The Global Crisis of Nuclear Waste
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INTERIM STORAGE of SPENT FUEL in the UNITED STATES Allison Macfarlane
4 Oct 2001 17:35 AR AR143-08-ma.tex AR143-08-ma.SGM ARv2(2001/05/10) P1: GJC Annu. Rev. Energy Environ. 2001. 26:201–35 Copyright c 2001 by Annual Reviews. All rights reserved INTERIM STORAGE OF SPENT FUEL IN THE UNITED STATES Allison Macfarlane Security Studies Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; e-mail: [email protected] Key Words irradiated fuel, nuclear energy, nuclear waste, dry casks ■ Abstract At nuclear power reactors around the United States, quantities of spent or irradiated nuclear fuel are growing while owner-operator companies await the ap- proval of a permanent storage facility. Some reactors have run out of space in their cooling pools and have had to resort to dry cask storage. The first half of this paper looks at the policy history of interim storage in the United States, discusses the current storage status at individual reactors, and then reviews the technologies available to deal with it. The second half of the paper considers the different options for dealing with this hazardous material in the interim, before a permanent high-level nuclear waste repos- itory is opened, and examines the safety, security, transportation, economic, political, and other issues that bear on the choice of option. CONTENTS 1. INTRODUCTION ...................................................202 2. POLICY BACKGROUND ............................................203 2.1. Legislative History ...............................................204 2.2. Private-Storage Options ...........................................206 2.3. Licensing Requirements ...........................................207 3. INTERIM-STORAGE POLICIES AND PLANS IN OTHER COUNTRIES ..............................................208 3.1. France .........................................................208 3.2. United Kingdom .................................................208 3.3. Germany .......................................................208 3.4. Sweden ........................................................209 3.5. -
Surface Water Management Plan Water Resources | City of St
Surface Water Management Plan Water Resources | City of St. Louis Park Proposals are due 4:00 p.m. April 24, 2017 Executive Summary City of St. Louis Park Surface Water Management Plan Executive Summary Located in Hennepin County just west of Minneapolis, the 10.7-square-mile City of St. Louis Park is a fully developed suburban community. The population of St. Louis Park is approximately 48,000 residents, making it the 20th largest city in Minnesota. St. Louis Park contains a variety of physical and water resources including several wetlands and small lakes, wooded areas, parks, and recreational lands, as well as the Minnehaha Creek corridor. Two watershed management organizations (WMOs) cover St. Louis Park, each with its own governing body: the Bassett Creek Watershed Management Commission (BCWMC) and the Minnehaha Creek Watershed District (MCWD). This local Surface Water Management Plan (SWMP) was prepared in accordance with Minnesota Statute 103B.235 and Minnesota Rules 8410 and is intended to replace the 2009 plan. The purpose of this SWMP includes objectives outlined in Minnesota Statute 103B.201 for metropolitan water management programs. According to the statute, the purposes of these water management programs are to: • protect, preserve, and properly use natural surface and groundwater storage and retention systems; • minimize public capital expenditures needed to correct flooding and water quality problems; • identify and plan for means to effectively protect and improve surface and groundwater quality; • establish more uniform local policies and official controls for surface and groundwater management; • prevent the erosion of soil into surface water systems; • promote effective groundwater recharge; • protect and enhance fish and wildlife habitats and water recreational facilities; and • secure the other benefits associated with the proper management of surface and groundwater. -
Introduction to Ponds, Lagoons, and Natural Systems Study Guide December 2013 Edition
Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Ponds, Lagoons, and Natural Systems Study Guide December 2013 Edition Subclass D Wisconsin Department of Natural Resources Bureau of Science Services, Operator Certification Program PO Box 7921, Madison, WI 53707 http://dnr.wi.gov/ The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/06/13 Introduction to Ponds, Lagoons, and Natural Systems Study Guide - December 2013 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing a Test Date: Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification". -
Evaporation Pond Seepage Soil Solution
from the soil surface. The subcores were fitted and sealed with plexiglass ends and set up to measure Permeability. Drainage water having an electrical conductivity (EC) of 10 dS/m (6100 ppm total dissolved salts) was applied to the cores for three days to ensure saturation and uniform electrolyte concentration. Biological activity was minimized in some of the cores by the addition of chlo- roform to the percolating drain water. Percolating drainage water having pro- gressively larger EC values was applied over periods of one to five days in an effort to exaggerate variations in evaporation pond salinity resulting from evaporation lnfiltrometers (left)were installed in Kings County and fresh drain water additions. The sa- evaporation pond to estimate seepage. Rainfall, evaporation, drainage flows, and changes in pond linity of inflow and outflow water was water levels (herebeing checked by co-author Blake measured periodically along with the per- McCullough-Sanden)were also measured. meability of each subcore. The sodium adsorption ratio (SAR) is an index of the relative concentration of sodium, calcium, and magnesium in the Evaporation pond seepage soil solution. When soil salinity is low, permeability has been shown to increase Mark E. Grismer o Blake L. McCullough-Sanden as the SAR value of the inflow solution in- creases. Past studies, however, have typi- cally considered SAR values of 30 or less. Rates of seepage from operating evaporation In this study, SAR values of the inflow so- ponds decline substantially as they age and as lution increased in the same stepwise fashion as EC, with values ranging from salinity increases 210 to 660. -
Managing Our Radioactive Waste Safely 1
CoRWM Doc 700 July 2006 Contents C ONTENTS Introduction by the Chair ............................................................................................................... 2 Overview Radioactive waste – a new approach ........................................................................ 3 Chapter 1 Introduction – the radioactive waste problem .......................................................... 14 Chapter 2 Identifying the radioactive wastes and materials that the UK has to manage ......... 19 Chapter 3 Other current initiatives in the development of policy .............................................. 26 Chapter 4 CoRWM’s principles and practice............................................................................ 29 Chapter 5 Key steps in the programme .................................................................................... 33 Chapter 6 An ethical problem ................................................................................................... 38 Chapter 7 Involvement of citizens and stakeholders ................................................................ 43 Chapter 8 CoRWM and science ............................................................................................... 56 Chapter 9 Learning from overseas ........................................................................................... 64 Chapter 10 Identifying and shortlisting waste management options .......................................... 67 Chapter 11 Assessing the shortlisted options............................................................................ -
Reclamation of Tailings Ponds
Journal American Society of Mining and Reclamation, 2012 Volume 1, Issue 1, COMPARISON OF HYDROLOGIC CHARACTERISTICS FROM TWO DIFFERENTLY RECLAIMED TAILINGS PONDS; GRAVES MOUNTAIN, LINCOLNTON, GA1 Gwendelyn Geidel2 Abstract: This study compares and evaluates the hydrologic characteristics between two kyanite ore process tailings ponds that were reclaimed with different reclamation strategies; one reclaimed with an impermeable membrane and the other with an open, surface reconfiguration (OSR) methodology. During the extraction and processing of kyanite ore from the Graves Mountain mine, Lincoln County, Georgia, fine grained tailings were produced. The tailings were transported by slurry pipeline to various tailings ponds which were created by the construction of dams using on-site materials. The first study site, referred to as the Pyrite Pond (PP), was constructed and filled during the 1960’s and early 1970’s. In early 1992, the PP was capped with an impermeable membrane, covered with a thin soil veneer and vegetated and in 1998 the upslope reclamation was completed. The second tailings pond, referred to as the East Tailings Pond (ETP), was constructed and filled in the 1970’s and early 1980’s and was reclaimed in 1995-96 by surface reconfiguration and the addition of soil amendments. Piezometers and wells were installed into the two tailings ponds and also in close proximity to the tailings ponds. While the initial study was aimed at comparing the two reclamation strategies, it became apparent that the ground water was a dominant factor. Results of the evaluation of the potentiometric surface data for varying depths within each tailings pond indicate that while both tailings ponds exhibit delayed response to precipitation events suggesting infiltration effects, the delay in the ETP deep wells and PP wells could not be adequately described by a surface infiltration model. -
Yucca Mountain: a Post-Mortem Adam J
Yucca Mountain: A Post-Mortem Adam J. White Imagine the following scenario: The President of the United States deliv- ers a speech on nuclear energy. With gasoline prices high and oil being imported from unfriendly countries, the president says that “a more abun- dant, affordable, and secure energy future” will be a crucial part of getting the nation out of its economic slump. “One of the best potential sources of new electrical energy supplies in the coming decades,” the president notes, “is nuclear power.” But there are obstacles: Nuclear power has become entangled in a morass of regulations that do not enhance safety but that do cause extensive licensing delays and economic uncertainty. Government has also failed in meeting its responsibility to work with industry to develop an acceptable system for commercial waste disposal, which has further hampered nuclear power development. To alleviate these problems, which have caused utilities to shy away from nuclear power, the president issues instructions intended to remove regu- latory hurdles and to “proceed swiftly toward deployment of means of storing and disposing of commercial, high-level radioactive waste.” This scenario, so familiar in its particulars, would not seem out of place in today’s newspapers. But the quoted speech was actually delivered in 1981 by President Ronald Reagan. And even though some hoped the speech would mark a turning point — one trade journal celebrated the president for striving to “make a faltering nuclear industry viable and robust again” — nuclear power largely remains, more than three decades later, mired in regulatory uncertainty. While nuclear power currently accounts for about a fifth of the total electricity-generation capacity of the United States, it could satisfy a much greater portion of the national demand. -
Southern California Edison Company San Onofre Nuclear Generating
Southern California Edison Company San Onofre Nuclear Generating Station Request for Information In Support of the Development of a Strategic Plan for the Relocation of Spent Nuclear Fuel to an Offsite Storage Facility Issuance Date: Friday, September 28, 2018 Information Due By: Friday, November 9, 2018 at 5:00 P.M. SONGS Request for Information Supporting Development of Strategic Plan I. Introduction Through this request for information (“RFI”), Southern California Edison Company (“SCE”) is seeking information on how an interested consultant would propose supporting SCE in developing a strategic plan for the relocation of spent nuclear fuel from the San Onofre Nuclear Generating Station (“SONGS”) to an offsite storage facility (“Strategic Plan”). A. Guiding Principles For Spent Fuel Storage And Disposal SCE is committed to the safe, secure storage of spent nuclear fuel. SCE recognizes that efforts to relocate SONGS spent nuclear fuel offsite must proceed in a thoughtful, forward thinking, and responsible way, ensuring that relevant interests are recognized and heard. To that end, SCE envisions that the development of the Strategic Plan considering the “Commercially Reasonable” options for offsite storage and disposal will be supported by an inclusive approach involving early coordination with relevant stakeholders and effective communication. SCE, and by extension, any consultant successfully selected will promote the fair, balanced treatment and meaningful representation of stakeholders, including local, state, federal, tribal, and environmental interests, in support of the development of the Strategic Plan. II. Background A. Southern California Edison Company SCE, a subsidiary of Edison International (“EIX”), is headquartered in Rosemead, California, and is one of the largest electric utilities in the United States, serving approximately 5 million customer accounts in its service area within central and southern California. -
Interim Storage of Spent Nuclear Fuel: a Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management
Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bunn, Matthew, John P. Holdren, Allison Macfarlane, Susan E. Pickett, Atsuyuki Suzuki, Tatsujiro Suzuki, and Jennifer Weeks. 2001. Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management. Cambridge: Managing the Atom Project, Harvard University and Project on Sociotechnics of Nuclear Energy, University of Tokyo Published Version http://belfercenter.ksg.harvard.edu/publication/2150/ interim_storage_of_spent_nuclear_fuel.html Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29914175 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Interim Storage of Spent Nuclear Fuel A Safe, Flexible, and Cost-Effective Near-Term Approach to Spent Fuel Management A Joint Report from the Harvard University Project on Managing the Atom and the University of Tokyo Project on Sociotechnics of Nuclear Energy Matthew Bunn Harvard University University of Tokyo John P. Holdren Allison Macfarlane Susan E. Pickett Atsuyuki Suzuki Project on Managing Tatsujiro Suzuki Project on Sociotechnics the Atom of Nuclear Energy Jennifer Weeks June, 2001 Interim Storage of Spent Nuclear Fuel A Safe, Flexible, and Cost-Effective Near-Term Approach to Spent Fuel Management Matthew Bunn John P. Holdren Allison Macfarlane Susan E. -
Tailings Management
{-J TAILINGS MANAGEMENT Q -77 - - ---.._w J -,• .• 'p b_ •-.-.-•- _ .* ••: - INIER\1\Ho'-: Ni]. j.\j 'JU Tl IF I p United NIions Enirument Prramrne The International Council on Metals and the United Nations Environment Programme (UNEP) Environment Industry and Environment Centre Founded in 1991, [he International Council on Metals 'The Industry and Environment centre was established by and the Environment (TCME) is a non-governmental 1JNEP in 1975 to bring industry and government togethet organization that promotes the development and imple- to promote environmentally sound industrial development mentation of sound environmental and health policies and UNEP IE is located in Paris and its goals are to: practices in the production, use, recycling and disposal of non-ferrous and precious metals. Encourage the incorporation of environmental criteria in industrial development plans; These case studies have been published by ICME as part Facilitate the implementation of procedures and prin- of a series of publications providing information on en- ciples for the protection of the environment; vironmental and health matters relating to the metals Promote the use of safe and clean technologies; mining and producing industry. The contents of ICME Stimulate the exchange of information and experience publications range from general and technical information throughout the world. about these topics to discussions of issues relevant to en- vironmental and/or health-related policies affecting the UNEP IE provides access to practical information and mining and metals sector. It is believed that the topics develops cooperative on-site action and information examined are of concern not only to the industry, but also exchapge backed by regular follow-up and assessment. -
Response to West Cumbria MRWS Consultation
Response to West Cumbria MRWS consultation: Why a deep nuclear waste repository should not be sited in Cumbria By David K. Smythe Emeritus Professor of Geophysics, University of Glasgow La Fontenille 1, rue du Couchant 11120 Ventenac en Minervois France [email protected] www.davidsmythe.org March 2012 Prof D K Smythe Response to MRWS consultation Page i NON-TECHNICAL EXECUTIVE SUMMARY The Managing Radioactive Waste Safely (MRWS) process uses the unique concept of a ‘volunteer approach’ to siting a deep geological nuclear waste repository. There a suspicion of predetermination because the only district that has come forward is West Cumbria. A national site search based on geological criteria was carried out in the 1980s. The site finally selected was Longlands Farm, near Sellafield, but this was very different, geologically, from the ‘Sellafield’ in the original list of 437 potential sites. Criteria were manipulated and the site location moved twice, to ensure that a near-Sellafield location was chosen. But the Inspector at the Public Planning Inquiry of 1995-96, held to determine whether Nirex could go ahead at Longlands Farm, rejected Nirex’s proposals. He said that the underground laboratory was the precursor to a full underground repository, that the site had been chosen on manipulated criteria, that the geology and hydrogeology were unsuitable, and that some of the ‘more promising’ sites elsewhere in England should be investigated instead. National and international guidance on how best to select potential sites for deep geological nuclear waste disposal is being ignored. Among the desirable criteria cited the same themes emerge; of geological simplicity and slow, predictable groundwater flow, because the final and most important barrier to escaping radioactivity is always the natural geology. -
The Problem of Permanent Disposal of Spent Nuclear Fuel in the United States
All Piled Up and Nowhere to Go: The Problem of Permanent Disposal of Spent Nuclear Fuel in the United States Lingren Meng* I. Introduction Congress passed the Nuclear Waste Policy Act of 1982 (“NWPA”), indicating its intent to establish repositories for Nuclear energy has been a crucial power source helping to radioactive waste.6 The purpose of the repositories was to fuel modern society for over sixty years.1 In 1957, the first protect both the public and the environment.7 To this end, commercial nuclear power reactor in the United States began the Act offered a broad grant of administrative power to the operations in Shippingport, Pennsylvania.2 As of April 2017, Department of Energy (“DOE”).8 The Act, however, has not thirty countries worldwide are operating 449 nuclear reac- fulfilled its promise.9 tors for electricity generation and sixty new nuclear plants The selection of a permanent high-level nuclear waste are under construction in fifteen countries.3 In the United repository has been met with waves of resistance on all States, nearly 20% (798.0 Billion kWh) of all the electricity fronts.10 In particular, the project has received strong generated comes from nuclear power plants.4 opposition from the State of Nevada, the location of Yucca Safe and permanent disposal of highly radioactive nuclear Mountain.11 The mountain was the only location selected waste generated by the commercial nuclear power sector has for the development of a repository.12 The precarious fate been a top concern of the United States government. As the of the Yucca Mountain Project was effectively sealed former United States Secretary of Energy Steven Chu stated under President Obama.