Integrated Technologies for the Characterization Of

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Technologies for the Characterization Of Integrated technologies for the characterization of phosphodiesterase (PDE) inhibitors Edmond Massuda, Lisa Fleet, Benjamin Lineberry, Laurel Provencher, Abbie Esterman, Dhanrajan Tiruchinapalli, Faith Gawthrop, Christopher Spence, Rajneesh P. Uzgare, Scott Perschke, Seth Cohen, and Hao Chen. 618.01/XX63 Caliper Life Sciences, a PerkinElmer Company, 7170 Standard Drive, Hanover, Maryland, 21076 USA Abstract Phosphodiesterases (PDEs) are a class of signal transduction enzymes regulating various cellular functions and disease Results Results progressions in a number of central or peripheral nervous system-related disorders. For example, these enzymes are involved in neurological diseases including psychosis in schizophrenia, multiple sclerosis and other neurodegenerative PDE1A PDE1B PDE2A PDE3A PDE3B PDE4A1A PDE4B1 Ki and kinact determination using 3D Fit Model 110 110 110 110 110 100 110 110 100 100 100 Percent of Maximum Activity by Time 100 conditions. Thus, safe and highly selective PDE inhibitors or modulators are becoming an important class of disease 100 90 100 90 90 90 90 90 80 90 80 80 80 80 modifying therapeutic agents. We have developed an integrated platform which includes Caliper LabChip™ microfluidic 80 70 80 70 70 70 70 70 60 70 60 60 60 60 mobility-shift assays measuring fluorescent analogs of cAMP and cGMP in conjunction with a cellular assay 60 60 50 50 50 50 50 50 50 40 40 40 40 characterizing intracellular signal transduction in cells modulated by PDE inhibitors. These technologies are useful in 40 40 40 30 30 30 30 %% SpecificSpecific Activity Activity 30 30 30 %%SpecificSpecific Activity Activity %%SpecificSpecific Activity Activity %% SpeSpe cific cific ActivityActivity 20 20 %% SpecificSpecific Activity Activity %% SpecificSpecific Activity Activity 20 20 target selection and validation, lead compound selectivity and mode of action, and for measuring cellular activities %% SpeSpe cific cific ActivityActivity 20 20 20 10 10 10 10 10 10 10 0 0 0 0 involved in mediation of signal transduction and cell functions, all of which are critical components for assessing 0 0 0 -10 -10 -10 -10 -10 -10 -10 -10 -9 -8 -7 -6 -5 -4 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -10 -9 -8 -7 -6 -5 -4 -10 -8 -6 -4 -2 -10 -9 -8 -7 -6 -5 -4 -10 -9 -8 -7 -6 -5 -4 potential efficacy and/or adverse effects of PDE inhibitors. log [drug] (M) log [drug] (M) log [drug] (M) log [drug] (M) log [drug] (M) log [drug] (M) log [drug] (M) Reference Compound IC 50 (nM) Reference Compound IC (nM) Reference Compound IC (nM) Reference Compound IC (nM) Reference Compound IC 50 (nM) Reference Compound IC (nM) 50 50 50 50 Reference Compound IC 50 (nM) 8-methoxy-IBMX 1,800 Trequinsin 590 Trequinsin 0.16 Trequinsin 240 Trequinsin 22,000 8-methoxy-IBMX 1900 Trequinsin 0.25 Trequinsin 374 8-methoxy-IBMX 3,400 8-methoxy-IBMX 4,800 Rolipram 490 Zaprinast 26,000 8-methoxy-IBMX 6600 Rolipram 1,050 Trequinsin 10,000 Dipyridamole 6,300 Rolipram 93,000 Dipyridamole 4,900 >100,000 Dipyridamole 3,960 Pentoxifylline Zaprinast 14,000 Zaprinast 41,000 Zaprinast >100,000 Rolipram >100,000 Pentoxifylline >100,000 >100,000 Zaprinast 42,000 Rolipram Vinpocetine 35,000 Pentoxifylline >100,000 Zaprinast >100,000 8-methoxy-IBMX >100,000 Pentoxifylline 53,000 Dipyridamole >100,000 Zaprinast >100,000 8-methoxy-IBMX 91,000 Ki 1.72E -09 (M) PDE4D3 PDE5A1 PDE7A PDE8A1 kinact 1.03E -02 (min -1) 110 PDE11A 110 PDE9A2 PDE10A2 110 110 110 100 110 110 100 100 100 100 100 Introduction 90 100 90 90 90 90 90 80 90 80 80 80 80 80 70 In vitro → In vivo 80 70 →→ 70 70 70 70 70 60 60 60 Phosphodiesterases are enzymes that play a major role in cell signaling and function by 60 60 60 60 50 50 50 •Biochemical Screen 50 50 50 regulating levels of the second messengers cAMP and cGMP. The success of therapeutic 50 40 40 40 40 40 40 Figure 12. Time dependent enzyme inactivation with a PDE4 inhibitor and determination of the Ki and k using the Krippendorff equation, above 40 30 inact 30 30 inhibitors of PDE 5 and 3, such as Sildenafil , Tadalafil , and Milrinone in the treatment of erectile %% SpecificSpecific Activity Activity 30 • 30 30 %% Specific Specific Activity Activity Mechanism of Action %% SpecificSpecific Activity Activity TM Mechanism of Action 30 %% SpecificSpecific Activity Activity 20 %% SpecificSpecific Activity Activity 20 %% SpecificSpecific Activity Activity %%SpecificSpecific Activity Activity 20 (J Biomol Screen. 14, 2009, pp. 913 -923). Ki and k were estimated using XLfit (IDBS) and 3D Fit modeling with the Krippendorff equation. 20 20 20 inact dysfunction and congestive heart failure has validated these enzymes as an important class of 20 10 10 10 • 10 10 10 10 Cell Functional Validation 0 0 drug targets. Therefore, effective assays for identification, characterization, and profiling of 0 0 0 0 0 -10 -10 -10 -10 -9 -8 -7 -6 -5 -4 -10 • -10 -10 -9 -8 -7 -6 -5 -4 -10 -10 compounds modulating specific PDE activities are crucial components of drug discovery efforts In vivo Pharmacodynamics -10 -9 -8 -7 -6 -5 -4 -10 -9 -8 -7 -6 -5 -4 -9 -8 -7 -6 -5 -4 -9 -8 -7 -6 -5 -4 log [drug] (M) -10 -9 -8 -7 -6 -5 -4 log [drug] (M) log [drug] (M) in most therapeutic areas. For drug characterization, target selectivity is critical to avoid side • log [drug] (M) log [drug] (M) log [drug] (M) log [drug] (M) Tissue Imaging Reference Compound IC (nM) 50 Reference Compound IC 50 (nM) effects resulting from the inhibition of other PDEs. Reference Compound IC 50 (nM) Reference Compound IC 50 (nM) Trequinsin 70 Reference Compound IC (nM) Reference Compound IC 50 (nM) Reference Compound IC (nM) 50 Zaprinast 200 50 Rolipram 57 BRL-50481 660 Dipyridamole 2,700 PDE 5,500 Dipyridamole 1,300 Dipyridamole 770 Trequinsin Zaprinast 15,000 8-methoxy-IBMX 3,500 Trequinsin 136 Trequinsin >100,000 Caliper Life Sciences offers the Labchip® EZ Reader II platform which simplifies high throughput screening of Dipyridamole 8,400 17,000 Zaprinast 19,000 Trequinsin 10,000 Dipyridamole 1,400 Trequinsin 1,900 8-methoxy-IBMX 8-methoxy-IBMX >100,000 Rolipram >100,000 8-methoxy-IBMX 25,000 8-methoxy-IBMX 5,400 8-methoxy-IBMX 5,500 Dipyridamole >100,000 Pentoxifylline 96,000 Rolipram >100,000 Pentoxifylline >100,000 Rolipram >100,000 Zaprinast 25,000 phosphodiesterase assays as well as other target classes including kinases, epigenetics, proteases... In addition, Caliper Pentoxifylline 50,000 Pentoxifylline 44,000 Rolipram >100,000 >100,000 Discovery Alliances & Services, the contract research service arm of Caliper offers complete compound screening and Zaprinast 50,000 Zaprinast cAMP characterization programs producing a full-fledged discovery platform. PDEs hydrolyze the 3’ cyclic phosphate bond of cAMP X AMP and cGMP causing the net charge of the molecule to decrease, which allows electrophoretic separation of product from Figure 5. Determination of inhibitor IC 50 s for 14 PDEs. substrate. By using Caliper’s fluorescently labeled iFL-cAMP and iFL-cGMP substrates, the separation can be easily measured on the EZ Reader II, and thousands of compounds can be screened per day. A panel of 14 PDE assays was developed to PKA determine inhibitor potency and selectivity. Recently, we have expanded our service capabilities to provide a unique comprehensive platform for the discovery & characterization of phosphodiesterase inhibitors. We present here the validation of PDE cellular assays which measure cAMP signaling, and PDE immunostaining in cell lines or mouse tissue sections. Combined Transcription to mechanism of action studies for both reversible and irreversible inhibitors, these technologies enable a comprehensive platform to study the in vitro to in vivo characteristics of PDE inhibitors. CREB CRE Luciferase log [drug] (M) Figure 13. Schematic diagram of PDE cellular Figure 14. PDE2A cellular inhibition was measured in Figure 15. Low-resolution raw 4X image assay using a transfected CRE-Luciferase HEK 293 cells co-transfected with a PDE2A expression showing PDE2 immunoreactivity in coronal reporter construct to measure cAMP signaling. vector and a CRE-Luciferase construct. After 48 section of mouse brain. hours, luciferase activity was determined. Figure 16. PDE2 immunoreactivity in coronal section of mouse brain, with discrete staining pattern in many regions. (i) Section of the mouse brain shows prominent expression of PDE2A in the forebrain structures, including the cortex, piriform cortex, hippocampus and Habenulo-interpeduncular. These 20X high-resolution images were spectrally unmixed using Vectra/Nuance image-analysis system (Caliper LifeSciences/PerkinElmer, Inc.). Summary • The Labchip® EZ Reader II platform enables high quality and high throughput PDE enzyme assays • Fluorescent analogs of cAMP and cGMP can be utilized as substrates for PDE assays and are available directly from Caliper Life Sciences/PerkinElmer, Inc . • A panel of 14 robust, reproducible PDE assays has been characterized • Mechanism of action of PDE inhibitors can be determined with Labchip® technology • PDE2 immunostaining in the mouse brain was acquired using the Vectra/Nuance Imaging system (Caliper Life Sciences/PerkinElmer, Inc) . PDE2 showed discrete staining specific regions of the brain. • Multiplex tissue imaging can correlate PDE and CREB to allow pharmacodynamic characterization of drug effects. • A complete suite of contract research services for PDE drug discovery and development is available. Figure 4b. Trequinsin specificity for each of the PDE’s. a PerkinElmer company.
Recommended publications
  • Theophylline and Selective PDE Inhibitors As Bronchodilators and Smooth Muscle Relaxants
    Eur Respir J, 1995, 8, 637–642 Copyright ERS Journals Ltd 1995 DOI: 10.1183/09031936.95.08040637 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'THEOPHYLLINE AND PHOSPHODIESTERASE INHIBITORS' Edited by M. Aubier and P.J. Barnes Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants K.F. Rabe, H. Magnussen, G. Dent Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Krankenhaus Grosshansdorf, Zentrum für K.F. Rabe, H. Magnussen, G. Dent. ERS Journals Ltd 1995. Pneumologie und Thoraxchirurgie, LVA ABSTRACT: In addition to its emerging immunomodulatory properties, theophy- Hamburg, Grosshansdorf, Germany. lline is a bronchodilator and also decreases mean pulmonary arterial pressure in vivo. The mechanism of action of this drug remains controversial; adenosine Correspondence: K.F. Rabe Krankenhaus Grosshansdorf antagonism, phosphodiesterase (PDE) inhibition and other actions have been advanced Wöhrendamm 80 to explain its effectiveness in asthma. Cyclic adenosine monophosphate (AMP) and D-22927 Grosshansdorf cyclic guanosine monophosphate (GMP) are involved in the regulation of smooth Germany muscle tone, and the breakdown of these nucleotides is catalysed by multiple PDE isoenzymes. The PDE isoenzymes present in human bronchus and pulmonary artery Keywords: Bronchi have been identified, and the pharmacological actions of inhibitors of these enzy- 3',5'-cyclic-nucleotide phosphodiesterase mes have been investigated. phosphodiesterase inhibitors Human bronchus and pulmonary arteries are relaxed by theophylline and by pulmonary artery selective inhibitors of PDE III, while PDE IV inhibitors also relax precontracted smooth muscle theophylline bronchus and PDE V/I inhibitors relax pulmonary artery. There appears to be some synergy between inhibitors of PDE III and PDE IV in relaxing bronchus, and Received: February 1 1995 a pronounced synergy between PDE III and PDE V inhibitors in relaxing pulmon- Accepted for publication February 1 1995 ary artery.
    [Show full text]
  • Effects of Phosphodiesterase Inhibitors on Human Lung Mast Cell and Basophil Function
    British Journal of Pharmacology (1997) 121, 287 ± 295 1997 Stockton Press All rights reserved 0007 ± 1188/97 $12.00 Eects of phosphodiesterase inhibitors on human lung mast cell and basophil function Marie C. Weston, Nicola Anderson & 1Peter T. Peachell Department of Medicine & Pharmacology, University of Sheeld, Royal Hallamshire Hospital (Floor L), Glossop Road, Sheeld S10 2JF 1 The non-hydrolysable cyclic AMP analogue, dibutyryl (Bu2)-cyclic AMP, inhibited the stimulated release of histamine from both basophils and human lung mast cells (HLMC) in a dose-dependent manner. The concentrations required to inhibit histamine release by 50% (IC50) were 0.8 and 0.7 mM in basophils and HLMC, respectively. The cyclic GMP analogue, Bu2-cyclic GMP, was ineective as an inhibitor of histamine release in basophils and HLMC. 2 The non-selective phosphodiesterase (PDE) inhibitors, theophylline and isobutyl-methylxanthine (IBMX) inhibited the IgE-mediated release of histamine from both human basophils and HLMC in a dose-dependent fashion. IBMX and theophylline were more potent inhibitors in basophils than HLMC. IC50 values for the inhibition of histamine release were, 0.05 and 0.2 mM for IBMX and theophylline, respectively, in basophils and 0.25 and 1.2 mM for IBMX and theophylline in HLMC. 3 The PDE 4 inhibitor, rolipram, attenuated the release of both histamine and the generation of sulphopeptidoleukotrienes (sLT) from activated basophils at sub-micromolar concentrations but was ineective at inhibiting the release of histamine and the generation of both sLT and prostaglandin D2 (PGD2) in HLMC. Additional PDE 4 inhibitors, denbufylline, Ro 20-1724, RP 73401 and nitraquazone, were all found to be eective inhibitors of mediator release in basophils but were ineective in HLMC unless high concentrations (1 mM) were employed.
    [Show full text]
  • Chapter Introduction
    VU Research Portal Trypanosoma brucei phosphodiesterase B1 as a drug target for Human African Trypanosomiasis Jansen, C.J.W. 2015 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Jansen, C. J. W. (2015). Trypanosoma brucei phosphodiesterase B1 as a drug target for Human African Trypanosomiasis. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 05. Oct. 2021 An introduction into phosphodiesterases and their potential role as drug targets for neglected diseases Chapter 1 4 CHAPTER 1 1.1 Human African Trypanosomiasis Human African Trypanomiasis (HAT), also known as African sleeping sickness, is a deadly infectious disease caused by the kinetoplastid Trypanosoma
    [Show full text]
  • Inhibitors of Cyclic-GMP Phosphodiesterase Alter Excitation of Limulus Ventral Photoreceptors in Ca2+-Dependent Fashion
    The Journal of Neuroscience, October 1995, 75(10): 6586-6591 Inhibitors of Cyclic-GMP Phosphodiesterase Alter Excitation of Limulus Ventral Photoreceptors in Ca2+-Dependent Fashion Edwin C. Johnsonifa and Peter M. O’Day* ‘Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 257559340 and *Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, Oregon 97403-1254 We have examined the hypothesis that Ca*+-dependent cy- 1994) consistent with the idea that the following events occur clic-GMP metabolism may play a role in visual transduction in phototransduction. Activation of visual pigment, rhodopsin, in Limulus photoreceptors. Although phosphoinositide hy- by light activates a G-protein, stimulating hydrolysis of phos- drolysis is central to phototransduction and phosphoinos- phatidylinositol 4,5-bisphosphate(PIP,) by phospholipaseC; itide-dependent Ca2+-mobilization seems to be required for this createscytosolic inositol 1,4,5trisphosphate(IP,), the trig- transduction, the subsequent steps leading to ion channel ger for mobilization of intracellular Ca2+ and elevation of gating (the immediate cause of excitation) are not under- [CaZ+,].In Limulus photoreceptors,Ca2+-mobilization causes ex- stood. Channels normally opened in response to light can citation by opening plasma membrane channels; however, the be opened in excised membrane patches by cGMP but not link betweenCa*+ elevation and channel gating remainsobscure. by Ca*+, suggesting that cGMP acts as a channel ligand in Electrophysiological evidence implicates cGMP involvement excitation. in Limulus transduction (Johnsonet al., 1986; Bacigalupo et al., Using phosphodiesterase inhibitors, we investigated 1991; Feng et al., 1991). The observation that light-activated whether changes in cGMP metabolism could affect exci- channels are gated selectively by cGMP and not by Ca2+(Ba- tation.
    [Show full text]
  • Repurposing Erectile Dysfunction Drugs Tadalafil and Vardenafil to Increase Bone Mass
    Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass Se-Min Kima,b,1, Charit Tanejaa,b, Helena Perez-Penac, Vitaly Ryua,b, Anisa Gumerovaa,b, Wenliang Lic, Naseer Ahmada,b, Ling-Ling Zhua,b, Peng Liua,b, Mehr Mathewa,b, Funda Korkmaza,b, Sakshi Geraa,b, Damini Santa,b, Elina Hadeliaa,b, Kseniia Ievlevaa,b,d, Tan-Chun Kuoa,b, Hirotaka Miyashitaa,b, Li Liue,f, Irina Tourkovae,f, Sarah Stanleyb, Daria Liznevaa,b, Jameel Iqbala,b, Li Suna,b, Ronald Tamlerb, Harry C. Blaire,f, Maria I. Newa,g,1, Shozeb Haiderc, Tony Yuena,b,2, and Mone Zaidia,b,2 aThe Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cDepartment of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom; dDepartment of Reproductive Health, Scientific Center for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russian Federation; eDepartment of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240; fDepartment of Pathology, University of Pittsburgh, Pittsburgh, PA 15261; and gDepartment of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Contributed by Maria I. New, April 17, 2020 (sent for review January 27, 2020; reviewed by Yousef Abu-Amer, Fayez F. Safadi, and Mei Wan) We report that two widely-used drugs for erectile dysfunction, bone mass, respectively (18, 19). Likewise, soluble guanylate cy- tadalafil and vardenafil, trigger bone gain in mice through a com- clase has also been targeted for bone gain (20, 21).
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • Anagrelide for Gastrointestinal Stromal Tumor
    Author Manuscript Published OnlineFirst on December 7, 2018; DOI: 10.1158/1078-0432.CCR-18-0815 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Anagrelide for gastrointestinal stromal tumor Olli-Pekka Pulkka1, Yemarshet K. Gebreyohannes2, Agnieszka Wozniak2, John-Patrick Mpindi3, Olli Tynninen4, Katherine Icay5, Alejandra Cervera5, Salla Keskitalo6, Astrid Murumägi3, Evgeny Kulesskiy3, Maria Laaksonen7, Krister Wennerberg3, Markku Varjosalo6, Pirjo Laakkonen8, Rainer Lehtonen5, Sampsa Hautaniemi5, Olli Kallioniemi3, Patrick Schöffski2, Harri Sihto1*, and Heikki Joensuu1,9* 1Laboratory of Molecular Oncology, Research Programs Unit, Translational Cancer Biology, Department of Oncology, University of Helsinki, Helsinki, Finland. 2Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium. 3Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland 4Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland. 5Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. 6Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 7MediSapiens Ltd., Helsinki, Finland 8Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland. 9Comprehensive Cancer Center,
    [Show full text]
  • Rolipram, but Not Siguazodan Or Zaprinast, Inhibits the Excitatory Noncholinergic Neurotransmission in Guinea-Pig Bronchi
    Eur Respir J, 1994, 7, 306–310 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07020306 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Rolipram, but not siguazodan or zaprinast, inhibits the excitatory noncholinergic neurotransmission in guinea-pig bronchi Y. Qian, V. Girard, C.A.E. Martin, M. Molimard, C. Advenier Rolipram, but not siguazodan or zaprinast, inhibits the excitatory noncholinergic neuro- Faculté de Médecine Paris-Ouest Labora- transmission in guinea-pig bronchi. Y. Qian, V. Girard C.A.E. Martin, M. Molimard, toire de Pharmacologie, Paris, France. C. Advenier. ERS Journals Ltd 1994. ABSTRACT: Theophylline has been reported to inhibit excitatory noncholinergic Correspondence: C. Advenier Faculté de Médecine Paris-Ouest but not cholinergic-neurotransmission in guinea-pig bronchi. As theophylline might Laboratoire de Pharmacologie exert this effect through an inhibition of phosphodiesterases (PDE), and since many 15, Rue de l'Ecole de Médecine types of PDE have now been described, the aim of this study was to investigate the F-75270 Paris Cedex 06 effects of three specific inhibitors of PDE on the electrical field stimulation (EFS) France of the guinea-pig isolated main bronchus in vitro. The drugs used were siguazo- dan, rolipram and zaprinast, which specifically inhibit PDE types, III, IV and V, Keywords: C-fibres respectively. neuropeptides Guinea-pig bronchi were stimulated transmurally with biphasic pulses (16 Hz, 1 phosphodiesterase inhibitors ms, 320 mA for 10 s) in the presence of indomethacin 10-6 M and propranolol 10-6 Received: March 11 1993 M. Two successive contractile responses were observed: a rapid cholinergic con- Accepted after revision August 8 1993 traction, followed by a long-lasting contraction due to a local release of neuropep- tides from C-fibre endings.
    [Show full text]
  • Effects of Various Selective Phosphodiesterase Inhibitors on Relaxation and Cyclic Nucleotide Contents in Porcine Iris Sphincter
    FULL PAPER Pharmacology Effects of Various Selective Phosphodiesterase Inhibitors on Relaxation and Cyclic Nucleotide Contents in Porcine Iris Sphincter Takuya YOGO1), Takeharu KANEDA2), Yoshinori NEZU1), Yasuji HARADA1), Yasushi HARA1), Masahiro TAGAWA1), Norimoto URAKAWA2) and Kazumasa SHIMIZU2) 1)Laboratories of Veterinary Surgery and 2)Veterinary Pharmacology, Nippon Veterinary and Life Science University, 7–1 Kyonan-cho 1– chome, Musashino, Tokyo 180–8602, Japan (Received 26 March 2009/Accepted 1 July 2009) ABSTRACT. The effects of various selective phosphodiesterase (PDE) inhibitors on muscle contractility and cyclic nucleotide contents in porcine iris sphincter were investigated. Forskolin and sodium nitroprusside inhibited carbachol (CCh)-induced contraction in a concen- tration-dependent manner. Various selective PDE inhibitors, vinpocetine (type 1), erythro -9-(2-hydroxy-3-nonyl)adenine (EHNA, type 2), milrinone (type 3), Ro20–1724 (type 4) and zaprinast (type 5), also inhibited CCh-induced contraction in a concentration-dependent manner. The rank order of potency of IC50 was zaprinast > Ro20–1724 > EHNA milrinone > vinpocetine. In the presence of CCh (0.3 M), vinpocetine, milrinone and Ro20–1724 increased cAMP, but not cGMP, contents. In contrast, zaprinast and EHNA both increased cGMP, but not cAMP, contents. This indicates that vinpocetine-, milrinone- and Ro20–1724-induced relaxation is correlated with cAMP, while EHNA- and zaprinast- induced relaxation is correlated with cGMP in porcine iris sphincter. KEY WORDS: cAMP, cGMP, iris sphincter, PDE inhibitor, smooth muscle. J. Vet. Med. Sci. 71(11): 1449–1453, 2009 Cyclic nucleotides are important secondary messengers, chol (CCh)-induced contraction of porcine iris sphincter and are associated with smooth muscle relaxation [7]. induced by selective PDE (type1–5) inhibitors.
    [Show full text]
  • Three-Dimensional Structures of PDE4D in Complex with Roliprams and Implication on Inhibitor Selectivity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 11, 865–873, July, 2003, 2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/S0969-2126(03)00123-0 Three-Dimensional Structures of PDE4D in Complex with Roliprams and Implication on Inhibitor Selectivity Qing Huai, Huanchen Wang, Yingjie Sun, 7, and 8 prefer to hydrolyze cAMP, while PDE5, 6, and Hwa-Young Kim, Yudong Liu, and Hengming Ke* 9 are cGMP specific. PDE1, 2, 3, 10, and 11 take both Department of Biochemistry and Biophysics and cAMP and cGMP as their substrates. In the past three Lineberger Comprehensive Cancer Center decades, selective inhibitors against the different PDE The University of North Carolina, Chapel Hill families have been widely studied as cardiotonic agents, Chapel Hill, North Carolina 27599 vasodilators, smooth muscle relaxants, antidepres- sants, antithrombotic compounds, antiasthma com- pounds, and agents for improving cognitive functions Summary such as memory (Reilly and Mohler, 2001; Rotella, 2002; Giembycz, 2000; Souness et al., 2000; Huang et al., Selective inhibitors against the 11 families of cyclic 2001). For example, the PDE5 inhibitor sildenafil (Viagra; nucleotide phosphodiesterases (PDEs) are used to Figure 1) is a drug for male erectile dysfunction, and the treat various human diseases. How the inhibitors se- PDE3 inhibitor cilostamide is a drug for heart diseases. lectively bind the conserved PDE catalytic domains is Selective inhibitors of PDE4 form the largest group of unknown. The crystal structures of the PDE4D2 cata- inhibitors for any PDE family and have been studied as lytic domain in complex with (R)- or (R,S)-rolipram sug- anti-inflammatory drugs targeting asthma and chronic gest that inhibitor selectivity is determined by the obstructive pulmonary disease (COPD) and also as ther- chemical nature of amino acids and subtle conforma- apeutic agents for rheumatoid arthritis, multiple sclero- tional changes of the binding pockets.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]