The Mineralogy, Paragenesis and Alteration of the Camino Rojo Deposit, Zacatecas, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

The Mineralogy, Paragenesis and Alteration of the Camino Rojo Deposit, Zacatecas, Mexico University of Nevada, Reno The Mineralogy, Paragenesis and Alteration of the Camino Rojo Deposit, Zacatecas, Mexico A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Saige Sanchez Dr. Greg Arehart/ Thesis Advisor May, 2017 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by SAIGE SANCHEZ Entitled The Mineralogy, Paragenesis And Alteration Of The Camino Rojo Deposit, Zacatecas, Mexico be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Dr. Greg Arehart, Advisor Dr. John Muntean, Committee Member Dr. Scott Mensing, Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2017 i ABSTRACT The Camino Rojo Zn-Pb-Ag-Au deposit, located in north-central Mexico, has characteristics of intermediate to low sulfidation epithermal deposits, skarns, and carbonate replacement deposits. Mineralization is hosted in sulfide-rich vein networks and manto-style replacements within calcareous, Cretaceous sedimentary rocks. U-Pb and fission track dating of zircon grains from a mineralized dike constrained the maximum age of the deposit to about 73Ma. Primary sulfides at the deposit include pyrite, sphalerite, arsenopyrite, galena, marcasite, chalcopyrite, electrum, acanthite, pyrargyrite, and tennantite-tetrahedrite. The deposit veins and manto replacement bodies are composed of massive-textured, intergranular sulfides and are concentrated in the carbonaceous siltstone and sandstone of the Caracol Formation. Disseminated sulfides commonly spread outward along bedding planes. Gangue mineralogy includes calcite and potassium feldspar, with lesser amounts of quartz, sericite, and fluorite. Two stages of mineralization were identified using optical petrography. Stage 1 mineralization consists of extensive pyrite-sphalerite-arsenopyrite-galena- chalcopyrite deposited as veins and mantos. Stage 2 mineralization was further divided into two parts: (2a) includes electrum± galena± chalcopyrite± acanthite filling fractures within stage 1 sulfides; and (2b) includes calcite, galena, pyrargyrite, acanthite, and argentiferous tennantite-tetrahedrite within veins which can cross-cut stage 1 mineralization. Over 80% of the electrum at the deposit formed during Stage 2a. Stage 2a and 2b have not been observed to be temporally or spatially associated. Three alteration events were recognized at Camino Rojo. First, early potassic metasomatism and decarbonization bleached and hardened the sedimentary host rocks through K-feldspar flooding of the host matrix. Second, an ore-stage calcite -sericite± pyrite ± quartz alteration overprinted the potassic metasomatism. The final alteration stage is characterized by late calcite dissemination and multiple generations of cross-cutting calcite veins and veinlets. Hornfels texture within the host rocks indicates proximity to a deeper intrusion. Skarn formed within the limestone units underlying the bulk of deposit mineralization. The Camino Rojo deposit is likely part of a larger porphyry system, and the veining and manto replacement which host mineralization may be a transition between distal skarn and the epithermal environment. ii ACKNOWLEDGMENTS The research presented in this Master’s Thesis would not have been possible without the assistance, support, and encouragement of many individuals. I would like to give many thanks to Goldcorp Inc. for their financial contribution. In additional, the individuals involved with Goldcorp’s Camino Rojo project provided assistance and gave access to the property in order to collect hand samples and review core logs, assay data, and cross sections. In particular, Brendan Scorrar provided advice and support in the early drafts of this thesis. I would also like to thank Dr. Greg Arehart, my MS thesis advisor, for his direction, support, and contributions to the manuscript. Dr. Arehart was very patient with my pacing, and never discouraged my research. Acknowledgment and thanks also goes to Dr. John Muntean and Dr. John McCormick, who provided insightful questions which helped direct my study. Special thanks to Steven Weiss for his insights and assistance in writing and editing. Without his guidance and knowledge, this work would not have been possible. As well, to all family and friends who supported me in obtaining my MS in geology: thank you. iii TABLE OF CONTENTS Abstract ............................................................................................................................................. i Acknowledgments............................................................................................................................ ii Table of Contents ............................................................................................................................ iii List of Tables .................................................................................................................................... v List of Figures .................................................................................................................................. vi 1 Introduction ............................................................................................................................. 1 1.1 Rationale for Study .......................................................................................................... 1 1.1.1 Thesis Objectives ...................................................................................................... 1 1.2 Deposit History................................................................................................................. 2 1.3 Methods of Study ............................................................................................................. 3 2 Regional and Deposit Scale Geology ........................................................................................ 5 2.1 Regional Geology ............................................................................................................. 5 2.2 Structural Setting ............................................................................................................. 9 2.3 Geology of Camino Rojo ................................................................................................ 11 2.3.1 Cretaceous Sedimentary Host Lithologies ............................................................. 12 2.3.2 Intermediate Composition Dikes ........................................................................... 15 3 Mineralization at Camino Rojo .............................................................................................. 19 3.1 Mineralization Style (Vein vs Manto) ............................................................................. 20 3.1.1 Vein Sulfides and Textures ..................................................................................... 21 3.1.2 Manto (Replacement) Sulfides and Textures ......................................................... 24 3.2 Mineral and Sulfide Petrography and Paragenesis ........................................................ 27 3.2.1 Calcite Petrography ................................................................................................ 32 3.2.2 Quartz Petrography ................................................................................................ 34 3.2.3 Pyrite and Marcasite Petrography ......................................................................... 37 3.2.4 Sphalerite Petrography .......................................................................................... 39 3.2.5 Arsenopyrite Petrography ...................................................................................... 40 3.2.6 Chalcopyrite and Galena Petrography ................................................................... 42 3.2.7 Tetradymite (Bi2Te2S) ............................................................................................. 46 iv 3.2.8 Electrum Petrography ............................................................................................ 48 3.2.9 Petrography of Silver Minerals .............................................................................. 49 4 Hydrothermal Alteration at Camino Rojo .............................................................................. 54 4.1 Potassic Metasomatism ................................................................................................. 57 4.2 Calcite- Sericite- ±Pyrite ±Quartz Alteration .................................................................. 61 4.2.1 Illite/ Muscovite and smectite as part of ore-related alteration ........................... 65 4.3 Late, Overprinting Calcite ± Pyrite ................................................................................. 67 4.4 Contact Metamorphism, Skarn and Recrystallization at Camino Rojo .......................... 68 5 Assay Correlations and Spatial Trends ................................................................................... 70 5.1 Spatial trends of gold, silver, lead, and arsenic at Camino Rojo .................................... 72 6 Geochronology of a Mineralized (Pre-Ore) Dike ................................................................... 73 7 Summary, Conclusions, and Discussion ................................................................................. 76 7.1 Mineralization at Camino Rojo ...................................................................................... 76 7.2 Hydrothermal
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Silver Sulphosalts in Galena from Espeland, Norway
    Silver sulphosalts in galena from Espeland, Norway M. S. NAIK Naik, M. S.: Silver sulphosalts in galena from Espeland, Norway. Norsk Geo­ logisk Tidsskrift, Vol. 55, pp. 185-189. Oslo 1975. The silver-bearing phases in galena from Espeland are freibergite, unknown 'phase C' (PbuA&l!Sbto�), pyrargyrite, stephanite and hessite. The composi­ tions of these phases were determined by electron microprobe. Freibergite is homogeneous in composition with an average 35 percent silver. The average calculated atomic proportions (Cu,Ag,Fe)t2.�b4S12·4• deviate from the stoi­ chiometric composition (Cu,Ag,Fe,Znh2(SbAs)4S13 of tetrahedrite. It has been found that most of the silver present in the ore occurs in the silver phases and not in structural positions in the galena lattice. M. S. Naik, Mineralogisk-geologisk museum, Sars gate l, Oslo 5, Norway. Present address: lndian School of Mines, Dhanbad, Bihar, India. Galenas with high contents of bismuth and silver have been described from Espeland and other localities in Norway by Oftedal (1942). He proposed that Bi atoms enter into the PbS lattice without causing any distortion, if an equal number of Ag atoms enter simultaneously. The excess of Bi over (BiAg) was considered to be responsible for the octahedral parting in some of these galenas. In the present study of the silver bearing galena from Espeland it has been found that the galena contains inclusions of several silver-bearing phases, as well as native bismuth, while the galena itself contains only nor­ mal amounts of Ag and essentially no Bi. Geology of the Espeland deposit The Espeland deposit is located SW of Vegårshei church, between the farms Myre and Espeland in Aust-Agder fylke, southern Norway.
    [Show full text]
  • Ag2s Solubility in Sulfide Solutions up to 250°C in Order to Estimate Possible Silver Sulfide Complexes in Ore Solutions, the S
    Geochemical Journal, Vol. 21, pp. 291 to 305, 1987 Ag2S solubility in sulfide solutions up to 250°C ASAHIKO SUGAKI', STEVEN D. SCOTT', KENICHIRO HAYASHI', and ARASHI KITAKAZE1 Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Sendai 980, Japan' and Department of Geology, University of Toronto, Toronto M5S 1A1, Canada' (Received December 2, 1987: Accepted February 22, 1988) In order to estimatepossible silver sulfide complexes in ore solutions, the solubilityof Ag2Swas measuredbetween 25° and 250°Cin NaOH-H2S-H20solutions of 0.0 to 4.1m NaHSconcentration. Solu bilitychanges as a functionof temperature,total reducedsulfur concentration ES (mHS + mHS-)and pH. A maximumsolubility of 2140ppmAg was obtained at 250°Cin 4.1m NaHSconcentration under PH 2Sof 29.1 atm. From these solubility data, reactions to form silver sulfide complexes are estimated as follows: Ag2S + H2S = Ag2S(H2S), Ag2S + H2S + HS = Ag2S(H2S) (HS)-, Ag2S + H2S + 2HS = Ag2S (H2S) (HS)22 and Ag2S + 2HS = Ag2S (HS)22-. The equilibrium constants for these reactions are given in Table 2. Assuming that such silver sulfide complexes as above are in an ore solution , Ag2S (argentite or acanthite) is precipitated in response to changes of temperature, pH and total sulfur concentration (ES). Decrease of pH and ES is more effective than that of temperature. Silver sulfide complexes are more important than silver chloride complexes in ore solution of high ES, neutral to slightly alkaline pH and geologically reasonable chloride concentrations. INTRODUCTION to the experimental study by Seward (1973), Thermochemical data for aqueous metal bisulfide complexes are significant for the trans species at elevated temperatures and pressures port of gold in ore solutions under epithermal are indispensable for understanding transport of conditions, even if chloride complexes have the metals in hydrothermal solution.
    [Show full text]
  • An Investigation of the Crystal Growth of Heavy Sulfides in Supercritical
    AN ABSTRACT OF THE THESIS OF LEROY CRAWFORD LEWIS for the Ph. D. (Name) (Degree) in CHEMISTRY presented on (Major) (Date) Title: AN INVESTIGATION OF THE CRYSTAL GROWTH OF HEAVY SULFIDES IN SUPERCRITICAL HYDROGEN SULFIDE Abstract approved Redacted for privacy Dr. WilliarriIJ. Fredericks Solubility studies on the heavy metal sulfides in liquid hydrogen sulfide at room temperature were carried out using the isopiestic method. The results were compared with earlier work and with a theoretical result based on Raoult's Law. A relative order for the solubilities of sulfur and the sulfides of tin, lead, mercury, iron, zinc, antimony, arsenic, silver, and cadmium was determined and found to agree with the theoretical result. Hydrogen sulfide is a strong enough oxidizing agent to oxidize stannous sulfide to stannic sulfide in neutral or basic solution (with triethylamine added). In basic solution antimony trisulfide is oxi- dized to antimony pentasulfide. In basic solution cadmium sulfide apparently forms a bisulfide complex in which three moles of bisul- fide ion are bonded to one mole of cadmium sulfide. Measurements were made extending the range over which the volumetric properties of hydrogen sulfide have been investigated to 220 °C and 2000 atm. A virial expression in density was used to represent the data. Good agreement, over the entire range investi- gated, between the virial expressions, earlier work, and the theorem of corresponding states was found. Electrical measurements were made on supercritical hydro- gen sulfide over the density range of 10 -24 moles per liter and at temperatures from the critical temperature to 220 °C. Dielectric constant measurements were represented by a dielectric virial ex- pression.
    [Show full text]
  • Minerals and Mineral Products in Our Bedroom Bed Hematite
    Minerals and Mineral Products in our Bedroom Make-Up Kit Muscovite Bed Talc Hematite: hinges, handles, Mica mattress springs Hematite: for color Chromite: chrome plating Bismuth Radio Barite Copper: wiring Plastic Pail Quartz: clock Mica Gold: connections Cassiterite: solder Toilet Bowl / Tub Closet Feldspar: porcelain Chromite: chrome plating Pyrolusite: coloring Hematite: hinges, handles (steel) Chromite: plumbing fixtures Quartz : mirror on door Copper: tubing Desk Toothpaste Hematite: hinges, handles (steel) Apatite: teeth Chromite: chrome plating Fluorite: toothpaste Mirror Rutile: to color false Hematite: handle, frame teeth yellow Chromite: plating Gold: fillings Gold: plating Cinnabar: fillings Quartz: mirror Towels Table Lamp Sphalerite: dyes Brass (an alloy of copper and Chromite: dyes zinc): base Quartz: bulb Water Pipe/Faucet/Shower bulb Wolframite: lamp filament Brass Copper: wiring Iron Nickel Minerals and Mineral Products in our Bedroom Chrome: stainless steel Bathroom Cleaner Department of Environment and Natural Resources Borax: abrasive, cleaner, and antiseptic MINES AND GEOSCIENCES BUREAU Deodorant Spray Can Cassiterite Chromite Copper Carpet Quartz Sphalerite: dyes Telephone Chromite: dyes Drinking Glasses Copper: wiring Sulfur: foam padding Quartz Chromite: plating Gold: red color Clock Silver: electronics Pentlandite: spring Graphite: batteries Refrigerator Quartz: glass, time keeper Hematite Television Chromite: stainless steel Chromite: plating Computer Galena Wolframite: monitor Wolframite: monitor Copper Copper:
    [Show full text]
  • Metacinnabar Hgs C 2001-2005 Mineral Data Publishing, Version 1
    Metacinnabar HgS c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m. Commonly massive; rarely as small (to 1 mm) tetrahedral crystals having rough faces. Twinning: Common on {111}, forming lamellae in polished section. Physical Properties: Fracture: Subconchoidal. Tenacity: Brittle. Hardness = 3 VHN = n.d. D(meas.) = 7.65 D(calc.) = 7.63 Optical Properties: Opaque. Color: Grayish black; in polished section, grayish white. Streak: Black. Luster: Metallic. Pleochroism: Weak, rarely. Anisotropism: Very weak, rarely. R: (400) 28.4, (420) 27.6, (440) 26.8, (460) 26.3, (480) 25.9, (500) 25.6, (520) 25.4, (540) 25.2, (560) 25.1, (580) 25.0, (600) 24.9, (620) 24.9, (640) 24.8, (660) 24.7, (680) 24.7, (700) 24.7 Cell Data: Space Group: F 43m. a = 5.8717(5) Z = 4 X-ray Powder Pattern: Synthetic. 3.378 (100), 2.068 (55), 1.7644 (45), 2.926 (35), 1.3424 (12), 1.6891 (10), 1.3085 (10) Chemistry: (1) (2) (3) (4) Hg 79.73 67.45 81.33 86.22 Zn 4.23 3.10 Cd 11.72 Fe trace 0.2 Se 1.08 6.49 S 14.58 15.63 10.30 13.78 Total 99.62 98.10 98.12 100.00 (1) Guadalc´azar,Mexico; corresponds to (Hg0.85Zn0.14)Σ=0.99(S0.97Se0.03)Σ=1.00. (2) Uland area, Russia; corresponds to (Hg0.69Cd0.21Zn0.10Fe0.01)Σ=1.01S1.00. (3) San Onofre, Mexico; corresponds to Hg1.00(S0.80Se0.20)Σ=1.00.
    [Show full text]
  • Structure and Mineralization of Precambrian Rocks in the Galena-Roub Aix District, Black Hills, South Dakota
    Structure and Mineralization of Precambrian Rocks in the \ Galena-Roubaix District, Black Hills, South Dakota ( By R. W. BAYLEY » CONTRIBUTIONS TO ECONOMIC GEOLOGY V ' GEOLOGICAL SURVEY BULLETIN 1312-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 55 cents (paper cover) CONTENTS Page Abstract_ ____-_-_----_-----__--_-----_--_--.. El Introduction _________________________________ 1 Field methods_______-_____-_____-_____-__--_ 2 General geology.___-__--__-_--__-_--___._-_--_. 3 Stratigraphy. ___________________---__--__-__-.. 4 Metabasalt and chert.______-__-__-_____-_. 4 Graphitic schist and cherty ferruginous schist. 5 Metagraywacke, schist, and slate_ ___________ 6 Structure. ___________.-______-_-__-_-_-_-___-. 6 Distribution of gold. 7 Diamond drilling. __ 9 Magnetic survey. __ 10 Summary________ 14 References. -. ______ 15 ILLUSTEATIONS Page PLATE 1. Geologic map of the Galena-Roubaix district, Lawrence County, Black Hills, South Dakota.________________ In pocket FIGURE 1. Generalized geologic map of the northern Black Hills____-___ E2 2. Magnetic survey in the vicinity of U.S. Geological Survey diamond-drill hole 1__________________________________ 13 TABLE Page TABLIS 1. Results of core-sample analyses, U.S. Geological Survey diamond-drill hole 1, Galena-Roubaix district.____________ Ell ra CONTRIBUTIONS TO ECONOMIC GEOLOGY STRUCTURE AND MINERALIZATION OF PRECAMBRIAN ROCKS IN THE GALENA-ROUB AIX DISTRICT, BLACK HILLS, SOUTH DAKOTA ByK.W.BAYLEY ABSTRACT The Galena-Roubaix district is underlain chiefly by tightly folded and mod­ erately metamorphosed sedimentary and volcanic rocks of Precambrian age.
    [Show full text]
  • Quantitative Ore Mineralogy and Variations in Vein Textures in the World-Class Waihi Epithermal Au-Ag District, New Zealand
    ©2016 Society of Economic Geologists, Inc. SEG-MJD 2016 Conference Quantitative Ore Mineralogy and Variations in Vein Textures in the World-Class Waihi Epithermal Au-Ag District, New Zealand Jeffrey L. Mauk,1,* Sarah J. Fyfe,2 Erin G. Skinner,3 Andrew H. Menzies,4 Heather Lowers,1 and Alan Koenig1 1U.S. Geological Survey, Denver, Colorado, USA 2University of Auckland, School of Environment, Auckland, New Zealand 3Pattle Delamore Partners Ltd., Auckland, New Zealand 4Universidad Católica del Norte, Facultad Ingeniería y Ciencias Geologicas, Antofagasta, Chile *Corresponding author: e-mail, [email protected] The Waihi district in the Hauraki Goldfield of New Zealand contains a series of adularia- sericite epithermal Au-Ag veins that has produced more than 6.8 Moz Au. We used reflected light microscopy, scanning electron microscopy, microprobe analyses, laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS), and automated mineralogy (QEMSCAN) to analyze ore mineralogy. We used hand sample examination, transmitted light microscopy, scanning electron microscopy, and scanning electron microscopy- cathodoluminescence (SEM-CL) to describe and characterize quartz textures in veins. Critical comparison of opaque minerals and quartz textures within eight major veins of the Waihi district shows significant mineralogical and textural variations among veins. The peripheral veins of the district (Martha, Favona, Moonlight, Cowshed, and Silverton) contain abundant colloform, cherty, and black quartz fill textures, with minor crustiform and massive quartz. The central veins (Amaranth, Trio, and Union) contain predominantly massive and crustiform textures, and these veins are also commonly coarser grained than peripheral veins. Most of the textures identified with SEM-CL correlate with textures that are visible in hand sample and under the microscope, and are well described in the epithermal literature, such as colloform bands, comb quartz, and moss texture.
    [Show full text]
  • Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores
    A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores Chapter A of Mineral Deposit Models for Resource Assessment 2 cm Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus marcasite) from the Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and Scientificsphalerite Investigations alnong colloform Report layers of2010–5070–A light-colored spahlerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerire and iron sulfides. Size of sample is 20x13 cm. Photo by David Leach. U.S. Department of the Interior U.S. Geological Survey COVER: Sample of spheroidal sphalerite with dendritic sphalerite, galena, and iron sulfides (pyrite plus mar- casite) from Pomorzany mine. Note the “up direction” is indicated by “snow-on-the-roof” texture of galena and sphalerite along colloform layers of light-colored sphalerite. Hydrothermal sulfide clasts in the left center of the sample are encrusted by sphalerite and iron sulfides. Size of sample is 20x13 centimeters. (Photograph by David L. Leach, U.S. Geological Survey.) A Deposit Model for Mississippi Valley- Type Lead-Zinc Ores By David L. Leach, Ryan D. Taylor, David L. Fey, Sharon F. Diehl, and Richard W. Saltus Chapter A of Mineral Deposit Models for Resource Assessment Scientific Investigations Report 2010–5070–A U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S.
    [Show full text]