaning procedures so as to prevent cross-contact of products by "foreign" allergens; • to train all personnel in an understanding of necessary measures and the reasons for them; • to comply with the relevant labeling legislation providing appropriate warning, to potential purchasers, of the presence of a major allergen in a product; • to have in place an appropriate system for recall of any product found to contain a major allergen not indicated on the label warning. The purpose of this statement is to describe the nature and cause of food allergies, to outline recent changes in legislation that aim to help allergic consumers to live with their condition and to emphasise the measures that manufacturers and caterers should take to minimise the problems. BACKGROUND Adverse reactions to foods Adverse reactions to foods include not only food allergies but may also result from microbial and chemical food poisoning, psychological aversions, and specific non-allergenic responses.
    [Show full text]
  • The Prince of Transylvania's Court Cookbook from the 16Th Century
    The Prince of Transylvania’s court cookbook From the 16th century Trans: Bence Kovacs Editor: Gwyn Chwith ap Llyr (mka Glenn Gorsuch) © Glenn F. Gorsuch Version 1.04 Additional Editing and Error-Checking (which is and shall be an ONGOING process): Kolosvari Arpadne Julia (mka Julia Szent-Györgyi) Kolozsvari Arpad (mka David Szent-Györgyi) Palotzi Marti (mka Martha Palotay) The Science of Cooking Written by The Prince of Transylvania’s court master chef at the end of the 16th century First part of the science of cooking. [text begins here]…keep it, so that the flies wouldn’t lay eggs on it. However, if you can’t kill the hen, ask your master; take both of its wings in your left hand, take its neck with your two fingers and cut it under its wattle, be cautious not to cut its neck. Do the same with the goose and chicken. If you use vinegar, be sure to wash your hands before, lest your hands would taint it. If you want to pluck the feathers, don’t use boiling water. The water for the goose and chicken should be colder than the sterlet’s water. After you’re done with plucking the feathers, singe it, put it into clean water, wash it, cut its nails, disembowel it, but put its stomach and liver into a different pot of water to clean it. When slaughtering a pig, take its nose with one of your hand and put a knife into its brisket. Water temperature should be similar to a chicken’s, because you don’t want to burn it.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Oxidation in Foods and Beverages and Antioxidant Applications
    Oxidation in foods and beverages and antioxidant applications ß Woodhead Publishing Limited, 2010 Related titles: Oxidation in foods and beverages and antioxidant applications Volume 2 Management in different industry sectors (ISBN 978-1-84569-983-3) Oxidative rancidity is a major cause of food quality deterioration, leading to the formation of undesirable off-flavours as well as unhealthy compounds. The two volumes of Oxidation in foods and beverages and antioxidant applications review food quality deterioration due to oxidation and methods for its control. The second volume concentrates on oxidation and its management in different industry sectors. Part I discusses animal products, with chapters on the oxidation and protection of red meat, poultry, fish and dairy products. Part II reviews oxidation in plant-based foods and beverages, including edible oils, wine and fried products. The final chapters examine encapsulation to inhibit lipid oxidation and antioxidant active packaging and edible films. Chemical deterioration and physical instability of foods and beverages (ISBN 978-1-84569-495-1) For a food product to be a success in the marketplace, it must be stable throughout its shelf-life. Changes due to food chemical deterioration and physical instability are not always recognised by food producers, who are more familiar with microbial spoilage, yet can be just as problematic. This book provides an authoritative review of key topics in this area. Chapters in Parts I and II focus on the chemical reactions and physical changes that negatively affect food quality. The remaining chapters outline the likely effects on different food products, for example baked goods, fruit and vegetables and beverages.
    [Show full text]
  • A New Chemical Marker-Model Food System for Heating Pattern Determination of Microwave-Assisted Pasteurization Processes
    Food and Bioprocess Technology https://doi.org/10.1007/s11947-018-2097-2 ORIGINAL PAPER A New Chemical Marker-Model Food System for Heating Pattern Determination of Microwave-Assisted Pasteurization Processes Jungang Wang1 & Juming Tang1 & Frank Liu1 & Stewart Bohnet1 Received: 10 August 2017 /Accepted: 15 March 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract New chemical marker-model food systems with D-ribose and NaOH precursors as color indicators and gellan gels as chemical marker carrier were explored for the assessment of the heating pattern of in packaged foods processed in microwave-assisted pasteurization system (MAPS). In determining appropriate precursor concentrations, a solution of 2% (w/w) D-ribose and 60 mM NaOH was heated at 60–90 °C for 0–20 min. The solution absorbance at 420 nm increased linearly, while the color parameters L* decreased linearly with heating time at all processing temperatures. In storage, the produced brown color was stable at 4 and 22 °C within 7 days. The new chemical marker-model foods were prepared by mixing 2% (w/w) D-ribose and 60 mM NaOH with 1% (w/v) low-acyl gellan gum and 20 mM CaCl2·2H2O solution. The dielectric constant of the model food samples decreased with the addition of sucrose, and the loss factors increased with the addition of salt. After processing in the pilot MAPS, the heating pattern and cold and hot spots in the new chemical marker-model food system could be clearly recognized and precisely located through a computer vision method. This is the first time that the caramelization reaction was used as a time-temperature indicator in gellan gel model food.
    [Show full text]
  • Unravel Browning Mechanism in Making Kue Delapan Jam
    International Food Research Journal 24(1): 310-317 (February 2017) Journal homepage: http://www.ifrj.upm.edu.my Unravel browning mechanism in making kue delapan jam 1*Agustini, S., 2Priyanto, G., 2Hamzah, B., 2Santoso, B. and 2Pambayun, R. 1Palembang Institute for Industrial Research and Standardization, Jalan Perindustrian 2 nomor 12 Sukarami Palembang, Indonesia 30152 2Department of Agricultural Technology, College of Agriculture, Sriwijaya University, Jl. Padang Selasa Nomor 524 Bukit Besar Palembang, Indonesia 30139 Article history Abstract Received: 14 September 2015 This research intended to study browning reaction mechanism in making kue delapan jam Received in revised form: and its implication on nutritional value. Browning reaction among substance exist in raw 8 March 2016 material during processing influence the sensories quality and color of cake significantly. Accepted: 14 March 2016 The study was based on the theoretical approaches relate to browning reaction, taking into account the experimental test, material balance, and the available information. The reaction pathway (Maillard reaction, caramelization, lipid oxidation) was determined by the changes Keywords in concentration of raw material (dough) and selected observable chemical marker according to their ability to indentify reaction stages. Research applied completely randomized design Browning with steaming time as a treatment (0 h, and 8 hours) with 3 replications. Reaction pathway Kue delapan jam Reaction mechanism determined by observing changes of sucrose, lactose, glucose, fructose, hidroxy methyl furfural, Steaming acetic acid, formic acid, amino acid and fatty acid between the dough and the cake. Test results showed that there were no significant changes in sucrose concentration. No fructose, glucose, acetic acid, formic acid, and hidroxy methyl furfural indentified both in the dough and the cake.
    [Show full text]
  • Aspartame: an Artificial Sweetener
    84-649 SPR -. Congrsssiona l Research Service 4. The Library of Congress ASPARTAME: .XV XRTLFICIAL SkXETSNER Donna V. Porter Analyst in Life Sciences Science Policy Research Division Xarch 23, 1984 Since 1973 ohen the Food and Drug Administration first approved the arti- ficial sweetener, aspartame, for use in food products, soae researchers have raised questloas about possible health effects associated vith its consumption. This paper provides an overview of the regulatory history and possible health prohlems associated vith the use.of aspartame. CONTENTS HEALTH ASPECTS OF ASPARTAME ................................................ 1 LEGISLATIVE HISTORY OF FOOD ADDITIVE POLICY ................................ 2 REGULATORY HISTORY OF ASPUTAWE ............................................ 5 CURRENT STATUS OF ASPARTAME ................................................ 8 .. APPENDIX I . ASPARTAME: SELECTED CHRONOLOGY OF EVENTS ..................... 16 ASPARTAME: AN ARTIFICIAL SWEETENER Aspartame is an artificial sweetener synthesized from two amino acids, aspartic acid and phenylalanine. It vas discovered accidentally in 1965 by a scientist at G. D. Searle & Company (Skokie, Illinois) who was doing research on nev drugs to treat ulcers. Since 1965, G. D. Searle & Company has conducted extensive testing in an attempt to demonstrate that aspartame is safe for aort people when added to food products. On July 7, 1981, after considerable debate, the Food and Drug Administration (FDA) approved the use of aspartame in dry food products. On July 8, 1983, FDA approved the use of the sweetener in carbonated beverages. This report provides an overview of aspartame, dis- cuses the regulatory his.tory of artificial sveeteners and identifies some of the current controversy over this recently approved substance. HEALTH ASPECTS OF ASPARTAME In terms of caloric value, aspartame contains four calories per gram, the same as table sugar.
    [Show full text]
  • The Role of Ingredients and Processing Conditions on Marinade
    THE ROLE OF INGREDIENTS AND PROCESSING CONDITIONS ON MARINADE PENETRATION, RETENTION AND COLOR DEFECTS IN COOKED MARINATED CHICKEN BREAST MEAT by EDWIN YPARRAGUIRRE PALANG (Under the Direction of Romeo T. Toledo) ABSTRACT Marination by vacuum tumbling is commonly practiced in the meat industry; however, the optimal temperature of the process to maximize marinade absorption and retention is yet to be defined. Furthermore, the role of marinade functional ingredients and pH of the marinade in alleviating problems with pink color in cooked meat and water retention during cooking is yet to be elucidated. For denaturation model study, myoglobin pigments from chicken gizzards were extracted. Observed results from the model study were validated in whole muscle and comminuted chicken meat. In addition, temperature of vacuum tumbling operation was optimized with respect to marinade pick-up, cook yield and expressible moisture. Also, trivalent Eu+3 was used to trace the penetration of marinade in chicken breast meat. Results showed that increasing concentration of salt and pH in marinade increased the persistence of the pink color in cooked meat. Furthermore, degree of denaturation of myoglobin pigments was not a determining factor for cooked meat color under the condition of higher ORP values in meat products. On the other hand, temperature of marination was found to be a significant factor in marinade penetration and retention in a vacuum tumbling process. Higher marination temperature promoted deeper penetration of marinade in the meat as traced by trivalent Eu+3. Consequently, marinade pick-up was found at higher temperature. However, cook yield was found highest when marination process was initially at a higher temperature followed by lowering to near refrigeration temperature.
    [Show full text]