Effects of Phosphodiesterase Inhibitors on Human Lung Mast Cell and Basophil Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter Introduction
VU Research Portal Trypanosoma brucei phosphodiesterase B1 as a drug target for Human African Trypanosomiasis Jansen, C.J.W. 2015 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Jansen, C. J. W. (2015). Trypanosoma brucei phosphodiesterase B1 as a drug target for Human African Trypanosomiasis. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 05. Oct. 2021 An introduction into phosphodiesterases and their potential role as drug targets for neglected diseases Chapter 1 4 CHAPTER 1 1.1 Human African Trypanosomiasis Human African Trypanomiasis (HAT), also known as African sleeping sickness, is a deadly infectious disease caused by the kinetoplastid Trypanosoma -
Inhibitors of Cyclic-GMP Phosphodiesterase Alter Excitation of Limulus Ventral Photoreceptors in Ca2+-Dependent Fashion
The Journal of Neuroscience, October 1995, 75(10): 6586-6591 Inhibitors of Cyclic-GMP Phosphodiesterase Alter Excitation of Limulus Ventral Photoreceptors in Ca2+-Dependent Fashion Edwin C. Johnsonifa and Peter M. O’Day* ‘Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 257559340 and *Institute of Neuroscience and Department of Biology, University of Oregon, Eugene, Oregon 97403-1254 We have examined the hypothesis that Ca*+-dependent cy- 1994) consistent with the idea that the following events occur clic-GMP metabolism may play a role in visual transduction in phototransduction. Activation of visual pigment, rhodopsin, in Limulus photoreceptors. Although phosphoinositide hy- by light activates a G-protein, stimulating hydrolysis of phos- drolysis is central to phototransduction and phosphoinos- phatidylinositol 4,5-bisphosphate(PIP,) by phospholipaseC; itide-dependent Ca2+-mobilization seems to be required for this createscytosolic inositol 1,4,5trisphosphate(IP,), the trig- transduction, the subsequent steps leading to ion channel ger for mobilization of intracellular Ca2+ and elevation of gating (the immediate cause of excitation) are not under- [CaZ+,].In Limulus photoreceptors,Ca2+-mobilization causes ex- stood. Channels normally opened in response to light can citation by opening plasma membrane channels; however, the be opened in excised membrane patches by cGMP but not link betweenCa*+ elevation and channel gating remainsobscure. by Ca*+, suggesting that cGMP acts as a channel ligand in Electrophysiological evidence implicates cGMP involvement excitation. in Limulus transduction (Johnsonet al., 1986; Bacigalupo et al., Using phosphodiesterase inhibitors, we investigated 1991; Feng et al., 1991). The observation that light-activated whether changes in cGMP metabolism could affect exci- channels are gated selectively by cGMP and not by Ca2+(Ba- tation. -
Repurposing Erectile Dysfunction Drugs Tadalafil and Vardenafil to Increase Bone Mass
Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass Se-Min Kima,b,1, Charit Tanejaa,b, Helena Perez-Penac, Vitaly Ryua,b, Anisa Gumerovaa,b, Wenliang Lic, Naseer Ahmada,b, Ling-Ling Zhua,b, Peng Liua,b, Mehr Mathewa,b, Funda Korkmaza,b, Sakshi Geraa,b, Damini Santa,b, Elina Hadeliaa,b, Kseniia Ievlevaa,b,d, Tan-Chun Kuoa,b, Hirotaka Miyashitaa,b, Li Liue,f, Irina Tourkovae,f, Sarah Stanleyb, Daria Liznevaa,b, Jameel Iqbala,b, Li Suna,b, Ronald Tamlerb, Harry C. Blaire,f, Maria I. Newa,g,1, Shozeb Haiderc, Tony Yuena,b,2, and Mone Zaidia,b,2 aThe Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cDepartment of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, WC1N 1AX London, United Kingdom; dDepartment of Reproductive Health, Scientific Center for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russian Federation; eDepartment of Pathology, Pittsburgh Veterans Affairs Healthcare System, Pittsburgh, PA 15240; fDepartment of Pathology, University of Pittsburgh, Pittsburgh, PA 15261; and gDepartment of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 Contributed by Maria I. New, April 17, 2020 (sent for review January 27, 2020; reviewed by Yousef Abu-Amer, Fayez F. Safadi, and Mei Wan) We report that two widely-used drugs for erectile dysfunction, bone mass, respectively (18, 19). Likewise, soluble guanylate cy- tadalafil and vardenafil, trigger bone gain in mice through a com- clase has also been targeted for bone gain (20, 21). -
Phosphodiesterase (PDE)
Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly. -
Rolipram, but Not Siguazodan Or Zaprinast, Inhibits the Excitatory Noncholinergic Neurotransmission in Guinea-Pig Bronchi
Eur Respir J, 1994, 7, 306–310 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07020306 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Rolipram, but not siguazodan or zaprinast, inhibits the excitatory noncholinergic neurotransmission in guinea-pig bronchi Y. Qian, V. Girard, C.A.E. Martin, M. Molimard, C. Advenier Rolipram, but not siguazodan or zaprinast, inhibits the excitatory noncholinergic neuro- Faculté de Médecine Paris-Ouest Labora- transmission in guinea-pig bronchi. Y. Qian, V. Girard C.A.E. Martin, M. Molimard, toire de Pharmacologie, Paris, France. C. Advenier. ERS Journals Ltd 1994. ABSTRACT: Theophylline has been reported to inhibit excitatory noncholinergic Correspondence: C. Advenier Faculté de Médecine Paris-Ouest but not cholinergic-neurotransmission in guinea-pig bronchi. As theophylline might Laboratoire de Pharmacologie exert this effect through an inhibition of phosphodiesterases (PDE), and since many 15, Rue de l'Ecole de Médecine types of PDE have now been described, the aim of this study was to investigate the F-75270 Paris Cedex 06 effects of three specific inhibitors of PDE on the electrical field stimulation (EFS) France of the guinea-pig isolated main bronchus in vitro. The drugs used were siguazo- dan, rolipram and zaprinast, which specifically inhibit PDE types, III, IV and V, Keywords: C-fibres respectively. neuropeptides Guinea-pig bronchi were stimulated transmurally with biphasic pulses (16 Hz, 1 phosphodiesterase inhibitors ms, 320 mA for 10 s) in the presence of indomethacin 10-6 M and propranolol 10-6 Received: March 11 1993 M. Two successive contractile responses were observed: a rapid cholinergic con- Accepted after revision August 8 1993 traction, followed by a long-lasting contraction due to a local release of neuropep- tides from C-fibre endings. -
Integrated Technologies for the Characterization Of
Integrated technologies for the characterization of phosphodiesterase (PDE) inhibitors Edmond Massuda, Lisa Fleet, Benjamin Lineberry, Laurel Provencher, Abbie Esterman, Dhanrajan Tiruchinapalli, Faith Gawthrop, Christopher Spence, Rajneesh P. Uzgare, Scott Perschke, Seth Cohen, and Hao Chen. 618.01/XX63 Caliper Life Sciences, a PerkinElmer Company, 7170 Standard Drive, Hanover, Maryland, 21076 USA Abstract Phosphodiesterases (PDEs) are a class of signal transduction enzymes regulating various cellular functions and disease Results Results progressions in a number of central or peripheral nervous system-related disorders. For example, these enzymes are involved in neurological diseases including psychosis in schizophrenia, multiple sclerosis and other neurodegenerative PDE1A PDE1B PDE2A PDE3A PDE3B PDE4A1A PDE4B1 Ki and kinact determination using 3D Fit Model 110 110 110 110 110 100 110 110 100 100 100 Percent of Maximum Activity by Time 100 conditions. Thus, safe and highly selective PDE inhibitors or modulators are becoming an important class of disease 100 90 100 90 90 90 90 90 80 90 80 80 80 80 modifying therapeutic agents. We have developed an integrated platform which includes Caliper LabChip™ microfluidic 80 70 80 70 70 70 70 70 60 70 60 60 60 60 mobility-shift assays measuring fluorescent analogs of cAMP and cGMP in conjunction with a cellular assay 60 60 50 50 50 50 50 50 50 40 40 40 40 characterizing intracellular signal transduction in cells modulated by PDE inhibitors. These technologies are useful in 40 40 40 30 30 30 30 %% -
Effects of Various Selective Phosphodiesterase Inhibitors on Relaxation and Cyclic Nucleotide Contents in Porcine Iris Sphincter
FULL PAPER Pharmacology Effects of Various Selective Phosphodiesterase Inhibitors on Relaxation and Cyclic Nucleotide Contents in Porcine Iris Sphincter Takuya YOGO1), Takeharu KANEDA2), Yoshinori NEZU1), Yasuji HARADA1), Yasushi HARA1), Masahiro TAGAWA1), Norimoto URAKAWA2) and Kazumasa SHIMIZU2) 1)Laboratories of Veterinary Surgery and 2)Veterinary Pharmacology, Nippon Veterinary and Life Science University, 7–1 Kyonan-cho 1– chome, Musashino, Tokyo 180–8602, Japan (Received 26 March 2009/Accepted 1 July 2009) ABSTRACT. The effects of various selective phosphodiesterase (PDE) inhibitors on muscle contractility and cyclic nucleotide contents in porcine iris sphincter were investigated. Forskolin and sodium nitroprusside inhibited carbachol (CCh)-induced contraction in a concen- tration-dependent manner. Various selective PDE inhibitors, vinpocetine (type 1), erythro -9-(2-hydroxy-3-nonyl)adenine (EHNA, type 2), milrinone (type 3), Ro20–1724 (type 4) and zaprinast (type 5), also inhibited CCh-induced contraction in a concentration-dependent manner. The rank order of potency of IC50 was zaprinast > Ro20–1724 > EHNA milrinone > vinpocetine. In the presence of CCh (0.3 M), vinpocetine, milrinone and Ro20–1724 increased cAMP, but not cGMP, contents. In contrast, zaprinast and EHNA both increased cGMP, but not cAMP, contents. This indicates that vinpocetine-, milrinone- and Ro20–1724-induced relaxation is correlated with cAMP, while EHNA- and zaprinast- induced relaxation is correlated with cGMP in porcine iris sphincter. KEY WORDS: cAMP, cGMP, iris sphincter, PDE inhibitor, smooth muscle. J. Vet. Med. Sci. 71(11): 1449–1453, 2009 Cyclic nucleotides are important secondary messengers, chol (CCh)-induced contraction of porcine iris sphincter and are associated with smooth muscle relaxation [7]. induced by selective PDE (type1–5) inhibitors. -
The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
General Pharmacology
GENERAL PHARMACOLOGY Winners of “Nobel” prize for their contribution to pharmacology Year Name Contribution 1923 Frederick Banting Discovery of insulin John McLeod 1939 Gerhard Domagk Discovery of antibacterial effects of prontosil 1945 Sir Alexander Fleming Discovery of penicillin & its purification Ernst Boris Chain Sir Howard Walter Florey 1952 Selman Abraham Waksman Discovery of streptomycin 1982 Sir John R.Vane Discovery of prostaglandins 1999 Alfred G.Gilman Discovery of G proteins & their role in signal transduction in cells Martin Rodbell 1999 Arvid Carlson Discovery that dopamine is neurotransmitter in the brain whose depletion leads to symptoms of Parkinson’s disease Drug nomenclature: i. Chemical name ii. Non-proprietary name iii. Proprietary (Brand) name Source of drugs: Natural – plant /animal derivatives Synthetic/semisynthetic Plant Part Drug obtained Pilocarpus microphyllus Leaflets Pilocarpine Atropa belladonna Atropine Datura stramonium Physostigma venenosum dried, ripe seed Physostigmine Ephedra vulgaris Ephedrine Digitalis lanata Digoxin Strychnos toxifera Curare group of drugs Chondrodendron tomentosum Cannabis indica (Marijuana) Various parts are used ∆9Tetrahydrocannabinol (THC) Bhang - the dried leaves Ganja - the dried female inflorescence Charas- is the dried resinous extract from the flowering tops & leaves Papaver somniferum, P album Poppy seed pod/ Capsule Natural opiates such as morphine, codeine, thebaine Cinchona bark Quinine Vinca rosea periwinkle plant Vinca alkaloids Podophyllum peltatum the mayapple -
Pharmaceutical Appendix to the Tariff Schedule 2
Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9 -
Selective Phosphodiesterase 4 Inhibitors
Journal of Scientific & Indu strial Research Vol. 62, June 2003, pp 537-553 Selective Phosphodiesterase 4 Inhibitors - Emerging Trends in Astluna Therapy (Antiasthmatics-3) Ranju Gupta*, Oeepika Gandhi and Oharam Paul Jindal University In stitute of Pharmaceuti cal Sciences, Panjab Universit y, Chandigarh 160014 Considerable interest has been generated in th e potential utility of isozyme selective inhibitors of phosph odiesterases in the treatment of asthma and other inflali1matory disorders. Heterogeneity in ti ssue distribution as well as their different fun cti onal roles make these enzymes very attractive targets for medicinal chemi sts. To date at least II different fami lies of POE isozymes are known, among which POE 4 plays a major rol e in mod ul ating the activity of virtu ally all cell s involved in the inflammatory process. In hibitors of thi s enzyme family display impressive antiasthmatic ac ti vity by red ucing th e bronchial smooth mu scle tone and consid erable anti-inflammatory activity. The review details th e various classes of POE 4 inhibitors stru cturall y related to rolipram, nitraquazone and xa nthines, which appear to be very attractive models for synthesis of novel selecti ve POE 4 inhibitors potentially useful for the treatment of asthma and chronic obstructive pulmonary di seases. Rationale for the use of POE4 inhibitors in th e treatment of asthma is also discussed. Key words: Phosphodiesterase 4 inhibitors, Asthma therapy, Antiasthmatics, Isozyme, Rol ipram, Nitraquazonc. Xanthincs. Introduction Phosphodiesterase Superfamily There has been growing interest in recent years At least e leven different fami li es of POE tn the utility of selective phosphodiesterase (POE) isozymes are known based on the ir substrate inhibitors as novel targets for drug d iscovery. -
Nivedita Singh
Xanthine Based Inhibitors for Therapeutics Targeting Phosphodiesterase 9A A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BY NIVEDITA SINGH DEPARTMENT OF BIOSCIENCES & BIOENGINEERING INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI-781039, ASSAM, INDIA NOVEMBER 2016 Xanthine Based Inhibitors for Therapeutics Targeting Phosphodiesterase 9A A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BY NIVEDITA SINGH DEPARTMENT OF BIOSCIENCES & BIOENGINEERING INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI GUWAHATI-781039, ASSAM, INDIA NOVEMBER 2016 TH-1894_11610615 TH-1894_11610615 INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI DEPARTMENT OF BIOSCIENCE & BIOENGINEERING STATEMENT I do hereby declare that the matter embodied in this thesis entitled: “Xanthine based inhibitors for therapeutics targeting phosphodiesterase 9A”, is the result of investigations carried out by me in the Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, India, under the guidance of Dr. Sanjukta Patra and co-supervision of Prof. Parameswar Krishnan Iyer. In keeping with the general practice of reporting scientific observations, due acknowledgements have been made wherever the work described is based on the findings of other investigators. November, 2016 Ms. Nivedita Singh Roll No. 11610615 TH-1894_11610615 INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI DEPARTMENT OF BIOSCIENCE & BIOENGINEERING CERTIFICATE It is certified that the work described in this thesis, entitled: “Xanthine based inhibitors for therapeutics targeting phosphodiesterase 9A”, done by Ms Nivedita Singh (Roll No: 11610615), for the award of degree of Doctor of Philosophy is an authentic record of the results obtained from the research work carried out under my supervision in the Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, India, and this work has not been submitted elsewhere for a degree.