The Limitations of the Weston Cell As a Standard of Electromotive Force

Total Page:16

File Type:pdf, Size:1020Kb

The Limitations of the Weston Cell As a Standard of Electromotive Force Home Search Collections Journals About Contact us My IOPscience The Limitations of the Weston Cell as a Standard of Electromotive Force This content has been downloaded from IOPscience. Please scroll down to see the full text. 1909 Proc. Phys. Soc. London 22 369 (http://iopscience.iop.org/1478-7814/22/1/327) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 130.102.42.98 This content was downloaded on 03/10/2015 at 01:04 Please note that terms and conditions apply. WESTON CELL AS STANDARD OF ELECTROMOTIVE FORCE. 369 XXVI. The Linzitntioizs of the Weston Cell as a Standard of Electromotive Force. By S. W. J. SMITH,M.A., D.Sc., Lecturer on Physics, Inzperial College of Science aid Technology. $1. THIS paper contains an attempt to explain Mr. F. E. Smith’s recent experiments on the cadmium amalgams of the Weston cells 1- in terms of the theory of solutions. The manner in which, according to this theory, the amal- gams crystallize is indicated, and it is shown why, with this mode of crystallization, the effect of the slowness of diffusion is so pronounced, and also why sudden cooling to a tempe- rature below the freezing point of mercury must produce a comparatively uniforin alloy. The cause of the most obvious differences between the behaviour of the “chilled” and of the “ slowly cooled” amalgarns is then at once apparent. But there are certain much less obvious differences of which, in view of the importance of the Weston cell as a standard (if for no other reason), it is desirable to know the cause. ’ An all-fluid amalgam, of course, yields the same E.M.F. whether previously chilled or cooled slowly. An all-solid alloy, on the other hand, always gives a higher E.M.F. when solidified by chilling. The E.M.F. of the chilled amalgam thus in general equals or exceeds that of the slowly cooled amalgam. But in the range of the two-phase alloys, over which the E.M.P. varies comparatively little with the total percentage of Cd, the opposite is true. The E.M.F. of the slowly-cooled amalgam now either equals or exceeds that of the chilled amalgam. The excess never amounts to more than a few hundred- thousandths of a volt ; but is important in measurements of the highest precision and requires explanation. It is shown that this phenomenon may be due to elcctro- lytic surface effects arising from the lightness and want of * Rend illay 27,1910. t PYOC.Piiys. Soc. vol. xxii. 1910, pp. 11-40. VOL. XXII. 2c 3 70 DR. S. W. J. SMITII ON THE WESTON CELL uniformity of composition oE the solid grains in the slowly cooled alnnlgnms. Instances of similar effects, liable to escape noticc, are to be found aiiioiigst the data for the all-solid alloys. FinalIy, the question as to whether there is any range over wliicli the E.M.F. is absolutely iiiclc1)endcnt of tile percentage oE cadmium is discussed. Theory mid experiment alike suggest tlra t the E.M.F. must rise as the percentage increases ; but tlie T ariatioil frequently does not amount to more t1i:in a few niilliontl~s of a volt for one per cent. variation of tlie cndiniuni content. Q 2. A ?node of c?ystallization of binnr,y allojs.-!L'he various ways in which fluid inistnres of two mctnls can frccze h:ive been carefully studied within receiit years. One Fig. I. AS A STANDARD OF ELECTROMOTIVE FORCE. 371 ordinates represent temperatures. The melting point of A is 8,. Tlie " freezing point curve ') O,,LI'C( gives the tempera- tures at which different alloys begin to solidify, and shows that the freezing point rises continuously as the percentnge of B in the iiiisture increases. The " melting point curvs " @,& gives the composition of the solid which depcsits from any particular liquid when it begins to fkeeze. Thus a cooling fluid containing $7 per cent. of B begins to freeze at I) and y is the percentage of B which the solid first deposited con- tains. At any given temperature (@), liquid and solid alloys c;in exist in eqnilibriuni only when their percentage composi- tions have definite values (represented by m and y respectively). The thermodynamical method of accounting for this condition of equilibrium is referred to Inter ($5 12 and 14). Roozeboom was the first to suggest that the thermal variation of the constitution of cadtniuni amalgams may be determined Ey curves like those of fig. 1, so long as the percentage of cadmium does not pass a certain limit (not exceeded in the experinieiits discussed below), and this suggestion was found to accord with various experimental data obtained by Bijl. 6 3. Recent expe~imeiztson cadnzium am~1gams.- Mr. I?. E. Smith has thrown fresh light upon the problem and provided new material for in veqtigation by examining the effect of " chilling," i. e. of cooliiig the arnalgains suddenly from temperatures at which they are wliolly fluid to a temperature below tlro freezing point of mercury. The most striking result of his experinients is shown in fig. 2, which exhibits (din~raminntic:illy)how, at a constant tcinpcrature, the E.M.F. of a Weston cell alters with the percentnge of Cd in the nin:ilg:im. In one set of esperi- inents, represented by the curve ABCD, the ainalpni was cooled suddenly (as above) to -50' U. and then allowed to rise in temperature to 0' C. before the cell of which it formed part was constructed. In the other set, represented by ABJW, the nuidgain 11 as cooled '' Jowly )' (i. e. froin tlle liquid state to 0" C. in several hours) before being used. On the scale of representation, the curves are identical froin A to C, and BCE is a 1iorizont:il straight line. Tlic BC:! 372 DR. S. W. J. SMITH ON THE WESTON CELL observed time effects and variations in the horizontal parts of the curves are discussed 1,‘I t er. It is easy to anticipate from fig. 1 that the curve for measurements like those of fig. 2 will consist of two bra11clIe~ Fig. 2. joined by an intermediate horizontal portion. For at a given temperature 8, any amalgam containing less than Lt!per cent. Cld would be all-liquid, and any amalg.,am containing inore than y per cent. Cd might be all-solid ; while intermediate amalgams could consist of mixtures in different proportions of z per cent. liquid and ,y per cent. solid respectively. In all-liquid and all-solid umalgams the clectroino tive force would, it is natural to suppose, vary continuously with the percentage of Cd. In mixtures consisting of the same two constituents (in different proportions) it might similarly be expected that the electromotive effect would remain const:int. In this way the general form, either of ABCD or of ACEF, could be accounted for ; but the cause of the dif- ference between the two curves is not iinmediately obvious. 8 4. The $*eezing of slowly-cooled amalganas.--To under- staid the exact significance of fig. 2, it is necessary to consider how a mixture, to whicli fig. 1 applies, freezcs. According to this figure, an alloy containing a per cent, AS A STANDARD OF.ELECTROMOT1VE FORCE. 3i3 Cd should begin to freeze at 8, and should apparently become solid at 62. But, because of the extreme slowness of diffusion in solids, this will happen only when the rate of cooling is so slow that it cannot be dealt with in practice. At the temperature a fluid amalgam containing U per cent. Cd and n solid amalgnm containing b per cent. Cd are in equilibrium. When the temperature is lowered slightly n fluid amalgam containing slightly less than a per cent. Cd will be in equilibrium with a solid amalgam containing slightly less than Z, per cent. A small quantity of the a per cent. amalgam may therefore solidify. As the temperature falls the percentages of Cd contained by fluid and solid amalgains in equilibrium become continu- otisly lower. The amount of solid material will therefore iiicrease; but the percentage of Cd in the newest crystals will always be less than ia those previously .formed. The fluid esisting at any given stage of the cooling will be in equilibrium with the solid with which it is in direct contact, but, since most of the successive growths will take place around earlier crystals, this solid will in general enclose older solid, richer in Cd. There mnst thus be LL continuous diffusion of Cd in the crystallized part of the material from within towards the surface. In any practical case, where the rate of cooling is not infinitely slow, the diffusion outwards will be very graduaI and mill not keep pace with the lowering of temperature. Thus, although (for true equi!ibrium) an amalgam con- taining a per cent. Cd should be all-solid just below e,, a considerable quantity of liquid, containing c per cent. Cd, will remain. The solid in contact with this liquid will contain cc per cent. Cd, but will envelop a considerable quantity of solid richer in Cd than itself, and there will be, in conse- quence, neither so little c per cent. liquid nor SO much a per cent. solid as true equilibrium would imply. A superior estimate of the amount of liquid remaining at 0, can, however, be found. Thus we may imagine that the cooling from ~9~to e,, of an amalganl containiiig a per cent.
Recommended publications
  • ECS Classics: Weston, the Weston Cell, and the Volt
    ClassicsECS Weston, the Weston Cell, and the Volt by Petr Vanýsek he measurement of electromotive force, potential, or voltage Sharing much of the same enthusiasm as Acheson (ECS Classics, difference has been central to measurements ever since the Interface, 26(1) 36-39), Edison, or Swann (ECS Classics, Interface, Tconcept of potential in electricity was first understood. The 23(4) 38-40), Weston was also interested in lighting equipment. His definition of the volt changed a few times throughout the course of company, among others, won the contract to illuminate the new history and at one point it was even based on electrochemistry, on Brooklyn Bridge. His carbon based light bulb filament made from the so-called Clark cell. The international volt was defined in 1893 Tamidine (reduced nitrocellulose) was used until tungsten was as 1/1.434 electromotive force of the Clark cell. This definition lasted introduced. until 1908. The Clark cells used zinc or zinc amalgam for the anode and Weston was, since his first introduction to electrochemistry in mercury in a saturated aqueous solution of zinc sulfate for a cathode, electroplating, well aware of the need to reliably measure electrical with a paste of mercurous sulfate as a depolarizer. The cell design parameters. Because of this interest, in 1887 he established a had a drawback in a rather significant temperature coefficient and also laboratory making devices for measuring electrical parameters. In the suffered corrosion problems, which were caused by platinum wires process he developed two important alloys, constantan and manganin, that were alloying with the zinc amalgam in the glass envelope.
    [Show full text]
  • The Silver Voltameter—Part Iv
    .. 1 THE SILVER VOLTAMETER—PART IV THIRD SERIES OF QUANTITATIVE EXPERIMENTS AND SPECIAL INVESTIGATIONS By E. B. Rosa, G. W. Vinal, and A. S. McDanlel CONTENTS Page I. Introduction 476 II. DETERMINATION OP VOLTAGE OF THE WESTON NoRMAIv Cei.I< 477 A. Basis of reference for current and voltage measurements 478 1. Weston normal cells 478 2. Resistances 478 B. Meaning of the term " International volts" 478 C. Voltameters and materials 479 D. Tables of results 481 1. Corrections for acid present 482 2. Resultsof the porous pot and Smith's new-form voltameters. 485 3. Results of other forms of voltameters 492 4. Miscellaneous results 493 III. Speciai, Investigations 497 A. On the agreement of various forms 497 1 Comparative results 497 2 Possible explanations of observed differences 498 B. On the accuracy of the measurements. 501 C. Reliability of iodeosine as an indicator 502 D. Effect of acid 503 1 Effect on impure solutions 503 2 Nature of the action of acid 505 E. Influence of septa other than filter paper 508 1. Silk 508 2 Poroiis pots 510 3. Electrostenolysis 514 F. Purity of the silver deposit 516 1. Constancy of any error due to inclusions 516 2. Previous determinations of inclusions 517 3. Experiments on inclusions 519 (a) Detection of silver nitrate 519 (b) Estimation of included water and volatile material 52 (c) Estimation of organic material 522 (d) Titration of silver deposits 523 (e) Conclusion 523 475 476 Bulletin of the Bureau of Standards {Voi.io III. SpeciaIv Investigations—Continued. Page, G. Reversibility of the silver voltameter 523 H.
    [Show full text]
  • Technical Report 91-39
    TECHNICAL REPORT 91-39 The reductibility of sulphuric acid and sulphate in aqueous solution (translated from German) Rolf Grauer Paul Scherrer Institute, Switzerland July 1990 SVENSK KARNBRANSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 5719 THE REDUCIBILITY OF SULPHURIC ACID AND SULPHATE IN AQUEOUS SOLUTION (TRANSLATED FROM GERMAN) Rolf Grauer Paul Scherrer Institute, Switzerland July 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40) and 1990 (TR 90-46) is available through SKB. Translation from German THE REDUCIBILITY OF SULPHURIC ACID AND SULPHATE IN AQUEOUS SOLUTION (fiber die Reduzierbarkeit von Schwefelsaure und Sulfat ir. wäBriger Lösung) by Rolf Grauer Paul Scherrer Institute July 1990 SUMMARY 1 1. INTRODUCTION 3 2. STATEMENT OF THE PROBLEM AND THE STRATEGY FOR SOLVING IT 4 3. THERMODYNAMICS OF CORROSION BY SULPHATE 5 4. GEOCHEMICAL INFORMATION ABOUT THE REDOX STABILITY OF SULPHATE 7 5. EXPERIMENTS ON THE REDUCTIBILITY OF SULPHURIC ACID AND SULPHATE 8 5.1 Hydrothermal experiments 8 5.2 The oxidising action of sulphuric acid on metals 9 5.3 Experiments on the cathodic reduction of sulphuric acid and sulphate 9 5.4 Polarographic investigations of the cathodic behaviour of sulphuric acid 10 6.
    [Show full text]
  • United States Oct. 24, 2013 Anode Cathode
    US 20130280611A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0280611 A1 ALKORDI et al. (43) Pub. Date: Oct. 24, 2013 (54) ELECTRODE SEPARATOR Related US. Application Data (71) Applicant: King Abdullah University of Science (60) Provisional application No. 61/625,973, ?led on Apr. and Technology, (US) 18, 2012. Publication Classi?cation (72) Inventors: Mohamed Helmi ALKORDI, ThuWal (SA); Mohamed EDDAOUDI, ThuWal (51) Int. Cl. (SA) H01M 2/16 (2006.01) H01M 2/14 (2006.01) (73) Assignee: King Abdullah University of Science (52) US. Cl. and Technology, ThuWal (SA) CPC .......... .. H01M2/1673 (2013.01); H01M2/145 (2013.01) USPC ........... .. 429/224; 429/246; 29/623.5; 427/58 Appl. No.: 13/861,775 (21) (57) ABSTRACT A nanostructured separator for a battery or electrochemical (22) Filed: Apr. 12, 2013 cell can be a nanostructured separator. Anode Separator, 9.9. MOF/CP/COF , Cathode Patent Application Publication Oct. 24, 2013 Sheet 1 0f 13 US 2013/0280611 A1 Anode Separator, e.g. MOF/CP/COF _ Cathode Fig. 1 Patent Application Publication Oct. 24, 2013 Sheet 2 0f 13 US 2013/0280611 A1 Bridging group Polyvalentoore m Fig.2A Bridging group \ Polyvaient core — Fig.2B Bridging group \ Polyvalent core // Fig. 2C Patent Application Publication Oct. 24, 2013 Sheet 3 0f 13 US 2013/0280611 A1 .. .. Patent Application Publication Oct. 24, 2013 Sheet 4 0f 13 US 2013/0280611 A1 Fig. 4A Fig. 4B Patent Application Publication Oct. 24, 2013 Sheet 5 0f 13 US 2013/0280611 A1 Patent Application Publication Oct. 24, 2013 Sheet 6 0f 13 US 2013/0280611 A1 aa“Aa gmmmwmwgwmmwx wmun» w 28 25 39 35 A3 #5 28 Fig.
    [Show full text]
  • A Convenient Standard Cell
    Proceedings of the Iowa Academy of Science Volume 22 Annual Issue Article 23 1915 A Convenient Standard Cell Dieu Ung Huong State University of Iowa J. N. Pearce State University of Iowa Let us know how access to this document benefits ouy Copyright ©1915 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Huong, Dieu Ung and Pearce, J. N. (1915) "A Convenient Standard Cell," Proceedings of the Iowa Academy of Science, 22(1), 169-174. Available at: https://scholarworks.uni.edu/pias/vol22/iss1/23 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Huong and Pearce: A Convenient Standard Cell CONVENIENT STANDARD CELL 169 A CONVENIENT STANDARD CELL. DIED UNG HUONG AND J. N. PEARCE. Until receptly both the Clark and the Weston cells have served as standard sources of electromotive force. Both of these con­ sist ofl an amalgam of a metal as the anode covered by a satur­ ated solution of the sulphate of the metal and this in conjunc­ tion with mercury and mercurous sulphate which serves as the cathode. Clark cell: (Hg-Zn)-ZnS04-Hg2SO,-Hg. Weston cell: (Hg-Cd)-CdSO,-Hg2SO,-Hg. For various reasons the acceptance of the Clark cell as a standard has been discontinued. The Weston cell, chiefly on account of its approximately negligible temperature coefficient, is now the sole accepted standard of electromotive force.
    [Show full text]
  • Clark and Weston Standard Cells
    CLARK AND WESTON STANDARD CELLS. By F. A. Wolff and C. E. Waters. INTRODUCTION. The important role now played by the standard cell in both tech- nical and scientific work, and the possibility of its adoption as a primary standard of electromotive force, have led in recent years to a considerable number of investigations concerning its reproduci- bility and constancy. The character of these investigations and the results obtained will, however, be better understood after a brief review of the previous work on the subject. The need of a definite and universal system of electrical units was early recognized. Owing to its preponderating importance in the earlier applications of electricity, the unit of resistance naturally received first attention. The committee on electrical standards appointed by the British Association in 1861 recommended the adoption of the C. G. S. electromagnetic system together with a practical system defined as decimal multiples and submultiples of the C. G. S. units. In addition, its labors led to the construction of concrete standards of resistance in the form of coils of platinum- 9 silver of special design adjusted to represent io C. G. S. units as determined by a series of absolute measurements. The definition of unit current and electromotive force in terms of the C. G. S. units long met every requirement, particularly as currents were generally measured by the aid of the tangent galvanometer, while electromotive forces were generally measured in terms of the electromotive force of the Daniell cell. In 1872 Latimer Clark called to the attention of the British Asso- ciation committee the superiority of the cell which now bears his 2 Bulletin of the Bureau of Standards.
    [Show full text]
  • The Main Tea Eta a Cel Mai Te Rita Maria Matat An
    THE MAIN TEA ETA USA CEL20180190959A1 MAI TE RITA MARIA MATAT AN ( 19) United States ( 12) Patent Application Publication (10 ) Pub . No. : US 2018 /0190959 A1 ALKORDI et al. ( 43) Pub . Date : Jul. 5 , 2018 ( 54 ) NONOSTRUCTURED METAL ORGANIC Publication Classification MATERIAL ELECTRODE SEPARATORS AND (51 ) Int . CI. METHODS THEREFOR HOIM 2 / 16 (2006 .01 ) HOIM 4 /50 (2010 .01 ) ( 71) Applicant: KING ABDULLAH UNIVERSITY HOIM 2 / 14 (2006 .01 ) OF SCIENCE AND TECHNOLOGY, ( 52 ) U . S . CI. Thuwal (SA ) CPC .. .. .. HOIM 2 / 1673 ( 2013 .01 ) ; HOTM 4 /50 ( 72 ) Inventors : Mohamed Helmi ALKORDI, Thuwal ( 2013 . 01 ) ; Y1OT 29 / 49115 ( 2015 . 01 ) ; HOIM (SA ); Mohamed EDDAOUDI, Thuwal 2 / 145 ( 2013 .01 ) ; HOIM 2 / 1653 (2013 .01 ) (SA ) (21 ) Appl. No .: 15 /852 , 231 (57 ) ABSTRACT Provided herein are nano structured electrode separators (22 ) Filed : Dec. 22 , 2017 comprising metal organic materials capable of attaching to Related U . S . Application Data one or more electrodes and electrically insulating at least one electrode while allowing migration of ionic charge (62 ) Division of application No . 13 /861 , 775 , filed on Apr. carriers through the nanostructured electrode separator . 12 , 2013 , now Pat. No . 9 , 853, 270 . Methods of using such electrode separators include posi (60 ) Provisional application No. 61 /625 , 973 , filed on Apr. tioning a nanostructured electrode separator between two 18 , 2012 electrodes of an electrochemical cell . Anode Separator, e. g . MOF/ CP / COFL Cathode Patent Application Publication Jul. 5 , 2018 Sheet 1 of 13 US 2018 /0190959 A1 Anode Separator , e. g . MOF /CP /COF Cathode Fig . 1 Patent Application Publication Jul.
    [Show full text]
  • Investigation of a New Type of Rechargeable Battery, the Nickel-Hydride Cell
    22 Philips Tech. Rev. 43, No. 1/2, 22-34, Dec. 1986 Investigation of a new type of rechargeable battery, the nickel-hydride cell J. J. G. Willems The author describes the research work on a new type of rechargeable battery, which has resulted in a hermetically sealed nickel-hydride cell. The new cell has stable electrode material and an effective controlof the hydrogen and oxygen flow in the system. These features have enabled a first experimental version to operate well for more than a thousand cycles of high- rate charge and discharge. Brief historical background The first galvanic cell - or more accurately 'bat- water (zero electrode potential in fig. 2) as the oxidizer tery' of galvanic cells - was Alessandro Volta's pile at the positive electrode has remained confined to this (the 'voltaic pile') of 1800, which consisted of a stack first galvanic cell: the electromotive force (e.m.f.) of sheets of zinc and silver (or copper), separated from available from this element is only 0.5 V. each other by pieces of cardboard soaked in a saline ln 1836 John Daniel! developed a galvanic cell in solution (jig. 1) [11. As became clear much later, the which copper ions from a copper-sulphate solution electrical energy from each individual cell is due to the are reduced at a positive copper electrode to metallic oxidation of the zinc to form zinc ions, with the copper for the required electron transfer: release of electrons: (3) (1) The negative electrode consisted of a rod of amal- and to the reduction of water to gaseous H2, with the gamated zinc, which was immersed in dilute sulphuric uptake of electrons: acid.
    [Show full text]
  • The Temperature Formula of the Weston Standard Cell.*
    THE TEMPERATURE FORMULA OF THE WESTON STANDARD CELL.* By F. A. Wolff. INTRODUCTION. The more recent work on the standard cell has demonstrated that the Clark and Weston types are both reproducible to a very high degree of accuracy, and that when properly set up both may be depended on within a few parts in 100,000 for a 3'ear at least. As these qualities, in connection with the concreteness and ease of reproduction of the standard cell, seem to point to it as the logical choice for the second fundamental electrical unit, a redetermination of the temperature formulae has been undertaken. On account of the very small effect of temperature variations on its electromotive force and the absence of cracking at the amalgam terminal, distinct advantages over the Clark cell, an investigation of the Weston cell was first made. A redetermination of the temperature formula of the Clark cell will, however, also be undertaken. HISTORICAL REVIEW. The first statement regarding the temperature coefficient of the Weston cell is found in the specifications of the patent issued to Dr. Edward Weston, who justly claimed as a special advantage of the cell its very small variation in electromotive force with temperature changes. The results of Dearlove,^ obtained with several lots of cells in which apparently no excess of cadmium sulphate or mercurous sul- *Readat meeting of American Electrochemical Society, Apr. 30, 1908. Trans., 13, p. 187. ^Electrician, 31, p. 645; 1893. 309 310 Btdletin of the Bureau of Standards. ivoi.5,no.2. phate was employed, were quite irregular. Three cells of the first lot, in which the amalgam " was estimated to contain one part of cadmium to five parts of mercury," had an B.
    [Show full text]
  • Aqueous Rechargeable Batteries with High Electrochemical Performance
    Aqueous Rechargeable Batteries with High Electrochemical Performance von der Fakultät für Naturwissenschaften der Technischen Universität Chemnitz genehmigte Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt von M.Sc. Yu Liu geboren am 06.05.1988 in Tongyu Town, Jiangsu Province, China eingereicht am 10 Mai 2017 Gutachter: Prof. Dr. Rudolf Holze Prof. Dr. Qunting Qu Tag der Verteidigung: 28 Juli 2017 Bibliographische Beschreibung und Referat Bibliographische Beschreibung und Referat Y. Liu Wässrige Akkumulatoren mit hoher elektrochemischerischer Leistung Mit der Entwicklung der Weltwirtschaft steigt der Energieverbrauch weiterhin stark an. Darüber hinaus reduzieren sich die nicht erneuerbaren Energiequellen, wie Öl, Erdgas und Kohle und die Umweltverschmutzung wird größer. Daher soll die Energienutzung in eine neue, erneuerbare und umweltfreundliche Richtung gehen. Die Arbeit hat zum Ziel innovative, wässrige Akkumulatoren zu entwickeln. Im Allgemeinen können wässrige Akkumulatoren gemäß der Elektrolyte in drei verschiedenen Kategorien eingeteilt werden. Es gibt feste, organische und wässrige Elektrolyte einschließlich saurer, alkalischer und neutraler. In Bezug auf metallbasierte negative Elektroden können sie auch als Lithiumbatterie, Natriumbatterie sowie Magnesiumbatterie etc. bezeichnet werden. Daher werden im ersten Kapitel einige typische Akkumulatoren, wie die Lithiumionenbatterien, Daniell-Element, Weston-Zelle, Nickel-Cadmium-Batterie und Bleibatterie vorgestellt. Im Vergleich
    [Show full text]
  • KINETIKA REAKSI HOMOGEN I Asti Budiarti Dosen: Bpk
    KINETIKA REAKSI HOMOGEN I Asti Budiarti Dosen: Bpk. Haryadi Wibowo, ST, MT 2013430047 Tehnik Kimia Sore TABLE OF CONTENTS Table of contents …………………………………………………………. 1 1 History …………………………………………………………………. 2 2 Principle of operation ………………………………………………….. 3 2.1 Chemistry of batteries ………………………………………….. 4 2.2 Electrochemistry ……………………………………………….. 9 3 Categories and types of batteries ……………………………………… 14 3.1 Primary batteries ………………………………………………. 14 3.2 Secondary batteries ……………………………………………. 15 3.3 Battery cell types …………………………………….………… 16 3.4 Battery cell performance ………………………….…………… 18 4 Capacity and discharge …………………………………….…………. 18 4.1 C rate ………………………………………………….……….. 20 4.2 Fast-charging, large and light batteries ………………….…….. 20 5 Battery lifetime ………………………………………………….…….. 21 5.1 Self-discharge ………………………………………….………. 21 5.2 Corrosion ……………………………………………….……… 22 5.3 Physical component changes …………………………….…….. 22 5.4 Charge/discharge speed ………………………………….…….. 22 5.5 Overcharging …………………………………………………... 23 5.6 Memory effect ………………………………………………..... 23 5.7 Environmental conditions …………………………………….... 23 5.8 Storage …………………………………………………............. 23 6 Battery sizes ………………………………………………………….... 24 1 KINETIKA REAKSI HOMOGEN I Asti Budiarti Dosen: Bpk. Haryadi Wibowo, ST, MT 2013430047 Tehnik Kimia Sore 7 Hazards ……………………………………………………………….... 24 7.1 Explosion …………………………………………..………….... 24 7.2 Leakage …………………………………………………………. 25 7.3 Toxic materials …………………………………………..…….... 25 7.4 Ingestion ………………………………………………………… 26 8 Battery chemistry
    [Show full text]
  • The Electrode Equilibrium of the Standard Cell
    THE ELECTRODE EQUILIBRIUM OF THE STANDARD CELL. F. A. Wolff and C. E. Waters.' Some experiments described by Hulett ^ indicating the existence of a state of unstable equilibrium in the Weston cell have, on account of the importance of the subject, led to a further study of the question at the Bureau of Standards. The equilibrium between cadmium amalgam and cadmium sul- phate was first studied. Saturated solutions of the latter were shaken up in air, nitrogen, hydrogen, and in vacuo with cadmium amalgam, but in no case did the electromotive force of cells set up with the treated and untreated solutions differ more than lo microvolts, even though the samples shaken in the presence of air had become cloudy from the formation of an excess of basic cadmium sulphate. The equilibrium of the system mercury, mercurous sulphate, cad- mium sulphate, and of the corresponding system of the Clark cell was then studied in special cells, so constructed that the above materials could be rotated and the effect determined without open- ing the cell. This consisted of a tube about 2 cm in diameter and 12 cm long, provided at the lower end with a small bulb into which a platinum wire was sealed. The bulb was connected to the main tube by a narrow neck, so that, with sufficient mercury in the cell, the plati- num terminal was not in contact with the solution, even during rotation. ^ An abstract of this paper was read at the New York meeting of the American Physical Society, December, 1906, Phys. Rev., 24, 251; 1907, 2phys.
    [Show full text]