(I) Chemistry 118
Total Page:16
File Type:pdf, Size:1020Kb
NOTE TO USERS This reproduction is the best copy available. UMI* u Ottawa L'Universite canadierme Canada's university FACULTE DES ETUDES SUPERIEURES l=H FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L'Uriiversite canadienne Canada's university Amir Jabri Ph.D. (Chemistry) Department of Chemistry FTcultTECO^^^ Mechanism and Design of Homogeneous Heterobimetallic Early Metal-aluminum Alkyl Catalysts for Ethylene Trimerization and Polymerization TITRE DE LA THESE / TITLE OF THESIS Sandro Gambarotta DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR EXAMINATEURS (EXAMINATRICES) DE LA THESE /THESIS EXAMINERS Georgii Nikonov (McGill Robert Crutchley University) Darrin Richeson Tom Woo Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / bean of the Faculty of Graduate and Postdoctoral Studies Mechanism and Design of Homogeneous Heterobimetallic Early Metal-Aluminum Alkyl Catalysts for Ethylene Trimerization and Polymerization Amir Jabri September 2, 2009 Thesis submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfillment of the requirements For the PhD degree in chemistry Department of Chemistry Faculty of Science University of Ottawa ©Amir Jabri, Ottawa, Canada, 2009 1 Library and Archives Biblioth&que et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'6dition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-61385-6 Our file Notre r6f6rence ISBN: 978-0-494-61385-6 NOTICE: AVIS: The author has granted a non- L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette th§se. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada Abstract This thesis describes an experimental study of the coordination chemistry of several early- metal based homogeneous catalysts for ethylene trimerization and polymerization. The first part of the thesis discusses a mechanistic study of chromium catalyzed ethylene trimerization and tetramerization based on the established NCy(PPh2)2 [PNP], NH(CH2CH2SCy)2 [SNS], and pyrrole ligands. Through the isolation and characterization of catalytic resting states, many missing pieces to the mechanistic puzzle have been found, which aids the analysis of critical relationships between the chromium electronic state, geometry, nuclearity, and charge and the observed catalyst activity and selectivity. Some contributions include the first direct evidence for the involvement of Cr(I), Cr(II) and Cr(III) species in catalysis, 1- hexene selectivity enhancement via ligand-directed cocatalyst hemilability, and a well-defined single-component ethylene trimerization catalyst. The second part of the thesis explores olefin polymerization catalysis with pyrrole com- plexes of vanadium and titanium. The pyrrole ligand was found to enhance alkyl transfer between the transition metal and aluminum centres via its hemilability, which enhances the activation of normally kinetically inert metal electronic configurations. In addition, the alkyl shuttling allows the isolation of well-defined thermally stable complexes which form highly active single-site single-component polymerization catalysts at high temperatures. 2 CONTENTS CONTENTS Contents 1 Introduction 24 1.1 Polyolefins 24 1.2 The birth of olefin polymerization and trimerization catalysis 26 1.2.1 Modern olefin polymerization catalysis 28 1.2.2 Modern ethylene trimerization catalysis 30 1.2.3 The pyrrole ligand in olefin polymerization catalysis 32 1.2.4 Terminology 34 1.3 Scope and layout of thesis 34 1 Mechanistic Investigation of Chromium Catalyzed Ethylene Trimer- ization/Tetramerization 36 2 Mechanistic investigation of the chromium-[SNS] based ethylene trimerization catalysis 37 2.1 Introduction 38 2.1.1 Background of [SNS]Cr-based ethylene trimerization catalysis 39 2.1.2 Background of organochromium(III) chemistry 40 2.2 Experimental 42 III 2.2.1 {[(SNS)Cr Me(1i-Cl)]2} {(AlMe3)2(ii-Cl)}2 (2) 42 m 2.2.2 {[(SNS)Cr Me(1x-Cl)]2} {MAO}2 (3) 43 m 2.2.3 {[(SNS)Cr Et(p-Cl)]2} {AlCl3Et}2 (4) 43 II 2.2.4 {[(SNS)Cr (1i-Cl)]2} {(AlCl2Et2}2 (5) 43 n 2.2.5 {[(SNS)Cr (ii-Cl)]2} {A1C12*BU2}2 (6) 44 n 2.2.6 {(SNSCr Cl2(THF)2} (7) 44 n 2.2.7 {(SNS)Cr (Cl2AlEt2)2} (8) 44 n 2.2.8 {(SNS)Cr (Cl3AlEt)} {Cl3AlEt} (9) 45 m 2.2.9 {(SNS)Cr Cl2(THF)} {A1C14} (10) 45 3 CONTENTS CONTENTS m 2.2.10 {[(SNS)Cr Cl(ii-Cl)]2} {A1C14}2 (11) 45 m 2 2.2.11 {(SNS)Cr [r] -(p-Cl)2A1C12]} {A12C17} (12) 45 2 2.2.12 {[(yi -SNS)CrCl]2} (13) 46 2.2.13 X-ray Characterization 47 2.2.14 Catalytic Evaluation of 1-13 58 2.3 Results 60 2.3.1 Reaction of (SNS)CrCl3 (1) with aluminum cocatalysts 60 n 2.3.2 Reaction of {(SNS)Cr Cl2(THF)} (7) with aluminum cocatalysts 66 2.3.3 Reaction of (SNS)CrCl3 with three different A1C13 concentrations 68 2.3.4 Deprotonation of the [SNS] ligand 71 2.3.5 Catalytic oligomerization by 1-13 72 2.4 Discussion 73 2.4.1 Reaction of {(SNS)CrCl3} (1) and {(SNS)CrCl2(THF)} (7) with aluminum cocatalysts 74 2.4.2 The aluminum cocatalyst concentration effect on the chromium and anion geometry 76 2.4.3 The [SNS] N-H effect on anion coordination to chromium 76 2.5 Conclusion 79 3 Mechanistic investigation of chromium-diphosphine based ethylene tetramer- ization catalysis 80 3.1 Introduction 80 3.1.1 Background of chromium-diphosphine based ethylene tetramerization catalysis 81 3.1.2 Background of bimetallic organochromium (II) chemistry 88 3.2 Experimental 90 in in 3.2.1 {(PNP)MeCr ([i-Cl)3Cr Me(PNP)} {Me2AlCl2} (15) 91 n 2 2 n 3.2.2 {(PNP)Cr ([i-Cl)2([i ,r) -Me2AlCl2)Cr (PNP)} {Me2AlCl2} (16) 92 n 3.2.3 {(PNP)2Cr ([i-Cl)AlMe3} {Me3Al(Cl0.34/Me0.66)} (17) 92 II 3.2.4 {(PNP)Cr [(ti-Cl)AlCl3]2} (18) 93 4 CONTENTS CONTENTS 3.2.5 X-ray Characterization 93 3.2.6 Catalytic Data 98 3.3 Results 98 3.3.1 Reaction of CrPNP chloride precursors with aluminum cocatalysts 98 3.4 Discussion 102 3.4.1 Ligand effects on the monomer/dimer equilibria of well-defined [PNP] Cr intermediates 102 3.4.2 Ligand effects on bimetallic reactivity of well-defined chromium (III) alkyl species 104 3.4.3 Proposed ligand steric effects on bimetallic intermediates in ethylene tetramer- ization catalysis 110 3.5 Conclusion 113 4 Mechanistic investigation of chromium-pyrrole based ethylene trimerization catal- ysis 114 4.1 Introduction 115 4.1.1 Background of chromium-pyrrole based ethylene trimerization catalysis . .115 4.1.2 Background of organochromium (I) chemistry 118 4.2 Experimental Procedures 119 n 4.2.1 {(DMP)2Cr (THF)2} (19) 120 n 4.2.2 {[(THC)Cr (THF)2([i-Cl)]2} (21) 120 n 4.2.3 {Cr [(fi-C1)2A1C12]2} (22) 120 4.2.4 Reaction of {Cr^yf-CeHe^lI with Li-DMP 121 4.2.5 In-situ Cr-DMP trimerization catalyst 121 2 n 4.2.6 {[r) -(THC-AlEt2Cl)]2Cr } (23) 121 2 n 4.2.7 {[r) -(DMI-AlEt2Cl)]2Cr } (24) 121 6 1 4.2.8 {[(r] -THC-AlEt2)2([i-Cl)]Cr } (25) 122 6 1 4.2.9 {[(r) -DMI-AlEt2)2(^t-Cl)]Cr } (26) 122 5 4.2.10 {[r) -(C4H4N-AlEt3)Cr([i-C2(SiMe3)2]2} (27) 123 5 CONTENTS CONTENTS 5 4.2.11 {[71 -(C4H4N-AlEt2Cl)Cr([i-C2(SiMe3)2]2} (28) 123 4.2.12 X-ray Characterization 124 4.2.13 Catalytic Data 134 4.3 Results 134 4.3.1 Synthesis of chromium pyrrolyl precursors and their reaction with A1R3 reagents 134 4.3.2 Isolation of complexes from in-situ preparation 137 4.3.3 Catalytic evaluation of complexes 19-28 141 4.4 Mechanistic Discussion 142 4.4.1 Effect of chromium oxidation state 143 4.4.2 Effect of ligand 144 4.4.3 Effect of cocatalyst and chloride 144 4.4.4 Effect of Solvent 146 4.4.5 Mechanistic speculation 146 4.5 Conclusions - Cr Pyrrole System 149 II Pyrrole as a hemilabile ligand in catalytic olefin polymerization 154 5 Exploration of vanadium pyrrolide complexes for ethylene polymerization catal- ysis 155 5.1 Introduction 156 5.2 Experimental Procedure 157 II II 111 5.2.1 {(THF)3V (^-C1)3V (THF)3} {(r^-DMP^V } (29) 157 5.2.2 In-situ reaction of V(acac)3 with DMP and Me3Al: formation of 30 158 5 11 5.2.3 {(r) -DMP-AlMe2CI)2V } (31) 158 5 IV 5.2.4 {[(r] -DMP-AlMe2Cl)V Me([i-NPh)2]2} (32) 158 5 3 IV 5.2.5 {[(r) -DMP-Me2Al(r)V-N3)AlMe2(^