Wrightia Antidysenterica

Total Page:16

File Type:pdf, Size:1020Kb

Wrightia Antidysenterica Wrightia antidysenterica Scientific classification Kingdom: Plantae Order: Gentianales Family: Apocynaceae Genus: Wrightia W. Species: antidysenterica Botanical Name: Wrightia antidysenterica (synonym: Holarrhena pubescens) Common Name: Snowflake, Milky Way, Arctic Snow, Winter Cherry Tree, Sweet Indrajao, Pudpitchaya, Hyamaraca Plant type: A perennial ornamental small tree or shrub, native to Sri Lanka. Light: Prefers bright light or full sun; Can tolerate partial shade but will result in less flowers. Moisture: Regular watering and moderately. Soil: Well-drained loamy soil. Features: Wrightia antidysenterica is a small and compact semi-deciduous shrub, reaching 1.2-2 meters in height, with a spread of about 1.5 meter .A moderate grower with several short and divaricate branches that turn chocolaty brown as it ages, and adorned with dark green, ovate and acuminate leaves (2.5-6cm long) that are oppositely arranged. And, pure white tubular 5-petaled flowers with yellow centers appear in corymb-like cymes at the end of branches. The Snowflake or Milky Way as commonly known, is a beautiful shrub that will be studded with showy 2.5-3.5cm star-shaped flowers all year round. There is a related species, Wrightia tinctoria, whose blooms look quite identical. Usage: Wrightia antidysenterica will be most ideal as a container specimen for patio or houseplant. Excellent too for planting on ground in limited garden space and will brighten any garden corner with those starry white blooms that resemble snow flakes or little stars from afar. Besides, in India, it is considered a medicinal plant. The bark has anti-microbial and anti-inflammatory properties, and is used as an adulterant for the well known drug, Holarrhena antidysenterica. The juice from its bark is used for the relief of mouth sores and its leaves are used for the treatment of several skin disorders, psoriasis and other non-specific dermatitis. .
Recommended publications
  • In Vitro Screening of Antimicrobial Activity of Wrightia Tinctoria (Roxb.) R
    Academic Sciences Asian Journal of Pharmaceutical and Clinical Research Vol 5, Issue 4, 2012 ISSN - 0974-2441 Research Article Vol. 4, Issue 3, 2011 IN VITRO SCREENING OF ANTIMICROBIAL ACTIVITY OF WRIGHTIA TINCTORIA (ROXB.) R. BR. ISSN - 0974-2441 MOORTHY K.*1 APARNA ARAVIND.1 PUNITHA T.1 VINODHINI R.1 SURESH M.2 AND THAJUDDIN N.3 1Department of Microbiology, Vivekanandha College of Arts and Sciences for Women,Elayampalayam, Tiruchengode, Namakkal - 637 205,2Department of Microbiology and Molecular Biology, Doctors’ Diagnostic Centre,Tiruchirappalli - 620 018.3Department of Microbiology,Bharathidasan University,Tiruchirappalli - 620 024 , Email: [email protected] Received: 1 June 2012, Revised and Accepted:21 June 2012 ABSTRACT An in-vitro antimicrobial study was done using methanolic and petroleum ether extracts from the leaves of Wrightia tinctoria (Roxb.) R.Br. Bauer- Kirby (disc diffusion) and broth dilution methods were employed for the assessment of antimicrobial activity against 14 microorganisms. Methanolic extract of Wrightia tinctoria leaves showed significant antimicrobial activity against Cryptococcus neoformans (36.0mm), Staphylococcus aureus (27.2mm), Candida albicans (25.0mm), S.epidermidis (23.2mm) and Bacillus subtilis (20.2mm), whereas petroleum ether leaves extract showed significant antimicrobial activity against S.aureus (25.0mm), C.neoformans (21.8mm), S.epidermidis (18.5mm) and C.albicans (16.0mm) were observed. According to broth dilution method, the methanolic extract of plant material showed the MIC values against C.neoformans (256µg/ml), S.aureus and C.albicans (512µg/ml) respectively. Whereas, the petroleum ether extract of Wrightia tinctoria showed the MIC values against S.aureus and C.neoformans (512µg/ml) and S.epidermidis and C.albicans (1,024µg/ml) with a significant inhibitory activity.
    [Show full text]
  • Studies in the Floral Anatomy of the Apocynaceae
    STUDIES IN THE FLORAL ANATOMY OF THE APOCYNACEAE By V. S. Rao and Arati Ganguli Rammrain Ruia College, Bombay-19 fRcceivcd for publication on November 22, 1961) I ntroduction T h e Apocynaceae is a natural taxon having a close affinity with Asclepia- daceae. This family is characterised by a deeply iive-lobed imbricate calyx, often with glands or squamellae at the base on its inner surface; a 5-lobed contorted corolla, often hairy or appendaged within; 5 epi- petalous distinct stamens, often with an apical prolongation of the con­ nective ; anthers either free or adherent by viscid exudates to the stigma; granular pollen; a bicarpellary, superior to half-inferior pistil with the two carpels cither free or united in the ovary portion; and a single style. In syncarpous, bilocular ovaries in this family the placentation is axile, whereas in syncarpous unilocular states it is parietal. In the apo­ carpous condition the placentation is marginal. A nectariferous disk is present at the base of the gynoecium in most Apocynaceae. Schumann (1895) divided Apocynaceae into the two subfamilies, Plumeroideae and Echitoideae. In Plumeroideae the stamens are either free or only slightly attached to the stigma, the anthers are generally without tails and the seeds are usually without a coma. In Echitoideae the stamens are closely attached to the stigma, the anthers have tails, and the seeds arc generally with a coma. This subfamily is believed to show affinities with Asclepiadaceae. Woodson and Moore (1938) recognized three subfamilies, namely the Plumeroideae, Echitoideae and Apocynoideae. There have been only a few investigations on the floral anatomy o f Apocynaceae., W oodson (1930) studied this group chiefly in its general morphological aspect.
    [Show full text]
  • An Isoflavone from Wrightia Pubescens
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2015; 7(2); 353-355 ISSN: 0975-4873 Research Article An Isoflavone from Wrightia pubescens Consolacion Y. Ragasa1,2*, Vincent Antonio S. Ng2, Mariquit M. De Los Reyes3,4, Emelina H. Mandia4, and Chien-Chang Shen5 1Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 2Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 3Biology Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 4Biology Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines 5National Research Institute of Chinese Medicine, 155-1, Li-Nong St., Sec. 2, Taipei 112, Taiwan Available Online: 15th March, 2015 ABSTRACT Chemical investigation of the dichloromethane extract of the twigs of Wrightia pubescens (R.Br.) led to the isolation of an isoflavone, wrightiadione (1). The structure of 1 was elucidated by extensive 1D and 2D NMR spectroscopy and confirmed by mass spectrometry. Keywords: Wrightia pubescens (R.Br.), Apocynaceae, isoflavone, wrightiadione INTRODUCTION Woodson afforded isoscopoletin from the twigs and Wrightia pubescens (R.Br.) of the family Apocynaceae is ursolic acid, squalene, α-amyrin acetate and lupeol acetate one of the eight known species of Wrightia in Malesia1. from both leaves and twigs11. Pipturus arborescens (Link) Locally known as “lanete” in the Philippines, Wrightia C.B. Rob. yielded ursolic acid, oleanolic acid, friedelin, β- pubescens, which can grow up to 35 m tall in deciduous sitosterol, and stigmasterol from the twigs, while the leaves lowland thickets and forests, is also found in mainland afforded β-sitosterol, stigmasterol, squalene, chlorophyll a, China, India and Australia2,3.
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Medicinal Plants Research
    V O L U M E -III Glimpses of CCRAS Contributions (50 Glorious Years) MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll Glimpses of CCRAS contributions (50 Glorious years) VOLUME-III MEDICINAL PLANTS RESEARCH CENTRAL COUNCIL FOR RESEARCH IN AYURVEDIC SCIENCES Ministry of AYUSH, Government of India New Delhi MiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiM Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll © Central Council for Research in Ayurvedic Sciences Ministry of AYUSH, Government of India, New Delhi - 110058 First Edition - 2018 Publisher: Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, New Delhi, J. L. N. B. C. A. H. Anusandhan Bhavan, 61-65, Institutional Area, Opp. D-Block, Janakpuri, New Delhi - 110 058, E-mail: [email protected], Website : www.ccras.nic.in ISBN : 978-93-83864-27-0 Disclaimer: All possible efforts have been made to ensure the correctness of the contents. However Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, shall not be accountable for any inadvertent error in the content. Corrective measures shall be taken up once such errors are brought
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • International Journal of Pharmaceutical Science and Health Care Issue 1
    DOI : https://dx.doi.org/10.26808/rs.st.i9v4.01 International Journal of Advanced Scientific and Technical Research ISSN 2249-9954 Available online on http://www.rspublication.com/ijst/index.html Issue 9 volume 4 July- August 2019 Phytochemical and Antioxidant Activities of Selected Ornamental Plants in the Philippines Ruth T. Libag1,2 1College of Arts & Sciences, Pampanga State Agricultural University, PAC Magalang, Pampanga, Philippines, Phone No. +6345 866 0800, [email protected] 2Graduate School, Angeles University Foundation, Angeles City 2009, Philippines ABSTRACT The Philippines being considered as an important biodiversity hotspot in the world, possess a rich source of flora. Some ornamental plants are found to be sources of drugs being used to treat various ailments. This study aimed to focus on screening phytochemicals natural antioxidants present in locally available ornamental plants in the Philippines. The samples used in the study were the crude ethanolic leaf extracts of White angel (Wrightia antidysenterica L. R.Br.), Cabbage rose (Rosa sp.), Calachuchi (Plumiera alba) and,Ilang ilang (Cananga odorata). Phytochemicals from the samples were qualitatively identified using different spray reagents by Thin Layer Chromatography (TLC), while Free Radical Scavenging Activities of the samples were determined using DPPH Assay and Ascorbic acid as standard. Results showed that the plant samples are positive for the presence of anthraquinones, coumarins, phenols, steroids/sterols. All have triterpenes except, Cananga odorata. Furthermore, bothWrightia antidysenterica L. R.Br.and Plumiera Alba have alkaloids, while flavonoids, sugars, and tannins are present in Wrightia antidysenterica L. R.Br.andCananga odorata. All have antioxidant activities (expressed as EC50) against the free radical DPPH at varying amounts.Antioxidant activity of the plant samples were found in following order: Ascorbic acid (38 μg/ml) >Rosa sp.(76 μg/mL) >Wrightia antidysenterica L.
    [Show full text]
  • A Selection of Flowering Shrubs and Trees for Color in Miami-Dade Landscapes
    A Selection of Flowering Shrubs and Trees for Color in Miami-Dade Landscapes If no ‘Season for Flowering’ is indicated, flowering occurs periodically throughout the year (usually less so in cooler weather). If water needs are not shown (see key below: drought tolerance/need for moist soil), provide supplemental water once per week to established plants in prolonged hot dry conditions; reduce frequency during cooler winter weather. KEY: sm.tr - Small tree; lg.tr - Large tree; shr – Shrub; cl.sh - Climbing shrub (requires some support); m - Moist soil (limited drought tolerance); dr - Drought Tolerant; fs - Full sun; ss - Some shade. Shrub/Tree Season for Flowering WHITE Beaumontia grandiflora (cl.sh; fs) -> winter (Herald’s Trumpet)1 Brunfelsia jamaicensis (shr; ss; m) -> late fall – winter (Jamaica Raintree)1 Ceiba insignis (lg.tr; fs; dr) -> fall (White Silk Floss Tree) Cordia boissieri (sm.tr; fs; dr) (Texas white olive)2 Dombeya burgessiae (shr; fs) cream – pale pink -> late fall – winter (Apple Blossom, Pink Pear Blossom)1 Eranthemum nigrum (see E. pulchellum below) (Ebony) Euphorbia leucophylla (shr/sm.tr; fs) white/pink -> winter (Little Christmas Tree, Pascuita)1, 2 Fagrea ceylanica (shr/sm.tr; fs/ss; dr) (Ceylon Fagrea) 1,2 Gardenia taitensis (shr/sm.tr; fs; dr) (Tahitian Gardenia)1,2 Jacquinia arborea, J. keyensis (sm.tr/shr; fs; dr) -> spring – summer (Bracelet Wood)1 (Joewood) 1, 2 1 Fragrant 2 Adapts especially well to limestone Kopsia pruniformis (shr/sm.tr; fs/ss.)♣ (Java plum) Mandevilla boliviensis (cl.sh/ss) -> spring
    [Show full text]
  • (Frangipani) in Preventing and Treating of Diseases in Livestock Farms
    J.Bio.Innov 9(5), pp: 711-724, 2020 |ISSN 2277-8330 (Electronic) Ahaatu et al., https://doi.org/10.46344/JBINO.2020.v09i05.06 INVESTIGATING THE IMPLICATIONS OF ANTI-MICROBIAL AND ANTI-INFLAMMATORY PROPERTIES OF PLUMERIA RUBRA (FRANGIPANI) IN PREVENTING AND TREATING OF DISEASES IN LIVESTOCK FARMS. Ahaotu, E.O1, Nwabueze, E2, Azubuike, A.P3 and Anyaegbu, F3 1Department of Animal Production Technology, Imo State Polytechnic Umuagwo, Nigeria. 2Department of Science Laboratory Technology, Imo State Polytechnic Umuagwo, Nigeria. 3Department of Agricultural Technology, Imo State Polytechnic Umuagwo, Nigeria. (Received on Date: 18th May 2020 Date of Revision& Acceptance: 4th July 2020 Date of Publish: 1st September 2020) Email: [email protected] ABSTRACT Plumeria rubra is small tree commonly known as White Champa Leaf. The leaves and flowers were evaluated for phyto-constituents, used in several traditional medicines to cure various diseases. The plant is mainly grown for its ornamental and fragrant flowers. Leaves arrangement is lanceolate to oblanceolate with flowers, fragrant in corymbose fascicles while the fruit is edible. Their medicinal properties are often due to their latex which is frequently drastic and corrosive. Latex is applied to ulcers, herpes and scabies. Seeds possess hemostatic properties. Plumeria rubra is also used as purgative, cardiotonic, diuretic and hypotensive. The medicinal value of Plumeria rubra is used in the treatment of a large number of human and livestock ailments. The zones of inhibition ranges from 10-28 mm and the plant extracts showed a broad spectrum of antimicrobial activity against gram positive and gram-negative bacteria. It was more pronounced on gram negative bacteria especially Proteus mirabilis.
    [Show full text]
  • Download Download
    Int. J. Ayur. Pharma Research, 2014; 2(2): 47-52 ISSN: 2322 - 0910 International Journal of Ayurveda and Pharma Research Research Article ANALYSIS OF THE ESSENTIAL OIL FROM THE LEAVES OF WRIGHTIA TINCTORIA R. BR. FROM SOUTH INDIA Beena Jose1*, L.R. Joji2 *1Assistant Professor, Department of Chemistry, Vimala College, Thrissur, Kerala, India. 2Associate Professor, Department of Biotechnology, Loyola Academy, Degree& PG College, Secunderabad, Andhra Pradesh, India. Received on: 23/04/2014 Revised on: 25/04/2014 Accepted on: 28/04/2014 ABSTRACT Wrightia tinctoria R.Br. (Apocyanaceae) is considered to be therapeutically very effective jaundice plant in Indian indigenous system of medicine. The juice of the tender leaves is used efficaciously in jaundice. The plant is known to be used for psoriasis and other skin diseases. In the present study, the chemical composition of the essential oil from the leaves of Wrightia tinctoria was analyzed by GC-MS (Gas Chromatography- Mass Spectrometry). GC-MS analytical technique provides conclusive confirmatory evidence for the identification and characterization of essential oil components. Thirty seven known compounds have been identified and quantified from the leaf essential oil of Wrightia tinctoria by GC-MS analysis. The major compounds present in the leaf essential oil are urs-12-en-24-oic acid-3-oxo-methyl ester (34.28%), hydroquinone (13.24%), 1, 6-cyclodecadiene,1-methyl-5-methylene- 8- (1-methylethyl) (9.70%), 3- methyl-2-(2-pentenyl)- 2-cyclopentene-1-one (6.76%) and 9, 12, 15-octadecatrienoic acid (4.52%). This is the first report of extraction of essential oil from the leaves of Wrightia tinctoria.
    [Show full text]
  • 2636-2640 E-ISSN:2581-6063 (Online), ISSN:0972-5210
    Kaur Amrinder and Kumar Deepak 1 Plant Archives Vol. 21, Supplement 1, 2021 pp. 2636-2640 e-ISSN:2581-6063 (online), ISSN:0972-5210 Plant Archives Journal homepage: http://www.plantarchives.org doi link : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.429 REVIEW ARTICLE: PHARMACOGNOSTIC, PHARMACOLOGICAL AND TOXICOLOGICAL REVIEW OF SEEDS OF HOLARRHENA ANTIDYSENTERICA (APOCYNACEAE) Kaur Amrinder and *Kumar Deepak Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India *E-mail: [email protected] Holarrhena antidysenterica belongs to the family Apocynaceae is commonly known as kurchi in Hindi, Tellicherry bark in English is a small deciduous tree which is distributed throughout the world and in India, it is found in dry forests. In Indian traditional medicine, H. Antidysenterica is popularly used as a medication for dysentery, diarrhoea and intestinal worms. Plant parts such as bark are used to treat anti-microbial, anti-inflammatory, analgesics, amoebiasis, chronic bronchitis, locally for boils, ulcers; The phytochemicals present in the plant include coumarins, ABSTRACT ergosterol, flavonoids, phenolic acids, resins, saponins, steroidal alkaloids, tannins, triterpenoids. Pharmacological studies include anti-amnesic, anti-diabetic, antibacterial activity, anti-inflammatory, anti-diarrhoeal, antioxidant/free radical scavenging property, diuretic activity, anti-amoebic, anthelminthic, anti-microbial properties of Holarrhena antidysenterica. This review article explored the detailed
    [Show full text]
  • Folkloric Use of Plants for Treatment of Epilepsy in India
    Folkloric use of plants for treatment of epilepsy in India Vartika Jain1 * and S. K. Verma 2 1Department of Botany, Govt. Meera Girls’ College, Udaipur-313001, Rajasthan, India. E-mail: vartikajain31@gmail. com 2Department of Medicine, Pacific Medical College & Hospital, Udaipur-313001, Rajasthan, India. E-mail: skvermaster@gmail. com Abstract Epilepsy is a common chronic neurological disorder prevalent world wide. It requires long term treatment with available antiepileptic agents but the associated side effects and incomplete success rates in treatment are some challenges in front of mankind. Traditional treatment of epilepsy through various plants is also very popular in rural and tribal belts of India. An attempt was made to gather information about antiepileptic plants being used by different indigenous communities all over the country. It has revealed use of total 159 plants for treatment of epilepsy and its related symptoms in India. Out of these, 55 plants have been evaluated for their anticonvulsant potential in various biological studies. There is an urgent need for scientific evaluation of rest of the 104 plants for their antiepileptic potential to obtain a safe, efficient and cost-effective treatment for this serious brain disorder. Keywords: Anti-convulsant, Ethnobotany, Seizure, Alkaloid, Secondary metabolites Introduction In modern era, many synthetic drugs like phanytoin, Man has been dependent on natural resources for the barbiturates, pyrimidon, succinamides, dizepines, treatment of various health problems since prehistoric benzodiazepines, carbamazepine, topiramate etc. times. Plants remained the foremost important source are being used as anticonvulsant/antiepileptic drugs. for this purpose. India has a very rich biological and However, their side effects, chronic toxicity, serious cultural diversity and indigenous people of India have drug interactions and adverse effects on cognition and been using different plants singly or in combination behavior still require a safe & effective drug for this for treatment of various medical conditions.
    [Show full text]