The Effect of Buffers on Protein Conformational Stability

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Buffers on Protein Conformational Stability The Effect of Buffers on Protein Conformational Stability Sydney O. Ugwu and Shireesh P.Apte* uffers used to formulate proteins should not serve as substrates or inhibitors. They should exhibit little or no change in pH with temperature, show insignificant pen- Betration through biological membranes, and have max- imum buffer capacity at a pH where the protein exhibits opti- mal stability. In conformity with the proposition that “Nature designs the optimum molecules,”buffers should mimic the an- tidenaturant properties of nature exhibited by osmolytes (1–5) that are independent of the evolutionary history of the proteins PHOTODISC, INC. (6, 7). Such properties may include preferential exclusion from the protein domain (8–11) and stabilization without changing ⌬ The extent to which a particular protein may the denaturation Gibbs energy ( Gd) (12). be stabilized or destabilized by a buffer Conformational instability refers not only to unfolding, ag- depends on many factors, thereby making gregation, or denaturation but also to subtle changes in local- ized protein domains and the alteration of enzyme catalytic the selection of a buffer for formulating a properties (13) that may result from buffer-component bind- specific protein a formidable challenge.The ing, proton transfer, and metal or substrate binding effects di- authors describe qualitative and rectly or indirectly mediated by buffers or by buffers themselves semiqualitative correlations to help in the acting as pseudosubstrates. selection of a buffer for a particular protein Salts can affect protein conformation to the extent that the and formulation. anions or cations of the salt could be potential buffer compo- nents. When the salt concentration is much larger than that of the buffer, the salt becomes the effective buffer in the reaction. The mechanisms or combinations thereof by which buffers may cause protein stabilization (or destabilization) are com- plex and not well understood. The problem is compounded by the inability to definitively differentiate between various pro- tein stabilization mechanisms, the small free energies of stabi- lization of globular proteins (14–16), and a paucity of review manuscripts on this subject in the literature. The authors ad- dress some of these issues as they relate to buffers used in the Sydney O. Ugwu, PhD, of Baxter IV formulation of proteins. The effect of buffers that may be used Systems in Murray Hill, New Jersey, is in the extraction, purification, dialysis, refolding, or assay of currently at NeoPharm Inc. (Waukegan, IL). proteins on protein conformation is not discussed. Shireesh P. Apte, PhD, is a lead scientist at Baxter IV Systems (Murray Hill, NJ) and may be contacted at Alcon Research Buffer effects on freeze drying Inc., 6201 S. Freeway, Ft. Worth, TX 76134, Change in pH as a result of buffer salt crystallization. When inor- tel. 817.551.4901, fax 817.551.8626, ganic salts are used as buffers, the freezing point of the mono- [email protected]. ionized species (salt) can be different from that of the non- *To whom all correspondence should be addressed. ionized (i.e., free acid or base) species and from its higher ionized species. This difference leads to the freezing of one form before 86 Pharmaceutical Technology MARCH 2004 www.pharmtech.com List of abbreviations ing at Ϫ7 ЊC because of the propensity for KCl, but not NaCl, to form a stable glass at this temperature (26). Also, the specific ACES:N-2-acetamido-2-aminoethane sulfonic acid surface area of freeze-dried bovine IgG from solutions con- 2,3-BPG: 2,3-bis phosphoglycerate taining NaCl was found to be significantly higher than those CHES:1-[N-cyclohecyamino]-ethane sulfonic acid containing KCl (27). Annealing also increases the surface ac- CLARP: caspase-like-apoptosis-regulatory-protein cumulation of proteins at the ice–liquid interface so that the DIPSO:3-[N,N-bis(hydroxyethyl)amino]-2-hydroxypropane sulfonic acid formation of a stable glass at the annealing temperature is es- G-CSF: granulocyte colony stimulating factor pecially important to minimize denaturation caused by such a Good’s buffers: zwitterionic buffers containing aminoalkyl sulfonate (e.g.,DIPSO, mechanism (28). MES,HEPPSO,HEPES) The rate of aggregation of recombinant human interleukin-1 HEPES:4-(2-hydroxyethyl)piperazine-N’-2-ethane sulfonic acid receptor antagonist (rhIl-1ra) was greater in mannitol–phosphate HEPPSO:[N-(2-hydroxyethyl)piperazine-N’-2-hydroxypropane sulfonic acid formulations than in glycine–phosphate formulations, possibly KCl: potassium chloride owing to the inhibition of the selective crystallization of the NaCl: sodium chloride dibasic salt by glycine during freezing, thereby preventing large NADPH: nicotinamide adenine dinucleotide phosphate localized pH changes in the frozen matrix (29). Na HPO :disodium phosphate 2 4 The effect of various buffer solutions on freezing damage to (NH ) SO :ammonium sulfate 4 2 4 rabbit-muscle-derived lactate dehydrogenase, type II (LDH, NTB: nitrothiobenzoate isoionic point [pI] ϭ 4.6) was examined with sodium phos- MES: 2-(N-morpholino)ethane sulfonic acid phate, TRIS-HCl, HEPES, and citrate buffers (50 mM, pH 7.0) MOPS: 3-(N-morpholino-2-hydroxypropane sulfonic acid and pH 7.4 (30). The activity recovery was directly proportional PIPES: [piperazine-N,N’-bis(ethane sulfonic acid)] to enzyme concentration and was the lowest in the sodium POPSO: piperazine-N,N’-bis(2-hydeoxypropane sulfonic acid) phosphate buffer (31). The activity increased in the following PBS: phosphate buffered salineTAPS: N-tris[hydroxymethyl]methyl-3- order: citrate Tris Ϸ potassium phosphate Ͻ HEPES. The aminopropane sulfonic acid low activity recovery in the sodium phosphate buffer was at- TEA: triethylamine tributed to its significant pH shift on freezing (32). The study ϩ ϩ TES: 1% sodium dodecyl sulfate 5mM EDTA 10 mM TRIS-HCL revealed no clear pattern relating recovery of activity after freez- TRIS-HCL: Tris-(hydroxymethyl)aminomethane hydrochloride ing to the freezing rate because an intermediate freezing rate gave the highest recovery of activity (31). The researchers hy- the other during the freezing phase of lyophilization (17). Such pothesized that the slowest freezing method actually resulted a phenomenon has been linked to drastic changes in pH of the in a greater degree of supercooling and better thermal equili- liquid medium during freezing, which can lead to the denatu- bration throughout the volume of liquid such that, when ice ration of the protein being lyophilized (18, 19). If an ampho- crystals nucleated, the freezing rate actually was faster than de- teric molecule were to function as a buffer containing both signed. Therefore, the study illustrates the need to control the acidic and basic groups on one molecule, one would expect neg- extent of supercooling by seeding the cooling liquid when com- ligible pH shifts to occur during the crystallization of this zwit- paring the effects of buffers or lyoprotectants on the stability terionic molecule (20). Such is indeed the case for various or- of freeze-dried proteins. ganic buffers broadly categorized as aminoalkylsulfonate In another study, the decreased solid-state stability of zwitterions (21). Good et. al. prepared and disclosed such buffers lyophillized recombinant human interferon ␥ (pI ϭ 10.3) in in their classic publication (22). sodium succinate buffer as compared with sodium glycolate Researchers have shown that replacing the Naϩ cation with buffer was attributed to a pH shift occuring in the former (19). the Kϩ cation in a phosphate buffer could significantly decrease In this case, however, the decrease in pH on freezing was at- the pH shift during the freezing stage of lyophilization (23). A tributed to crystallization of the monosodium form of succinic potassium phosphate buffer at pH 7.2 exhibited a eutectic point acid. In addition, it was not immediately clear why a similar at a temperature greater than Ϫ10 ЊC. However, the sodium crystallization effect would not be observed with the use of cation counterpart showed a eutectic point at a temperature sodium salt of the glycolic acid. In any event, the Naϩ cation below Ϫ20 ЊC. Monoclonal antibodies against HBV and L-se- can be replaced with the Kϩ cation in inorganic buffers as a first lectin, humanized IgG, as well as monomeric and tetrameric ␤- approximation to potentially increase the stability of proteins galactosidase exhibited less aggregation when subjected to during the freezing stage of lyophillization. freeze–thaw cycles with a potassium phosphate buffer than with Influence on specific surface areas of lyophillized cakes. An ag- a sodium phosphate buffer (24). Similarly, the propensity of re- gregation mechanism involving partial denaturation at the combinant hemoglobin to denature as a result of phase sepa- ice–freeze concentrate interface has also been linked to an in- ration from a polyethylene glycol–dextran matrix was reduced crease in protein degradation (27). Denaturation induced by when NaCl was replaced with KCl in the formulation buffer. In this mechanism can be reduced by incorporating surface active this case, the sodium phosphate buffer did not exhibit a pH shift agents in the formulation (33). Studies have shown the copper during freezing owing to inhibition of crystallization of dis- complexing ability of several zwitterionic N-substituted odium phosphate by the polymer (25). However, replacing NaCl aminosulfonic acid buffers to correlate with surface activity at with KCl did decrease the phase separation caused by anneal- pH 8.0 as measured by alternating current polarography (34). 88 Pharmaceutical Technology MARCH 2004 www.pharmtech.com Increasing surface activity was correlated to the number of hy- concluded that the sulfonate was more chaotropic than the droxyl groups; thus, the following order: DIPSO (three hydroxyl phosphate anion (44). groups) Ͼ HEPPSO, POPSO (two) Ͼ PIPES (no hydroxy The solution and thermal stability of the tetrameric enzyme, groups), showing no surface activity. phosphoenolpyruvate carboxylase (PEPC, pI ϭ 6.0) was de- In another study, the increase of Cuϩ2 toxicity observed in termined at pH 6.2 in MES buffer in the presence of various the marine dinoflagellate A.
Recommended publications
  • Ready-To-Run Buffers and Solutions
    Electrophoresis Ready-to-Run Buffers and Solutions Bio-Rad is a premier provider of buffers and premixed reagents for life science research. We offer a variety of different products for all your protein and nucleic acid experiments. Whether you need powdered reagents or premixed solutions, Bio-Rad reagents meet the highest quality standards to ensure consistency and reliability in your experiments. FastCast™ Solutions FastCast Solutions Access all the benefits of TGX™ and Solution Applications TGX Stain-Free™ gel chemistries with TGX™ FastCast™ acrylamide starter kit, 7.5% Protein Separation the fastest gel run times, the most TGX FastCast acrylamide kit, 7.5% Protein Separation efficient transfers, stain-free visualization TGX FastCast acrylamide starter kit, 10% Protein Separation in 5 minutes, as well as a long shelf life TGX FastCast acrylamide kit, 10% Protein Separation (1 month after casting) using convenient TGX FastCast acrylamide starter kit, 12% Protein Separation premixed handcasting solutions. TGX FastCast acrylamide kit, 12% Protein Separation Long shelf life TGX chemistry retains TGX Stain-Free™ FastCast™ acrylamide starter kit, 7.5% Protein Separation Laemmli-like separation characteristics TGX Stain-Free FastCast acrylamide kit, 7.5% Protein Separation while using a standard Tris/glycine TGX Stain-Free FastCast acrylamide starter kit, 10% Protein Separation running buffer system. TGX Stain-Free FastCast acrylamide kit, 10% Protein Separation TGX Stain-Free FastCast acrylamide starter kit, 12% Protein Separation TGX Stain-Free FastCast acrylamide kit, 12% Protein Separation Gel Casting Solutions Gel Casting Buffers Tris Buffers and Acrylamide Solutions Solution Applications for Gel Casting 1.5 M Tris-HCI, pH 8.8 Resolving gel preparation Bio-Rad offers a variety of prepared 0.5 M Tris-HCI, pH 6.8 Stacking gel preparation solutions for casting polyacrylamide Acrylamide Solutions gels.
    [Show full text]
  • Thermodynamic Quantities for the Ionization Reactions of Buffers
    Thermodynamic Quantities for the Ionization Reactions of Buffers Robert N. Goldberg,a… Nand Kishore,b… and Rebecca M. Lennen Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 ͑Received 21 June 2001; accepted 16 September 2001; published 24 April 2002͒ This review contains selected values of thermodynamic quantities for the aqueous ionization reactions of 64 buffers, many of which are used in biological research. Since the aim is to be able to predict values of the ionization constant at temperatures not too far from ambient, the thermodynamic quantities which are tabulated are the pK, standard ⌬ ؠ ⌬ molar Gibbs energy rG , standard molar enthalpy rH°, and standard molar heat ca- ؠ ⌬ pacity change rC p for each of the ionization reactions at the temperature T ϭ298.15 K and the pressure pϭ0.1 MPa. The standard state is the hypothetical ideal solution of unit molality. The chemical name͑s͒ and CAS registry number, structure, empirical formula, and molecular weight are given for each buffer considered herein. The selection of the values of the thermodynamic quantities for each buffer is discussed. © 2002 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. Key words: buffers; enthalpy; equilibrium constant; evaluated data; Gibbs free energy; heat capacity; ionization; pK; thermodynamic properties. Contents 7.19. CAPSO.............................. 263 7.20. Carbonate............................ 264 7.21. CHES............................... 264 1. Introduction................................ 232 7.22. Citrate............................... 265 2. Thermodynamic Background.................. 233 7.23. L-Cysteine............................ 268 3. Presentation of Data......................... 234 7.24. Diethanolamine........................ 270 4. Evaluation of Data. ........................ 235 7.25. Diglycolate..........................
    [Show full text]
  • Buffers a Guide for the Preparation and Use of Buffers in Biological Systems Calbiochem® Buffers a Guide for the Preparation and Use of Buffers in Biological Systems
    Buffers A guide for the preparation and use of buffers in biological systems Calbiochem® Buffers A guide for the preparation and use of buffers in biological systems Chandra Mohan, Ph.D. EMD, San Diego, California © EMD, an affiliate of Merck KGaA, Darmstadt, Germany. All rights reserved. A word to our valued customers We are pleased to present to you the newest edition of Buffers: A Guide for the Preparation and Use of Buffers in Biological Systems. This practical resource has been especially revamped for use by researchers in the biological sciences. This publication is a part of our continuing commitment to provide useful product information and exceptional service to you, our customers. You will find this booklet a highly useful resource, whether you are just beginning your research work or training the newest researchers in your laboratory. Over the past several years, EMD Biosciences has clearly emerged as a world leader in providing highly innovative products for your research needs in Signal Transduction, including the areas of Cancer Biology, Alzheimer’s Disease, Diabetes, Hypertension, Inflammation, and Apoptosis. Please call us today for a free copy of our LATEST Catalog that includes tools for signal transduction and life science research. If you have used our products in the past, we thank you for your support and confidence in our products, and if you are just beginning your research career, please call us and give us the opportunity to demonstrate our exceptional customer and technical service. Corrine Fetherston Sr. Director, Marketing ii Table of Contents: Why does Calbiochem® Biochemicals Publish a Booklet on Buffers? .
    [Show full text]
  • Tris(Hydroxymethyl)Aminomethane; Tris
    Tris(hydroxymethyl)aminomethane; Tris Technical Bulletin No. 106B IMPORTANT NOTICE The "Tris" described in this bulletin is Tris(hydroxymethyl)aminomethane. It is not the "Tris" used to flame-proof fabric. The latter, Tris(2,3-dibromopropyl)phosphate, has been reported to be a cancer suspect agent. Trizma® is Sigma's registered trademark applied to various compounds of tris(hydroxymethyl)- aminomethane (tris) prepared by Sigma. For example, Trizma HCl is the completely neutralized crystalline hydrochloride salt of tris. Trizma Base is the pure tris itself. Trizma and its salts have been useful as buffers in a wide variety of biological systems. Uses include pH control in vitro1,2 and in vivo,3,4 for body fluids and as an alkalizing agent in the treatment of acidosis of the blood.5 Trizma has been used as a starting material for polymers, oxazolones (with carboxylic acids) and oxazolidines (with aldehydes).6 Trizma does not precipitate calcium salts and is of value in maintaining solubility of manganese salts.7 PRIMARY BASIMETRIC STANDARD Trizma Base meets many of the requirements for a primary basimetric standard. It is pure, essentially stable, relatively non-hygroscopic and has a high equivalent weight. Trizma Base can be dried at 100°C for up to 4 hours.8 It can be used for the direct standardization of a strong acid solution; the equivalence point can be determined either potentiometrically or by use of a suitable indicator: [3-(4-Dimethylamino-1-naphthylazo)-4- methoxybenzenesulfonic acid, Product No. D5407]. Tris(hydroxymethyl)aminomethane (Trizma Base) -- Physical Data Empirical Formula: C4 H11 N O3 Molecular Weight: 121.14 Equivalent Weight: 121.14 pH of 0.05 M aqueous solution: 10.4* Kb = 1.202 × 10-6 at 25° (pKa = 8.08)9 Trizma HCl -- Physical Data Empirical Formula: C4 H12 Cl N O3 Molecular Weight: 157.6 Equivalent Weight: 157.6 pH of 0.05 M aqueous solution: 4.7* *Trizma HCl in solution will produce a pH of approximately 4.7, but will have little if any buffering capacity.
    [Show full text]
  • Biological Buffers and Ultra Pure Reagents
    Biological Buffers and Ultra Pure Reagents Are MP Buffers in your corner? One Call. One Source. A World of Ultra Pure Biochemicals. www.mpbio.com Theoretical Considerations Since buffers are essential for controlling the pH in many Since, under equilibrium conditions, the rates of dissociation and biological and biochemical reactions, it is important to have a association must be equal, they may be expressed as: basic understanding of how buffers control the hydrogen ion concentration. Although a lengthy, detailed discussion is impractical, + - k1 (HAc) = k2 (H ) (Ac ) some explanation of the buffering phenomena is important. Or Let us begin with a discussion of the equilibrium constant (K) for + - weak acids and bases. Acids and bases which do not completely k1 = (H ) (Ac ) dissociate in solution, but instead exist as an equilibrium mixture of k (HAc) undissociated and dissociated species, are termed weak acids and 2 bases. The most common example of a weak acid is acetic acid. If we now let k1/k2 = Ka , the equilibrium constant, the equilibrium In solution, acetic acid exists as an equilibrium mixture of acetate expression becomes: ions, hydrogen ions, and undissociated acetic acid. The equilibrium between these species may be expressed as follows: + - Ka = (H ) (Ac ) k1 (HAc) + - HAc ⇌ H + Ac which may be rearranged to express the hydrogen ion concentration k2 in terms of the equilibrium constant and the concentrations of undissociated acetic acid and acetate ions as follows: where k1 is the dissociation rate constant of acetic acid to acetate and hydrogen ions and k is the association rate constant of the ion 2 (H+) = K (HAc) species to form acetic acid.
    [Show full text]
  • Novel Process for the Preparation of Serinol
    Europaisches Patentamt 0 348 223 J European Patent Office fin Publication number: A2 Office europeen des brevets EUROPEAN PATENT APPLICATION Application number: 89306393.3 int. a*: C 07 C 89/00 C 07 C 91/12 Date of filing: 23.06.89 Priority: 23.06.88 US 210945 ® Applicant: W.R. Grace & Co.-Conn. 1114 Avenue of the Americas New York New York 1 0036 (US) Date of publication of application: 27.12.89 Bulletin 89/52 @ Inventor: Quirk, Jennifer Maryann 6566 River Clyde Drive Designated Contracting States: 20777 (US) AT BE CH DE ES FR GB GR IT LI LU NL SE Highland Maryland Harsy, Stephen Glen 16236 Compromise Court Mt. Airy Maryland 21771 (US) Hakansson, Christer Lennart Vikingsgaten 3 S-25238Helsingborg (SE) @ Representative: Bentham, Stephen et al J.A. Kemp & Co. 14 South Square Gray's Inn London WC1R5EU (GB) @ Novel process for the preparation of serinol. (g) A process for forming 2-amino-1 ,3-propanediol by reduc- ing a 5-nitro-1,3-dioxane and subsequently hydrolyzing the reduced compound. CO SI 00 3 Q_ LU Bundesdruckerei Berlin EP 0 348 223 A2 Description NOVEL PROCESS FOR THE PREPARATION OF SERINOL The present invention relates to a novel process to form 2-amino-1 ,3-propanediol (commonly known as "serinol"). The present process provides a means of forming serinol using readily formed materials under mild 5 and easily handled conditions suitable for industrial application. Serinol is a highly desired material required for the preparation of nonionic x-ray contrast media, such as iopanediol (N,N'-bis[2-hydroxy-1-(hydroxymethyl)ethyl]-2,4,6-triiodo-5-lactamidisophthalamide).
    [Show full text]
  • Standard Abbreviations
    Journal of CancerJCP Prevention Standard Abbreviations Journal of Cancer Prevention provides a list of standard abbreviations. Standard Abbreviations are defined as those that may be used without explanation (e.g., DNA). Abbreviations not on the Standard Abbreviations list should be spelled out at first mention in both the abstract and the text. Abbreviations should not be used in titles; however, running titles may carry abbreviations for brevity. ▌Abbreviations monophosphate ADP, dADP ‌adenosine diphosphate, deoxyadenosine IR infrared diphosphate ITP, dITP ‌inosine triphosphate, deoxyinosine AMP, dAMP ‌adenosine monophosphate, deoxyadenosine triphosphate monophosphate LOH loss of heterozygosity ANOVA analysis of variance MDR multiple drug resistance AP-1 activator protein-1 MHC major histocompatibility complex ATP, dATP ‌adenosine triphosphate, deoxyadenosine MRI magnetic resonance imaging trip hosphate mRNA messenger RNA bp base pair(s) MTS ‌3-(4,5-dimethylthiazol-2-yl)-5-(3- CDP, dCDP ‌cytidine diphosphate, deoxycytidine diphosphate carboxymethoxyphenyl)-2-(4-sulfophenyl)- CMP, dCMP ‌cytidine monophosphate, deoxycytidine mono- 2H-tetrazolium phosphate mTOR mammalian target of rapamycin CNBr cyanogen bromide MTT ‌3-(4,5-Dimethylthiazol-2-yl)-2,5- cDNA complementary DNA diphenyltetrazolium bromide CoA coenzyme A NAD, NADH ‌nicotinamide adenine dinucleotide, reduced COOH a functional group consisting of a carbonyl and nicotinamide adenine dinucleotide a hydroxyl, which has the formula –C(=O)OH, NADP, NADPH ‌nicotinamide adnine dinucleotide
    [Show full text]
  • Bis-Tris (B4429)
    Bis-Tris Cell Culture Tested Product Number B 4429 Product Description Bis-Tris buffer has been utilized in a study of λ cro 7 Molecular Formula: C8H19NO5 repressor self-assembly and dimerization. An Molecular Weight: 209.2 investigation of the ligand binding properties of the CAS Number: 6976-37-0 human hemoglobin variant (Hb Hinsdale) has used 8 pKa: 6.5 (25 °C) Bis-Tris buffer. Synonyms: 2-bis(2-hydroxyethyl)amino-2- (hydroxymethyl)-1,3-propanediol, bis(2- Precautions and Disclaimer hydroxyethyl)amino-tris(hydroxymethyl)methane, For Laboratory Use Only. Not for drug, household or 2,2-bis(hydroxymethyl)-2,2',2''-nitrilotriethanol other uses. This product is cell culture tested (4.2 mg/ml) and is Preparation Instructions designated as Biotechnology Performance Certified. It This product is soluble in water (500 mg/ml), yielding a is tested for endotoxin levels and for the absence of clear, colorless to very faint yellow solution. nucleases and proteases. References Bis-Tris is a zwitterionic buffer that is used in 1. Good, N. E., et al, Hydrogen ion buffers for biochemistry and molecular biology research. It is biological research. Biochemistry, 5(2), 467-477 structurally analogous to the the Good buffers that (1966). were developed to provide buffers in the pH range of 2. Molecular Cloning: A Laboratory Manual, 3rd ed., 6.15 - 8.35 for wide applicability to biochemical Sambrook, J. and Russell, D. W., CSHL Press studies.1 The useful pH range of Bis-Tris is 5.8 - 7.2. (Cold Spring Harbor, NY: 2001), pp. 7.26-7.30.
    [Show full text]
  • Nickel Chelating Resin Spin Columns
    327PR G-Biosciences, St Louis, MO. USA ♦ 1-800-628-7730 ♦ 1-314-991-6034 ♦ [email protected] A Geno Technology, Inc. (USA) brand name Cobalt Chelating Resin Spin Columns INTRODUCTION Immobilized Metal Ion Affinity Chromatography (IMAC), developed by Porath (1975), is based on the interaction of certain protein residues (histidines, cysteines, and to some extent tryptophans) with cations of transition metals. The Cobalt Chelating Resin is specifically designed for the purification of recombinant proteins fused to the 6X histidine (6XHis) tag. ITEM(S) SUPPLIED Cat. # Description Total Column Volume Size 786-454 Cobalt Chelating Resin, 0.2ml Spin Column 1ml 25 columns 786-455 Cobalt Chelating Resin, 1ml Spin Column 8ml 5 columns 786-456 Cobalt Chelating Resin, 3ml Spin Column 22ml 5 columns *Cobalt Chelating Resin is supplied as a 50% slurry in 20% ethanol STORAGE CONDITIONS It is shipped at ambient temperature. Upon arrival, store it refrigerated at 4°C, DO NOT FREEZE. This product is stable for 1 year at 4°C. SPECIFICATIONS Ligand Density: 20-40μmoles Co2+/ ml resin Binding Capacity: >50mg/ml resin. We have demonstrated binding of >100mg of a 50kDa 6X His tagged proteins to a ml of resin Bead Structure: 6% cross-linked agarose IMPORTANT INFORMATION • The purity and yield of the recombinant fusion protein is dependent of the protein’s confirmation, solubility and expression levels. We recommend optimizing and performing small scale preparations to estimate expression and solubility levels. • Avoid EDTA containing protease inhibitor cocktails, we recommend our Recom ProteaseArrest™ (Cat. # 786-376, 786-436) for inhibiting proteases during the purification of recombinant proteins.
    [Show full text]
  • Formaldehyde Cross-Linking of Chromatin from Drosophila
    2 Formaldehyde Cross-linking of Chromatin from Drosophila Protocol from modEncode IGSB University of Chicago originally written by Alex Crofts and Sasha Ostapenko and updated by Matt Kirkey. 1. Set centrifuge on fast temp to cool down to 4°C (sign out centrifuge). 2. Turn on sonicator, clean probes (sign out sonicator). 3. Prep A1 and Lysis buffers. 4. Collect material, wash with embryo wash buffer. 5. Add material to a Broeck-type homogenizers(Wheaton #357426). Embryo’s can be collected directly in Douncer-type homogenizer(Wheaton #357544). 6. Add 6 mL A1 buffer to Potter homogenizers. 7. Add 500 uL of 20% formaldehyde (to 1.8%) and begin 15’ timer. 8. Homogenize material (100-300mg/IP of embryos, larvae, pupae, adults) first in Broeck homogenizer (frosted) and then in Douncer (clear) with type A pestle (tight) at RT (6 strokes each). 9. Transfer homogenate to 15mL polystyrene tube. Mix by inverting every 5 minutes. 10. Once 15’ timer is up, add 540 uL of 225 mM glycine solution, mix and incubate 5’ at RT. 11. Put on ice and keep on ice unless specified. 12. Centrifuge 5’ at 4000 rpm at 4°C. Discard supernatant. 13. Add 3mL of buffer A1. Resuspend the pellet and centrifuge for 5’ at 4000 rpm and 4°C. Repeat this washing step 3 more times. 14. Wash once in 3 mL of lysis buffer without SDS. Centrifuge for 5’ at 4000 rpm and 4°C. Discard supernatant. 15. Resuspend the cross-linked material in 0.5 mL of lysis buffer. Add SDS to 0.1% (2.5 uL of 20% SDS) and N-lauroylsarcosine to 0.5% (12.5 uL of 20% solution).
    [Show full text]
  • Catalysis Science & Technology
    Catalysis Science & Technology View Article Online PAPER View Journal | View Issue Morpholine-based buffers activate aerobic via Cite this: Catal. Sci. Technol.,2019, photobiocatalysis spin correlated ion pair 9,1365 formation† Leticia C. P. Gonçalves, *a Hamid R. Mansouri, a Erick L. Bastos, b Mohamed Abdellah,cd Bruna S. Fadiga,bc Jacinto Sá, ce Florian Rudroff a and Marko D. Mihovilovic a The use of enzymes for synthetic applications is a powerful and environmentally-benign approach to in- crease molecular complexity. Oxidoreductases selectively introduce oxygen and hydrogen atoms into myr- iad substrates, catalyzing the synthesis of chemical and pharmaceutical building blocks for chemical pro- duction. However, broader application of this class of enzymes is limited by the requirements of expensive cofactors and low operational stability. Herein, we show that morpholine-based buffers, especially 3-(N- morpholino)propanesulfonic acid (MOPS), promote photoinduced flavoenzyme-catalyzed asymmetric re- Creative Commons Attribution 3.0 Unported Licence. Received 14th December 2018, dox transformations by regenerating the flavin cofactor via sacrificial electron donation and by increasing Accepted 8th February 2019 the operational stability of flavin-dependent oxidoreductases. The stabilization of the active forms of flavin by MOPS via formation of the spin correlated ion pair 3ijflavin˙−–MOPS˙+] ensemble reduces the formation DOI: 10.1039/c8cy02524j of hydrogen peroxide, circumventing the oxygen dilemma under aerobic conditions detrimental
    [Show full text]
  • Protein Gel Electrophoresis Technical Handbook Separate Transfer Detect 2
    Western blotting Protein gel electrophoresis technical handbook separate transfer detect 2 Comprehensive solutions designed to drive your success Protein gel electrophoresis is a simple way to separate proteins prior to downstream detection or analysis, and is a critical step in most workflows that isolate, identify, and characterize proteins. We offer a complete array of products to support rapid, reliable protein electrophoresis for a variety of applications, whether it is the first or last step in your workflow. Our portfolio of high-quality protein electrophoresis products unites gels, stains, molecular weight markers, running buffers, and blotting products for your experiments. For a complete listing of all available products and more, visit thermofisher.com/separate For orderingordering informationinformation referrefer to pagepage XX.XX ForForqr quickquickrk referencereferencee on the protocolprotocol pleasepleasere referrefertr totopo pagepage XX. Prepare samples Choose the electrophoresis Select precast gel and select buffers Select the standard chamber system and power supply Run the gel Stain the gel Post stain 3 Contents Electrophoresis overview 4 Select precast gel Gel selection guide 8 Gels 10 Prepare samples and select buffers Sample prep kits 26 Buffers and reagents 28 Buffers and reagents selection guide 29 Select the standard Protein ladders 34 Protein standards selection guide 36 Choose the electrophoresis chamber system and power supply Electrophoresis chamber systems 50 Electrophoresis chamber system selection guide 51
    [Show full text]