Effects on Trees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Range Expansion of Lymantria Dispar Dispar (L.) (Lepidoptera: Erebidae) Along Its North‐Western Margin in North America Despite Low Predicted Climatic Suitability
Received: 22 December 2017 | Revised: 9 August 2018 | Accepted: 11 September 2018 DOI: 10.1111/jbi.13474 RESEARCH PAPER Range expansion of Lymantria dispar dispar (L.) (Lepidoptera: Erebidae) along its north‐western margin in North America despite low predicted climatic suitability Marissa A. Streifel1,2 | Patrick C. Tobin3 | Aubree M. Kees1 | Brian H. Aukema1 1Department of Entomology, University of Minnesota, St. Paul, Minnesota Abstract 2Minnesota Department of Agriculture, Aim: The European gypsy moth, Lymantria dispar dispar (L.), (Lepidoptera: Erebidae) St. Paul, Minnesota is an invasive defoliator that has been expanding its range in North America follow- 3School of Environmental and Forest Sciences, University of Washington, Seattle, ing its introduction in 1869. Here, we investigate recent range expansion into a Washington region previously predicted to be climatically unsuitable. We examine whether win- Correspondence ter severity is correlated with summer trap captures of male moths at the landscape Brian Aukema, Department of Entomology, scale, and quantify overwintering egg survivorship along a northern boundary of the University of Minnesota, St. Paul, MN. Email: [email protected] invasion edge. Location: Northern Minnesota, USA. Funding information USDA APHIS, Grant/Award Number: Methods: Several winter severity metrics were defined using daily temperature data A-83114 13255; National Science from 17 weather stations across the study area. These metrics were used to explore Foundation, Grant/Award Number: – ‐ 1556111; United States Department of associations with male gypsy moth monitoring data (2004 2014). Laboratory reared Agriculture Animal Plant Health Inspection egg masses were deployed to field locations each fall for 2 years in a 2 × 2 factorial Service, Grant/Award Number: 15-8130- / × / 0577-CA; USDA Forest Service, Grant/ design (north south aspect below above snow line) to reflect microclimate varia- Award Number: 14-JV-11242303-128 tion. -
2021 Tree & Shrub Program
2021 TREE & SHRUB PROGRAM ONTARIO COUNTY SOIL & WATER CONSERVATION DISTRICT 480 NORTH MAIN STREET, CANANDAIGUA, NY 14424 (585)396-1450 WWW.ONTSWCD.COM Trees and shrubs must be ordered in quantities listed or in multiples of those listed. Call for quantities over 500. ALL SPECIES IN LIMITED QUANTITIES Pricing CONIFEROUS TREES 10/$15 of same species Species & Size Quantity Cost American Arborvitae (White Cedar) 9-15”______________________________________________________________ 25/$30 of same species Colorado Blue Spruce 10-16”_________________________________________________________________________ 100/$100 of same species Concolor Fir 9-15”__________________________________________________________________________________ Douglas Fir 9-15”_________________________________________________________________________________ Fraser Fir 8-14”____________________________________________________________________________________ White Pine 6-14”___________________________________________________________________________________ White Spruce 9-15”_________________________________________________________________________________ Pricing DECIDUOUS TREES & SHRUBS 10/$15 of same species Species & Size Quantity Cost Black Cherry 18-24”________________________________________________________________________________ 25/$30 of same species Black Chokeberry 10-20”____________________________________________________________________________ 100/$100 of same species Buttonbush 10-18”_________________________________________________________________________________ -
Liquidambar Styraciflua L.) from Caroline County, Virginia
43 Banisteria, Number 9, 1997 © 1997 by the Virginia Natural History Society An Abnormal Variant of Sweetgum (Liquidambar styraciflua L.) from Caroline County, Virginia Bruce L. King Department of Biology Randolph Macon College Ashland, Virginia 23005 Leaves of individuals of Liquidambar styraciflua L. Similar measurements were made from surrounding (sweetgum) - are predominantly 5-lobed, occasionally 7- plants in three height classes:, early sapling, 61-134 cm; lobed or 3-lobed (Radford et al., 1968; Cocke, 1974; large seedlings, 10-23 cm; and small seedlings (mostly first Grimm, 1983; Duncan & Duncan, 1988). The tips of the year), 3-8.5 cm. All of the small seedlings were within 5 lobes are acute and leaf margins are serrate, rarely entire. meters of the atypical specimen and most of the large In 1991, I found a seedling (2-3 yr old) that I seedlings and saplings were within 10 meters. The greatest tentatively identified as a specimen of Liquidambar styrac- distance between any two plants was 70 meters. All of the iflua. The specimen occurs in a 20 acre section of plants measured were in dense to moderate shade. In the deciduous forest located between U.S. Route 1 and seedling classes, three leaves were measured from each of Waverly Drive, 3.2 km south of Ladysmith, Caroline ten plants (n = 30 leaves). In the sapling class, counts of County, Virginia. The seedling was found at the middle leaf lobes and observations of lobe tips and leaf margins of a 10% slope. Dominant trees on the upper slope were made from ten leaves from each of 20 plants (n include Quercus alba L., Q. -
Pdf/Curvefit.Pdf) (Retrieved 1 Affect Preference and Performance of Gypsy Moth Caterpillars
Environmental Entomology, 46(4), 2017, 1012–1023 doi: 10.1093/ee/nvx111 Advance Access Publication Date: 4 July 2017 Physiological Ecology Research Effects of Temperature on Development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae) Samita Limbu,1 Melody Keena,2 Fang Chen,3 Gericke Cook,4 Hannah Nadel,5 and Kelli Hoover1,6 1Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, 501 ASI Bldg., University Park, PA 16802 ([email protected]; [email protected]), 2U. S. Forest Service, Northern Research Station, 51 Mill Pond Rd., Hamden, CT 06514 ([email protected]), 3Forestry Bureau of Jingzhou, –14 Jingzhou North Rd., Jingzhou, Hubei, China 434020 ([email protected]), 4USDA Animal and Plant Health Inspection Service, PPQ CPHST, 2301 Research Blvd, Suite 108, Fort Collins, CO 80526 ([email protected]), 5USDA Animal and Plant Health Inspection Service, PPQ S & T, 1398 West Truck Rd., Buzzards Bay, MA 02542 ([email protected]), and 6Corresponding author, e-mail: [email protected] The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Subject Editor: Kelly Johnson Received 18 January 2017; Editorial decision 1 June 2017 Abstract Periodic introductions of the Asian subspecies of gypsy moth, Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky, in North America are threatening forests and interrupting foreign trade. -
Strategies for the Eradication Or Control of Gypsy Moth in New Zealand
Strategies for the eradication or control of gypsy moth in New Zealand Travis R. Glare1, Patrick J. Walsh2*, Malcolm Kay3 and Nigel D. Barlow1 1 AgResearch, PO Box 60, Lincoln, New Zealand 2 Forest Research Associates, Rotorua (*current address Galway-Mayo Institute of Technology, Dublin Road, Galway, Republic of Ireland) 3Forest Research, Private Bag 3020, Rotorua Efforts to remove gypsy moth from an elm, Malden, MA, circa 1891 May 2003 STATEMENT OF PURPOSE The aim of the report is to provide background information that can contribute to developing strategies for control of gypsy moth. This is not a contingency plan, but a document summarising the data collected over a two year FRST-funded programme on biological control options for gypsy moth relevant to New Zealand, completed in 1998 and subsequent research on palatability of New Zealand flora to gypsy moth. It is mainly aimed at discussing control options. It should assist with rapidly developing a contingency plan for gypsy moth in the case of pest incursion. Abbreviations GM gypsy moth AGM Asian gypsy moth NAGM North America gypsy moth EGM European gypsy moth Bt Bacillus thuringiensis Btk Bacillus thuringiensis kurstaki MAF New Zealand Ministry of Agriculture and Forestry MOF New Zealand Ministry of Forestry (defunct, now part of MAF) NPV nucleopolyhedrovirus LdNPV Lymantria dispar nucleopolyhedrovirus NZ New Zealand PAM Painted apple moth, Teia anartoides FR Forest Research PIB Polyhedral inclusion bodies Strategies for Asian gypsy moth eradication or control in New Zealand page 2 SUMMARY Gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), poses a major threat to New Zealand forests. It is known to attack over 500 plant species and has caused massive damage to forests in many countries in the northern hemisphere. -
Ecosystem Services Provided by Bats
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Ecosystem services provided by bats Thomas H. Kunz,1 Elizabeth Braun de Torrez,1 Dana Bauer,2 Tatyana Lobova,3 and Theodore H. Fleming4 1Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts. 2Department of Geography, Boston University, Boston, Massachusetts. 3Department of Biology, Old Dominion University, Norfolk, Virginia. 4Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona Address for correspondence: Thomas H. Kunz, Ph.D., Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215. [email protected] Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. -
American Elm Ulmus Americana L
W&M ScholarWorks Reports 9-1-1994 American Elm Ulmus americana L. Gene Silberhorn Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Plant Sciences Commons Recommended Citation Silberhorn, G. (1994) American Elm Ulmus americana L.. Wetland Flora Technical Reports, Wetlands Program, Virginia Institute of Marine Science. Virginia Institute of Marine Science, College of William and Mary. http://dx.doi.org/doi:10.21220/m2-5318-he68 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Wetlands Technical Report Program Wetland Flora No. 94-8 / September 1994 Gene Silberhorn American Elm Ulmus americana L. Growth Habit and Diagnostic Characteristics Habitat American elm is a large tree (up to 100 feet tall), with Once common and abundant in wooded wetlands furrowed, flaky, grayish brown bark when mature. along the Eastern Seaboard and the Midwest, Ameri- Older trees are somewhat vase-like with the branches can elm status as a important canopy component has spreading outward and upward, a feature most been greatly diminished because of the Dutch elm obvious in the winter after leaf-fall. Leaves are simple, disease, a fungus (Ophiostoma ulmii) that clogs the alternately arranged with serrated and occasionally vascular system. Ulmus americana, currently is only doubly serrated margins (toothed, interspersed with an occasional component of palustrine forested smaller teeth). Even on the same branch, leaves are wetlands in the Mid-Atlantic Region. -
Bald Cypress and Water Tupelo
AN EXAMINATION OF HISTORIC WETLAND LOSS IN NORTHERN MISSISSIPPI FLOODPLAINS USING GENERAL LAND OFFICE SURVEYS by MATTHEW HARPER JOE WEBER, COMMITTEE CHAIR SAGY COHEN JONATHAN BENSTEAD A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geography in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2013 Copyright Matthew Aaron Harper 2013 ALL RIGHTS RESERVED ABSTRACT Prior to European settlement of America in the late 16th century, a relatively pristine environment existed on the North American continent. Since that time, landscape-altering processes such as logging, deforestation for agricultural cultivation, channelization, and the removal of natural ecosystems engineers such as the beaver (Castor canadensis) have left little of its natural state unchanged. Alluvial floodplains within the upper Gulf Coastal Plain of Mississippi and the bottomland hardwoods that occupy them are especially sensitive to change, already being naturally dynamic environments in which loose sedimentary soil participates in a perpetual cycle of deposition and erosion as the main river channel meanders across their broad valleys. These changes result in microhabitats with varying degrees of inundation, rates of deposition, and elevation. This thesis attempts to reconstruct the pre-European settlement ecology of northern Mississippi alluvial floodplains through the use of General Land Office (GLO) survey records of the area from the early 19th century. A specific effort will be made to detect wetland environments based upon a surveyor’s recorded bearing trees and line descriptions. A bearing tree, or a witness tree, is a tree that is physically marked by a surveyor to indicate a nearby survey corner. -
Angiosperm Clades in the Potomac Group: What Have We Learned Since 1977?
UC Davis UC Davis Previously Published Works Title Angiosperm clades in the potomac group: What have we learned since 1977? Permalink https://escholarship.org/uc/item/5z89c18z Journal Bulletin of the Peabody Museum of Natural History, 55(2-3) ISSN 0079-032X Authors Doyle, JA Upchurch, GR Publication Date 2014-10-01 DOI 10.3374/014.055.0203 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Angiosperm Clades in the Potomac Group: What Have We Learned since 1977? James A. Doyle1 and Garland R. Upchurch, Jr.2 1 Corresponding author: Department of Evolution and Ecology, University of California, Davis CA 95616 USA —email: [email protected] 2 Department of Biology, Texas State University, San Marcos TX 78666 USA —email: [email protected] ABSTRACT In their 1977 study on Potomac Group angiosperms, Hickey and Doyle made only broad com- parisons with living taxa. Newer data, especially discoveries of fossil flowers in the Potomac and coeval deposits and increasingly robust molecular phylogenies of living angiosperms, allow more precise phylogenetic placement of fossils. Hickey and Doyle compared most early Potomac leaves (Aptian–early Albian) with “magnoliids,” a paraphyletic group as then defined, but several clades can now be recognized. Leaves and dispersed cuticles share epidermal features with woody mem- bers of the basal ANITA grade, and in some cases crown group Austrobaileyales, whose presence is confirmed by flowers called Anacostia. Aptian–Albian flowers (Monetianthus, Carpestella) and whole plants (Pluricarpellatia) are nested in crown group Nymphaeales; Potomac reniform leaves could belong to this clade. Several Potomac leaves have chloranthoid teeth, venation, and oppo- site phyllotaxis consistent with Chloranthaceae, while Aptian to Cenomanian flowers reveal the presence of both crown group Chloranthaceae (Asteropollis plant, near Hedyosmum) and stem relatives of this family and/or Ceratophyllum (Canrightia, Zlatkocarpus, Pennipollis plant, possi- bly Appomattoxia). -
Platanus Occidentalis American Sycamore
Platanus occidentalis American sycamore Family Platanaceae Origin Native WIS Code FACW CoC 5 DESCRIPTION West Virginia’s largest tree (to 50 m tall) has a spreading open crown and thin, mottled (green, brown, tan and white) camouflage-like bark that often peels, especially on older mature trees. Twigs grow in a zig-zag pattern with leaf scars Donald Cameron © encircling the buds. Leaves are simple, alternate, palmately veined (veins radiating from the base) with three to five main lobes, pointed tips and widely toothed margins. The bases of the leaf stalks (petioles) are enlarged and wrap or enclose the buds, and conspicuous © Arthur Haines leafy stipules also wrap the leaf bases on young shoots. FLOWERS AND FRUITS April to May; September to October. Flowers are very small, appear with the leaves, and both male and female flowers are in dense round clusters hanging from © Jonathan Carpenter a slender stalk. Fruits are balls of tightly clustered seeds (achenes), each attached to fine hair-like bristles for wind dispersal. HABITAT Floodplain forests, swamps, stream banks, © Larry© Allain © prairie ridge and rocky stream bars. Platanus occidentalis, fruit SIMILAR SPECIES Liquidambar styraciflua, American sweetgum, also has ball-like fruits but they are spiky; the leaves are star-shaped © E. Wang © E. Wang and it has dark furrowed bark. Liquidambar styraciflua, leaf and fruit 22 WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION. -
Impacts and Options for Biodiversity-Oriented Land Managers
GYPSY MOTH (LYMANTRIA DISPAR): IMPACTS AND OPTIONS FOR BIODIVERSITY-ORIENTED LAND MANAGERS May 2004 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. A NatureServe Technical Report Citation: Schweitzer, Dale F. 2004. Gypsy Moth (Lymantria dispar): Impacts and Options for Biodiversity- Oriented Land Managers. 59 pages. NatureServe: Arlington, Virginia. © 2004 NatureServe NatureServe 1101 Wilson Blvd., 15th Floor Arlington, VA 22209 www.natureserve.org Author’s Contact Information: Dr. Dale Schweitzer Terrestrial Invertebrate Zoologist NatureServe 1761 Main Street Port Norris, NJ 08349 856-785-2470 Email: [email protected] NatureServe Gypsy Moth: Impacts and Options for Biodiversity-Oriented Land Managers 2 Acknowledgments Richard Reardon (United States Department of Agriculture Forest Service Forest Health Technology Enterprise Team, Morgantown, WV), Kevin Thorpe (Agricultural Research Service, Insect Chemical Ecology Laboratory, Beltsville, MD) and William Carothers (Forest Service Forest Protection, Asheville, NC) for technical review. Sandra Fosbroke (Forest Service Information Management Group, Morgantown, WV) provided many helpful editorial comments. The author also wishes to commend the Forest Service for funding so much important research and technology development into the impacts of gypsy moth and its control on non-target organisms and for encouraging development of more benign control technologies like Gypchek. Many, but by no means all, Forest Service-funded studies are cited in this document, including Peacock et al. (1998), Wagner et al. (1996), and many of the studies cited from Linda Butler and Ann Hajek. Many other studies in the late 1980s and 1990s had USDA Forest Service funding from the Appalachian Gypsy Moth Integrated Pest Management Project (AIPM). -
The American Sycamore TIME PLANTANUS OCCIDENTALIS
Meg Albright Meg Albright QUIZ The American Sycamore TIME PLANTANUS OCCIDENTALIS WHAT TYPE OF FLOWER DOES THE SYCAMORE TREE HAVE? A) Dioecious B) Trimonoecious C) Monoecious D) Subdioecious C) Monoecious C) REFERENCES (1) (1) American Sycamore, Platanus occidentalis, Morton Arboretum acc. 262-40*6, photographed June 6, 2007 by Did you know that the American Bruce Marlin Plant Guide: American Sycamore. USDA and NRCS, 19 June 2002. Web. 17 Sept. 2011. <http:// Sycamore is also known as the plants.usda.gov/plantguide/pdf/cs_ploc.pdf>. "Ohio Trees - American Sycamore." Ohio Department of Natural Resources - Camping, Boating, Fishing, Hunting, Biking, buttonwood, buttonball tree and Hiking in Ohio. Department of Natural Resources, 17 Sept. 2011. Web. 20 Sept. 2011. <http://www.dnr.state.oh.us/Home/trees/ sycamore_amer/tabid/5424/Default.aspx> the American planetree? 1 Meg Albright Meg Albright Leaf, Flower, Fruit and Stem Characteristics When looking at an American Sycamore you will notice that their leaves are palmately veined with an alternate leaf structure. They have a square base with an orbicular shape, that is coarsely wavy with 3-5 lobes. The leaf is typically bright green with a more muted back. The fruit of the American Sycamore is composed of many achenes with a bristly base, making it an indehiscent. The flowers of (1) this tree are in separate, male and female, clusters, making it monoecious. Stems, or the branches, twigs, and trunk of the tree, are arranged in a zigzag pattern with distinguishable bark. The bark can be recognized from its flaky brown construction with a light wood COMMON USES base underneath.