The Effect of Tolvaptan on BP in Polycystic Kidney Disease: a Post Hoc Analysis of the TEMPO 3:4 Trial

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Tolvaptan on BP in Polycystic Kidney Disease: a Post Hoc Analysis of the TEMPO 3:4 Trial CLINICAL RESEARCH www.jasn.org The Effect of Tolvaptan on BP in Polycystic Kidney Disease: A Post Hoc Analysis of the TEMPO 3:4 Trial Judith E. Heida ,1 Ron T. Gansevoort,1 Vicente E. Torres,2 Olivier Devuyst ,3,4 Ronald D. Perrone ,5 Jennifer Lee,6 Hui Li,6 John Ouyang,6 and Arlene B. Chapman7 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background The V2 receptor antagonist tolvaptan is prescribed to patients with autosomal dominant polycystic kidney disease to slow disease progression. Tolvaptan may alter BP via various acute and chronic effects. Methods To investigate the magnitude and time course of the effect of tolvaptan use on BP, we conducted a post hoc study of the TEMPO 3:4 trial, which included 1445 patients with autosomal dominant polycystic kidney disease randomized 2:1 to tolvaptan or placebo for 3 years. We evaluated systolic and diastolic BP, mean arterial pressure, hypertension status, and use and dosing of antihypertensive drugs over the course of the trial. Results At baseline, BP did not differ between study arms. After 3 weeks of tolvaptan use, mean body weight had decreased from 79.7 to 78.8 kg, and mean plasma sodium increased from 140.4 to 142.6 mmol/L (both P,0.001), suggesting a decrease in circulating volume. We observed none of these changes in the placebo arm. Nonetheless, BP remained similar in the study arms. After 3 years of treatment, however, mean systolic BP was significantly lower in participants receiving tolvaptan versus placebo (126 versus 129 mm Hg, respectively; P50.002), as was mean diastolic BP (81.2 versus 82.6 mm Hg, respectively; P50.01). These differences leveled off at follow-up 3 weeks after discontinuation of the study medication. Use of antihypertensive drugs remained similar in both study arms during the entire study. Conclusions Long-term treatment with tolvaptan gradually lowered BP compared with placebo, which may be attributed to a beneficial effect on disease progression, a continued natriuretic effect, or both. Clinical Trial registry name and registration number: TEMPO 3:4, NCT00428948 JASN 32: ccc–ccc, 2021. doi: https://doi.org/10.1681/ASN.2020101512 Vasopressin and antidiuretic hormone are names receptor, although indispensable for water homeo- that refer to the pleiotropic effects of this peptide. stasis, can also be damaging in a variety of kidney Although the former name is most often used, the disorders, including autosomal dominant poly- latter may be more appropriate because decreasing cystic kidney disease (ADPKD).7 The V2 receptor urinary output is the principal function of vaso- regulates water permeability of the tubular cell pressin. Effects of vasopressin are facilitated by three types of receptors, the V1a, V1b, and V2 re- ceptors, present on various cell types.1 The V2 re- Received October 27, 2020. Accepted March 1, 2021. ceptor, responsible for the antidiuretic effect, is Published online ahead of print. Publication date available at activated by a minimal change in vasopressin sig- www.jasn.org. nal.2,3 In contrast, activation of the V1a receptor, Correspondence: Dr. Ron T. Gansevoort, Department of Ne- 4–6 responsible for vasoconstriction, requires con- phrology, University Medical Center Groningen, Hanzeplein 1, siderably higher vasopressin levels.3 PO Box 30.001, 9700 RB Groningen, The Netherlands. Email: r.t. Not all of the effects of vasopressin are beneficial. [email protected] It has been recognized that activation of the V2 Copyright © 2021 by the American Society of Nephrology JASN 32: ccc–ccc, 2021 ISSN : 1046-6673/3207-ccc 1 CLINICAL RESEARCH www.jasn.org membrane via an intracellular second messenger, cAMP.8 In Significance Statement patients with ADPKD, growth of kidney cysts is stimulated by an increase in intracellular cAMP, leading to loss of kidney Patients with autosomal dominant polycystic kidney disease are function and ultimately, resulting in ESKD.9 Patients with treated with tolvaptan, a V2 receptor antagonist, to slow pro- ADPKD are therefore treated with tolvaptan, a selective V2 gression toward ESKD. In theory, tolvaptan could have both BP-increasing and BP-decreasing effects. To investigate the mag- receptor antagonist, which has been shown to slow the rate nitude and time course of the effect of tolvaptan use on BP, the of disease progression in patients at risk of rapid kidney func- authors conducted a post hoc analysis of data from the TEMPO 3:4 tion decline.10,11 By preventing binding of vasopressin to the trial, which randomized 1445 patients with autosomal dominant V2 receptor, tolvaptan induces nephrogenic diabetes insipidus, polycystic kidney disease to tolvaptan or placebo. Their analysis which causes a compensatory rise in plasma vasopressin.12 It is shows that directly after start of tolvaptan therapy, BP does not change, but in the long term, BP gradually becomes lower in patients important to note that tolvaptan has a high selectivity for the with tolvaptan compared with placebo. This observation might be V2 receptor and does not block the effect of vasopressin on the attributed to the beneficial effect of tolvaptan on disease progres- V1a receptor.13 Consequently, given the higher levels of vaso- sion, a sustained natriuretic effect, or both. pressin induced by treatment, the V1a receptor is activated more than usual. This could have undesired off-target effects, summary, 1445 patients were enrolled for 2:1 randomization of which a change in BP could be one. to either treatment with tolvaptan or placebo between 2007 Tolvaptan could theoretically have several effects on BP. In and 2009. Inclusion criteria were age between 18 and 50 years, the short term, via increased V1a receptor activation, one total kidney volume (TKV) measured by magnetic resonance could expect an increase in vascular resistance and thus, an imaging .750 ml, and Cockcroft–Gault-calculated creatinine increase in BP.14,15 However, as mentioned above, V1a recep- clearance of 60 ml/min or greater. Exclusion criteria included tor activation has a variety of effects. It also increases sodium but were not limited to concomitant diseases that were likely excretion, thereby potentially decreasing BP.16 In addition, to confound study end points, such as poorly controlled di- preventing vasopressin binding to the V2 receptor could result abetes mellitus. Participants allocated to the treatment arm in a reduction of BP because of loss of V2 receptor–mediated ENaC channel activation and therefore, sodium reabsorption, were started on a dosage regimen of 45 mg in the morning loss of renin angiotensin aldosterone system (RAAS) activa- and 15 mg in the late afternoon, which was increased to tion due to a decrease of V2 receptor–dependent renin pro- 60/30 mg after 1 week and thereafter, to 90/30 mg in the third duction, and loss of circulating volume due to aquaresis.17,18 week if tolerated. Participants remained on the highest toler- Finally, in the long term, tolvaptan ameliorates the rate of ated dose for 36 months. Primary outcome was the annual rate disease progression, possibly also reducing the develop- of change in TKV, and secondary outcomes included annual fi ment of secondary symptoms of kidney disease, such as rate of change in eGFR. Tolvaptan ef cacy was studied on top hypertension. of standard clinical care, which included optimal BP control. fi The original publication of the TEMPO 3:4 trial disclosed Study recommendations de ned in 2007, at the start of the trial, only limited information on the effect of tolvaptan on BP.10 considered optimal control to start antihypertensive treatment Change in BP was expressed as worsening hypertension, de- at a systolic BP of 130 mm Hg or a diastolic BP of 85 mm Hg. fined as a change in BP category, or as worsening of hyperten- Adjustments in antihypertensive therapy could be made during sion requiring an increase in hypertensive treatment. No effect the entire study period in case BP exceeded the limits on two was found. However, the use of a categorical variable as out- consecutive visits. RAAS inhibitors were recommended as first- come measure may have resulted in a loss of power to find line antihypertensive drug. The choice for second-line therapy differences between the two study groups. Therefore, this was left to the discretion of the treating physician. Long-term study investigates the magnitude and time course of the effect use of diuretics was discouraged for safety reasons. of tolvaptan on BP expressed as a continuous variable, not This study was approved by all local ethics committees of only taking into account measured values but also, use of the participating sites and was conducted according to the BP-lowering medication. International Conference of Harmonization Good Clinical Practice Guidelines. Written informed consent was obtained from all participants. METHODS Data Collection Study Population and Design Data were collected at baseline, during treatment at week 3, at This study is a post hoc analysis of the TEMPO 3:4 trial, a month 3, and thereafter, after every 4 months for 36 months. A prospective, multicenter, double-blinded, randomized, con- follow-up visit was scheduled between 1 and 3 weeks after the trolled trial to assess the efficacy of tolvaptan in patients last dose of study medication. At every visit, a physical exam- with early-stage ADPKD (ClinicalTrials.gov identifier ination was performed, including BP measurement. Systolic NCT00428948). A detailed study protocol of this randomized, BP and diastolic BP were measured at the brachial artery after controlled trial has been published previously.10,19 In 5 minutes of rest in seated position, either manually or with a 2 JASN JASN 32: ccc–ccc,2021 www.jasn.org CLINICAL RESEARCH validated oscillometric device. BP was measured twice, and if baseline disease severity–related characteristics (sex, median these values varied by .5 mm Hg, they were repeated two age, Mayo htTKV class, median eGFR, and median copeptin more times.
Recommended publications
  • Liquid Chromatography Tandem Mass Spectrometry Determination Of
    The Pharma Innovation Journal 2018; 7(7): 57-61 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Liquid chromatography tandem mass spectrometry TPI 2018; 7(7): 57-61 © 2018 TPI determination of prohibited diuretics and other acidic www.thepharmajournal.com Received: 01-05-2018 drugs in human urine: A Review Accepted: 05-06-2018 Anchal Sharma Anchal Sharma, Dr. Rajiv Tonk and Dr. Vivek Sharma M. Pharm Scholar, Delhi Pharmaceutical Sciences and Research University, New Delhi, Abstract India This paper reviews liquid chromatographic-mass spectrometric (LC-MS) procedures for the screening, identification and quantification of doping agents in urine and other biological samples and devoted to Dr. Rajiv Tonk drug testing in sports. Reviewed methods published approximately within the last five years and cited in Associate Professor, Delhi the PubMed database have been divided into groups using the same classification of the 2004 World Pharmaceutical Sciences and Anti-Doping Agency (WADA) Prohibited List. Together with procedures specifically developed for anti- Research University, New Delhi doping analysis, I.C-MS applications used in other fields (e.g., therapeutic drug monitoring, clinical and India forensic toxicology, and detection of drugs illicitly used in livestock production) have been included when considered as potentially extensible to doping control. Information on the reasons or potential Dr. Vivek Sharma abuse by athletes, on the requirements established by WADA for analysis, and on the WADA rules for Assistant Professor, Govt College of Pharmacy Rohru, Himachal the interpretation of analytical finding. The basis of human sports doping control is set by the World Pradesh.
    [Show full text]
  • High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 5-2010 High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity Albert A. Barrese III Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation Barrese, Albert A. III, "High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity" (2010). Dissertations. 500. https://scholarworks.wmich.edu/dissertations/500 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. HIGH-THROUGHPUT SCREENING STUDIES OF INHIBITION OF HUMAN CARBONIC ANHYDRASE II AND BACTERIAL FLAGELLA ANTIMICROBIAL ACTIVITY by Albert A. Barrese III A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Biological Sciences Advisor: Brian C. Tripp, Ph.D. Western Michigan University Kalamazoo, Michigan May 2010 UMI Number: 3410393 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3410393 Copyright 2010 by ProQuest LLC.
    [Show full text]
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • Extracts from PRAC Recommendations on Signals Adopted at the 9-12 March 2020 PRAC
    6 April 20201 EMA/PRAC/111218/2020 Corr2,3 Pharmacovigilance Risk Assessment Committee (PRAC) New product information wording – Extracts from PRAC recommendations on signals Adopted at the 9-12 March 2020 PRAC The product information wording in this document is extracted from the document entitled ‘PRAC recommendations on signals’ which contains the whole text of the PRAC recommendations for product information update, as well as some general guidance on the handling of signals. It can be found here (in English only). New text to be added to the product information is underlined. Current text to be deleted is struck through. 1. Immune check point inhibitors: atezolizumab; cemiplimab; durvalumab – Tuberculosis (EPITT no 19464) IMFINZI (durvalumab) Summary of product characteristics 4.4. Special warnings and precautions for use Immune-mediated pneumonitis [..] Patients with sSuspected pneumonitis should be evaluated confirmed with radiographic imaging and other infectious and disease-related aetiologies excluded, and managed as recommended in section 4.2. LIBTAYO (cemiplimab) Summary of product characteristics 1 Expected publication date. The actual publication date can be checked on the webpage dedicated to PRAC recommendations on safety signals. 2 A footnote was deleted on 8 April 2020 for the signal on thiazide and thiazide-like diuretics (see page 3). 3 A minor edit was implemented in the product information of the signal on thiazide and thiazide-like diuretics on 5 June 2020 (see page 4). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma
    vv ISSN: 2689-7628 DOI: https://dx.doi.org/10.17352/ojabc CHEMISTRY GROUP Received: 06 April, 2020 Research Article Accepted: 05 May, 2020 Published: 06 May, 2020 *Corresponding author: Mahmoud M Sebaiy, Isocratic HPLC Method for Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt, Tel: 01062780060; Fаx: 0552303266; Simultaneous Determination E-mail: Keywords: HPLC; Amlodipine; Xipamide; Human of Amlodipine and Xipamide in plasma; Pharmacokinetic https://www.peertechz.com Human Plasma Mahmoud M Sebaiy1*, Hisham E Abdellatef2, Mohamed A Elmosallamy3 and Mustafa Kh Alshuwaili3,4 1Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt 2Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt 3Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt 4Ministry of Education, Iraq Abstract An HPLC method had been developed and validated for rapid simultaneous separation and determination of the two antihypertensive drugs, amlodipine and xipamide in human plasma within 5 minutes. Drugs are extracted from plasma using methanol, the environmentally benign solvent, for protein precipitation technique. Separation ® was carried out on a Thermo Scientifi c BDS Hypersil C8 column (5μm, 2.50x4.60 mm) using a mobile phase of methanol: 0.025M KH2PO4 (70: 30, v/v) adjusted to pH 3.49 with ortho - phosphoric acid at ambient temperature. The fl ow rate was 1 ml/min and maximum absorption was measured using DAD detector at 235nm. The retention times of amlodipine and xipamide were recorded to be 4.51 and 3.38 minutes, respectively, indicating a shorter analysis time. Limits of detection were reported to be 0.17 and 0.25 μg/ml for amlodipine and xipamide, respectively, showing a high degree of the method sensitivity.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Part 3 Hypertension Series
    Clinical Pharmacology & Toxicology Pearl of the Week ~Part 3 - Hypertension Series: Thiazide and Thiazide-like Diuretics~ Thiazide and thiazide-like diuretics are a class of diuretics that predominantly operate at the distal convoluted tubule (DCT) - Thiazide diuretics: hydrochlorothiazide - Thiazide-like diuretics: chlorthalidone, metolazone, indapamide Indications: - Treatment of hypertension - Off-label: Edema, calcium nephrolithiasis, nephrogenic diabetes insipidus, augmented effect of loop diuretics (Lasix + metolazone) Mechanisms of action: Renin release is mediated by: Baro-receptors in afferent arteriole, Beta- 1 stimulation, and the macula densa (Senses distal convoluted tubule sodium-chloride concentration) Thiazide-induced inhibition of the sodium-chloride co-transporter (NaCC) in the distal convoluted tubule natriuresis and mild diuresis Mild diuresis and drop in the extra-cellular fluid volume (200-300cc) Typically offset by increase in Renin (RAAS) system Natriuresis: increases the slope of the pressure-natriuresis curve (see right) Impaired absorption of sodium and chloride due to thiazide higher sodium-chloride concentrations in distal convoluted tubule sensed by macula densa decreased renin-signal vasodilation + sustained natriuresis drop in blood pressure Promotes calcium reabsorption (increased calcium movement though the TRPV5 calcium channel in DCT) Other mechanisms (proposed): o Direct vessel vaso-dilation (inhibiting epithelial ATP, or potassium channels) o Weak carbonic anhydrase activity (promotes diuresis) How
    [Show full text]
  • Heart Failure — Managing Newly Diagnosed and Decompensated
    Clinical Guideline Heart failure: Managing newly diagnosed and decompensated patients admitted to hospital 1. Confirmation of Diagnosis Person with signs and symptoms suggesting heart failure Detailed history and clinical examination Consider aetiology for new diagnosis of heart Suspected diagnosis Confirmed failure or underlying cause for exacerbation of of heart failure diagnosis of heart chronic heart failure and exclude treatable Diagnosis has not failure causes. been confirmed by Diagnosis confirmed Arrange other investigations: echocardiogram by previous . CXR echocardiogram . ECG . FBC . U&Es and Creatinine . LFTs . TFTs . RBG . Cholesterol If current echocardiogram not Diagnosis confirmed by clinically relevant, echocardiogram, if possible Heart failure excluded so request repeat performed as an in-patient review diagnosis echo, if possible and adhering to Advancing performed as an in- Quality heart failure (AQHF) patient indicators Heart failure with preserved ejection Heart failure due to significant left ventricular fraction / diastolic dysfunction (EF systolic dysfunction (EF < 40%) >55%) • Update primary diagnosis on PCIS / -Update primary diagnosis on PCIS Cerner and document in casenotes /Cerner and document in casenotes. Proceed to Management of Confirmed Heart Failure Heart failure — managing newly diagnosed and decompensated patients in acute care — clinical guidelines, v1 Principal author: Dr P Saravanan Approved by Medicines Clinical Guideline Team: July 2013 Review by: July 2016 Page 1 of 27 2. Inpatient management Heart failure with preserved Heart failure due to left ventricular ejection fraction systolic dysfunction (EF < 40%) • Referral to heart failure specialist team. • Arrange admission to appropriate ward/unit Refer to Heart Failure Fluid balance: Drug management: Specialist Nurse for 1. Fluid restriction 1-2 litres in 24 1.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • Ш„ ^Гг Тііи CLINICAL PHARMACOLOGICAL STUDIES on TIENILIC ACID and FUROSEMIDE Promotores: Prof
    D D π Ш π α π • Q ÛDD fDSDUO Q ^г^ ш„ ^гг тііи CLINICAL PHARMACOLOGICAL STUDIES ON TIENILIC ACID AND FUROSEMIDE Promotores: Prof. dr F. W. J. GRIBNAU Prof. dr С. Α. Μ. van GINNEKEN CLINICAL PHARMACOLOGICAL STUDIES ON TIENILIC ACID AND FUROSEMIDE PROEFSCHRIFT ter verkrijging van de graad van doctor in de Geneeskunde aan de Katholieke Universiteit te Nijmegen, op gezag van de rector magnificus Prof. dr J. H. G. I. Giesbers, volgens het besluit van het college van dekanen in het openbaar te verdedigen op donderdag 24 maart 1983 des namiddags te 2 uur precies door ADRIANUS LAMBERTUS MARIA KERREMANS geboren te Roosendaal И krips repro meppel The studies presented in this thesis were performed in - the Department of Internal Medicine - the Institute of Pharmacology of the University of Nijmegen, The Netherlands; and in - the Nursing home 'Irene" H. Landstichting - the Canisius-Wilhelmina Hospital Nijmegen Aan Mariette Jos, Sanne en Mechteld Aan mijn ouders CONTENTS Chapter I GENERAL INTRODUCTION AND PROBLEM STATEMENT page Chapter II DIURETICS 2.1 renal transport of sodium and chloride 2.2 renal transport of uric acid 2.3 site of action and mode of action of diuretics 2.4 tienilic acid 2.5 furosemide references Chapter III SOME FACTORS INFLUENCING DRUG RESPONSE 2 3.1 influence of age on pharmacokinetics and pharmacodynamics 3.2 influence of long-term treatment 3.3 congestive heart failure and its influence on sodium homoeostasis and on disposition and effect of diuretics 3.4 diuretic resistance in congestive heart failure references Chapter IV METHODS 4 4.1 HPLC 4.2 protein binding of drugs 4.3 pharmacokinetics 4.4 dose-response curves references Chapter V PHARMACOKINETIC AND PHARMACODYNAMIC STUDIES OF TIE- 6 NILIC ACID IN HEALTHY VOLUNTEERS Eur J Clin Pharmacol 1982, 22, 515-521.
    [Show full text]
  • MELT-HF Metolazone As Early Add on Therapy for Acute Decompensated
    MELT-HF MEtolazone as Early add on Therapy for acute decompensated Heart Failure. A single center pilot study. Muhammad A. Chaudhry, MD MELT-HF Protocol [Amendment 5.0; 17-Jan-2017] Page 1 of 10 INTRODUCTION Background Heart failure is a major source of morbidity, mortality and growing public health cost. In US, the number of congestive heart failure patients is more than 4 million with more than 550,000 new annually reported cases. The annual cost of heart failure management exceeds 35 billion dollars per year. The heart failure readmissions and average length of hospital stay cost approximately $11,000 per patient. Loop diuretics are used alone in the majority of cases to promote diuresis. An association of increased creatinine and increased risk of renal dysfunction, the cardiorenal syndrome, in the face of high dose loop diuretics has raised questions regarding the safety and toxicity of high dose loop diuretics. While the dose of diuretics is ubiquitous, little data exists to guide their use and many clinicians are uncertain as to when and how to initiate and limit therapy. In many cases, a “stepped approach” with oral loop diuretics advancing to intravenous and finally combination high dose diuretics is employed. PREVIOUS TRIALS DOSE( Diuretic strategies in patients with ADHF) Trial Prospective, randomized double blinded trial of 308 patients with ADHF. Showed that high dose diuretics (2.5 times the outpatient daily dose) were associated with improved urine output at 72 hours (3575± 2635 in low dose group vs. 4899±3479 in high dose group). There was no significant difference between the high and low dose groups in mean creatinine change (0.08±0.3 mg per deciliter in high-dose group as compared to 0.04±0.3 mg per deciliter in low-dose group, P=0.21.
    [Show full text]