Ecological Character Description of the Lake Warden System Ramsar Site, Esperance, Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Character Description of the Lake Warden System Ramsar Site, Esperance, Western Australia ECOLOGICAL CHARACTER DESCRIPTION OF THE LAKE WARDEN SYSTEM RAMSAR SITE, ESPERANCE, WESTERN AUSTRALIA A report by the Department of Environment and Conservation Ecological Character Description of the Lake Warden System Ramsar Site Acknowledgements Funding for the development of this document was sourced jointly from the Natural Heritage Trust (NHT) and the State and Commonwealth contributions to the National Action Plan for Salinity and Water Quality (NAP). NHT and NAP are jointly administered by the Australian Government departments of Agriculture, Fisheries and Forestry and the Environment, Water, Heritage and the Arts and the WA Natural Resource Management Office. In-kind contributions were gratefully received from the organisations represented on the Technical Advisory Group. Document Preparation This document has been prepared by the Wetlands Section of the Department of Environment and Conservation. Gareth Watkins - Author / conceptual models and graphics Jennifer Higbid - Internal review Technical Advisory Group Members Robyn Cail South Coast NRM David Cale DEC Sarah Comer DEC Ian Hartley Esperance Regional Forum Jennifer Higbid DEC Tegan Laslett DEC John Lizamore DEC Ken Read Esperance Bird Observers Group John Simons DAFWA Thank you to the following people for their contributions Nikki Cowcher DEC Henry Dabb South Coast NRM Greg Freebury DEC Paul Galloway DAFWA Photo credits Cover photograph: Mullet Lake, Esperance (J. Higbid) Internal photographs: G. Daniel, J. Higbid _________________________________________________________________________ I Ecological Character Description of the Lake Warden System Ramsar Site Other credits Symbols in conceptual models courtesy of the Integration and Application Network <http://ian.umces.edu/symbols/>, University of Maryland Center for Environmental Science To reference this document Department of Environment and Conservation (2009). Ecological Character Description of the Lake Warden System Ramsar Site: A Report by the Department of Environment and Conservation. Prepared by G. Watkins, Department of Environment and Conservation, Perth, Western Australia. Introductory Notes This Ecological Character Description (ECD Publication) has been prepared in accordance with the National Framework and Guidance for Describing the Ecological Character of Australia’s Ramsar Wetlands (National Framework) (Department of the Environment, Water, Heritage and the Arts, 2008). The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) prohibits actions that are likely to have a significant impact on the ecological character of a Ramsar wetland unless the Commonwealth Environment Minister has approved the taking of the action, or some other provision in the EPBC Act allows the action to be taken. The information in this ECD Publication does not indicate any commitment to a particular course of action, policy position or decision. Further, it does not provide assessment of any particular action within the meaning of the Environment Protection and Biodiversity Conservation Act 1999 (Cth), nor replace the role of the Minister or his delegate in making an informed decision to approve an action. This ECD Publication is provided without prejudice to any final decision by the Administrative Authority for Ramsar in Australia on change in ecological character in accordance with the requirements of Article 3.2 of the Ramsar Convention. Disclaimer While reasonable efforts have been made to ensure the contents of this ECD are correct, the Commonwealth of Australia as represented by the Department of Sustainability, Environment, Water, Population and Communities does not guarantee and accepts no legal liability whatsoever arising from or connected to the currency, accuracy, completeness, reliability or suitability of the information in this ECD. Note: There may be differences in the type of information contained in this ECD publication, to those of other Ramsar wetlands. _________________________________________________________________________ II Ecological Character Description of the Lake Warden System Ramsar Site TABLE OF CONTENTS GLOSSARY ......................................................................................................... VIII ABBREVIATIONS ................................................................................................. XII EXECUTIVE SUMMARY...................................................................................... XIII 1.0 INTRODUCTION ............................................................................................... 1 1.1 SITE DETAILS ......................................................................................................... 2 1.2 PURPOSE OF AN ECOLOGICAL CHARACTER DESCRIPTION .......................... 3 1.2.1 OBJECTIVES OF THE LAKE WARDEN SYSTEM RAMSAR SITE ECOLOGICAL CHARACTER DESCRIPTION ................................................................................................... 5 1.3 RELEVANT TREATIES, LEGISLATION AND REGULATIONS .............................. 6 1.3.1 INTERNATIONAL AGREEMENTS/CONVENTIONS ....................................................... 6 1.3.2 NATIONAL LEGISLATION ............................................................................................... 7 1.3.3 WESTERN AUSTRALIA STATE LEGISLATION ............................................................. 8 2.0 DESCRIPTION OF THE LAKE WARDEN SYSTEM RAMSAR SITE ............. 10 2.1 BACKGROUND ..................................................................................................... 10 2.2 LAND TENURE AND LAND USE .......................................................................... 11 2.4 CLIMATE ............................................................................................................... 13 2.5 WETLAND TYPES ................................................................................................ 16 2.6 RAMSAR CRITERIA ............................................................................................. 18 2.6.1 RAMSAR CRITERIA UNDER WHICH THE SITE WAS DESIGNATED ........................ 18 2.6.2 CURRENT RAMSAR CRITERIA .................................................................................... 20 2.6.2.1 ASSESSMENT AGAINST EACH OF THE RAMSAR CRITERIA FOR THE LAKE WARDEN SYSTEM RAMSAR SITE ......................................................................................................................... 23 3.0 LAKE WARDEN SYSTEM RAMSAR SITE: CRITICAL ECOSYSTEM COMPONENTS, PROCESSES, BENEFITS AND SERVICES ............................. 27 3.1 CRITICAL ECOSYSTEM COMPONENTS AND PROCESSES ............................. 27 3.1.1 GEOMORPHOLOGY ...................................................................................................... 31 3.1.2 HYDROLOGY .................................................................................................................. 32 3.1.2.1 HYDROLOGICAL SETTING ............................................................................................ 33 3.1.2.2 SURFACE AND GROUND WATER INTERACTIONS............................................................. 35 3.2.2.3 HYDROLOGICAL REGIME OF THE MAJOR LAKES WITHIN THE RAMSAR SITE ..................... 39 3.2.2.4 CATCHMENT TRENDS .................................................................................................. 44 3.1.3 WATER QUALITY ........................................................................................................... 46 3.1.3.1 PHYSICO-CHEMICAL PROPERTIES OF THE MAJOR LAKES WITHIN THE RAMSAR SITE ........ 46 3.1.3.1.1 Salinity concentrations..................................................................................................46 3.1.3.1.2 pH ....................................................................................................................................51 3.1.3.1.3 Nutrient concentrations.................................................................................................52 3.1.3.2 CATCHMENT SURFACE AND GROUNDWATER PHYSICO-CHEMICAL PROPERTIES ............... 60 3.1.3.2.1 Salinity concentrations..................................................................................................60 3.1.3.2.2 pH ....................................................................................................................................60 3.1.3.2.3 Nutrient concentrations.................................................................................................61 3.1.4 PHYSICAL PROCESSES ............................................................................................... 62 3.1.5 WETLAND SOILS ........................................................................................................... 62 3.1.6 BIOTA .............................................................................................................................. 66 _________________________________________________________________________ I Ecological Character Description of the Lake Warden System Ramsar Site 3.1.6.1 WATERBIRDS ............................................................................................................. 66 3.1.6.1.1 Species diversity and abundance ................................................................................68 3.1.6.2 FISH ........................................................................................................................... 80 3.1.6.3 AQUATIC INVERTEBRATES ..........................................................................................
Recommended publications
  • Framework for Prioritising Waterways for Management in Western Australia
    Framework for prioritising waterways for management in Western Australia Centre of Excellence in Natural Resource Management University of Western Australia May 2011 Report no. CENRM120 Centre of Excellence in Natural Resource Management University of Western Australia Unit 1, Foreshore House, Proudlove Parade Albany Western Australia 6332 Telephone +61 8 9842 0837 Facsimile +61 8 9842 8499 www.cenrm.uwa.edu.au This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the University of Western Australia. Reference: Macgregor, C., Cook, B., Farrell, C. and Mazzella, L. 2011. Assessment framework for prioritising waterways for management in Western Australia, Centre of Excellence in Natural Resource Management, University of Western Australia, Albany. ISBN: 978-1-74052-236-6 Front cover credit: Bremer River, Eastern South Coast bioregion in May 2006, looking downstream by Geraldine Janicke. Disclaimer This document has been prepared by the Centre of Excellence in Natural Resource Management, University of Western Australia for the Department of Water, Western Australian. Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith and on the basis that the Centre of Excellence in Natural Resource Management and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any representation, statement, opinion or advice referred to herein.
    [Show full text]
  • Aquatic Invertebrates and Waterbirds of Wetlands and Rivers of the Southern Carnarvon Basin, Western Australia
    DOI: 10.18195/issn.0313-122x.61.2000.217-265 Records of the Western Australian Museum Supplement No. 61: 217-265 (2000). Aquatic invertebrates and waterbirds of wetlands and rivers of the southern Carnarvon Basin, Western Australia 3 3 S.A. Halsel, R.J. ShieF, A.W. Storey, D.H.D. Edward , I. Lansburyt, D.J. Cale and M.S. HarveyS 1 Department of Conservation and Land Management, Wildlife Research Centre, PO Box 51, Wanneroo, Western Australia 6946, Australia 2CRC for Freshwater Ecology, Murray-Darling Freshwater Research Centre, PO Box 921, Albury, New South Wales 2640, Australia 3 Department of Zoology, The University of Western Australia, Nedlands, Western Australia 6907, Australia 4 Hope Entomological Collections, Oxford University Museum, Parks Road, Oxford OXl 3PW, United Kingdom 5 Department of Terrestrial Invertebrates, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia Abstract - Fifty-six sites, representing 53 wetlands, were surveyed in the southern Carnarvon Basin in 1994 and 1995 with the aim of documenting the waterbird and aquatic invertebrate fauna of the region. Most sites were surveyed in both winter and summer, although some contained water only one occasion. Altogether 57 waterbird species were recorded, with 29 292 waterbirds of 25 species on Lake MacLeod in October 1994. River pools were shown to be relatively important for waterbirds, while many freshwater claypans were little used. At least 492 species of aquatic invertebrate were collected. The invertebrate fauna was characterized by the low frequency with which taxa occurred: a third of the species were collected at a single site on only one occasion.
    [Show full text]
  • Ramsar Sites in Order of Addition to the Ramsar List of Wetlands of International Importance
    Ramsar sites in order of addition to the Ramsar List of Wetlands of International Importance RS# Country Site Name Desig’n Date 1 Australia Cobourg Peninsula 8-May-74 2 Finland Aspskär 28-May-74 3 Finland Söderskär and Långören 28-May-74 4 Finland Björkör and Lågskär 28-May-74 5 Finland Signilskär 28-May-74 6 Finland Valassaaret and Björkögrunden 28-May-74 7 Finland Krunnit 28-May-74 8 Finland Ruskis 28-May-74 9 Finland Viikki 28-May-74 10 Finland Suomujärvi - Patvinsuo 28-May-74 11 Finland Martimoaapa - Lumiaapa 28-May-74 12 Finland Koitilaiskaira 28-May-74 13 Norway Åkersvika 9-Jul-74 14 Sweden Falsterbo - Foteviken 5-Dec-74 15 Sweden Klingavälsån - Krankesjön 5-Dec-74 16 Sweden Helgeån 5-Dec-74 17 Sweden Ottenby 5-Dec-74 18 Sweden Öland, eastern coastal areas 5-Dec-74 19 Sweden Getterön 5-Dec-74 20 Sweden Store Mosse and Kävsjön 5-Dec-74 21 Sweden Gotland, east coast 5-Dec-74 22 Sweden Hornborgasjön 5-Dec-74 23 Sweden Tåkern 5-Dec-74 24 Sweden Kvismaren 5-Dec-74 25 Sweden Hjälstaviken 5-Dec-74 26 Sweden Ånnsjön 5-Dec-74 27 Sweden Gammelstadsviken 5-Dec-74 28 Sweden Persöfjärden 5-Dec-74 29 Sweden Tärnasjön 5-Dec-74 30 Sweden Tjålmejaure - Laisdalen 5-Dec-74 31 Sweden Laidaure 5-Dec-74 32 Sweden Sjaunja 5-Dec-74 33 Sweden Tavvavuoma 5-Dec-74 34 South Africa De Hoop Vlei 12-Mar-75 35 South Africa Barberspan 12-Mar-75 36 Iran, I. R.
    [Show full text]
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • Introduction
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]
  • Their Botany, Essential Oils and Uses 6.86 MB
    MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy, Lyndley A. Craven and John C. Doran MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy School of Chemistry, University of New South Wales Lyndley A. Craven Australian National Herbarium, CSIRO Plant Industry John C. Doran Australian Tree Seed Centre, CSIRO Plant Industry 2013 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia's international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia's contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2013 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] Brophy J.J., Craven L.A. and Doran J.C. 2013. Melaleucas: their botany, essential oils and uses. ACIAR Monograph No. 156. Australian Centre for International Agricultural Research: Canberra.
    [Show full text]
  • A Guide to the Birds of Barrow Island
    A Guide to the Birds of Barrow Island Operated by Chevron Australia This document has been printed by a Sustainable Green Printer on stock that is certified carbon in joint venture with neutral and is Forestry Stewardship Council (FSC) mix certified, ensuring fibres are sourced from certified and well managed forests. The stock 55% recycled (30% pre consumer, 25% post- Cert no. L2/0011.2010 consumer) and has an ISO 14001 Environmental Certification. ISBN 978-0-9871120-1-9 Gorgon Project Osaka Gas | Tokyo Gas | Chubu Electric Power Chevron’s Policy on Working in Sensitive Areas Protecting the safety and health of people and the environment is a Chevron core value. About the Authors Therefore, we: • Strive to design our facilities and conduct our operations to avoid adverse impacts to human health and to operate in an environmentally sound, reliable and Dr Dorian Moro efficient manner. • Conduct our operations responsibly in all areas, including environments with sensitive Dorian Moro works for Chevron Australia as the Terrestrial Ecologist biological characteristics. in the Australasia Strategic Business Unit. His Bachelor of Science Chevron strives to avoid or reduce significant risks and impacts our projects and (Hons) studies at La Trobe University (Victoria), focused on small operations may pose to sensitive species, habitats and ecosystems. This means that we: mammal communities in coastal areas of Victoria. His PhD (University • Integrate biodiversity into our business decision-making and management through our of Western Australia)
    [Show full text]
  • A 2010 Supplement to Ducks, Geese, and Swans of the World
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible.
    [Show full text]
  • Cattleegret for PDF 2.Jpg
    Chestnut Teal count The Whistler 5 (2011): 51-52 Chestnut Teal count – March 2011 Ann Lindsey1 and Michael Roderick2 137 Long Crescent, Shortland, NSW 2037, Australia [email protected] 256 Karoola Road, Lambton, NSW 2299, Australia [email protected] In March 2011, 4,497 Chestnut Teal Anas castanea were counted during a comprehensive survey of the Hunter Estuary and other wetlands in the Lower Hunter and Lake Macquarie areas. 4,117 Chestnut Teal, which is >4% of the Australian population, occurred in the estuary. The importance of the Hunter Estuary Important Bird Area (IBA) to Chestnut Teal was confirmed. On 18 March 2011 during a regular monthly in the Hunter Estuary and at other sites in the survey as part of the Hunter Shorebird Surveys, Lower Hunter and Lake Macquarie. The number of Mick Roderick counted 1,637 Chestnut Teal Anas sites surveyed was limited by the number of castanea at Deep Pond on Kooragang Island. participants. The time chosen coincided Subsequently, on 26 March 2011, Ann Lindsey approximately with the high tide at Stockton visited the eastern side of Hexham Swamp and Bridge, consistent with the protocols of the counted 1,200 Chestnut Teal. The question arose monthly Hunter Shorebird Surveys. It also as to whether these counts involved the same birds coincided with a time (early afternoon) when or whether they were in fact separate flocks. waterfowl are least active. Much of the 8,453ha Hunter Estuary (32o 52' / 151o Nineteen sites were surveyed by eleven people 45') is designated as an Important Bird Area (IBA) between 1230 and 1520 hours on the day (Table as it meets several of the necessary criteria.
    [Show full text]
  • Agricultural Practices Unknowingly Cause Poisoning of Lake Catchment 14 September 2015, by David Stacey
    Agricultural practices unknowingly cause poisoning of lake catchment 14 September 2015, by David Stacey natural conditions this acid groundwater rarely flows to rivers. "With clearing for agriculture, watertables have risen and acid water now discharges to rivers impacting on the biodiversity of these systems." Mr Lillicrap said his study also found that agricultural drains installed by farmers to lower water tables in a bid to manage salinity had inadvertently increased the acidification. The research found that more than 100 kilometres of waterways in the in the Dalyup catchment headwaters were already permanently acidified. "Lake Gore is a wetland of international significance under the Ramsar Convention and unless Agricultural clearing and drains installed by farmers management action is taken, the lower catchment to lower water tables and manage salinity are of the West Dalyup River will become increasingly inadvertently impacting waterways in one of the acidified and discharge high levels of aluminium, a largest and most botanically significant regions in toxic metal, into Lake Gore," Mr Lillicrap said. Australia, according to new research from The University of Western Australia. "It is important that landholders, natural resource management groups, government and the PhD student Adam Lillicrap investigated the community work together to manage this issue sources of acid groundwater around the Dalyup before it's too late." River and Lake Gore waterways system and the Jacup-Cameron Creek in the Fitzgerald River The work follows research by the UWA Centre of National Park in the Goldfields Esperance region of Excellence in Natural Resource Management into WA. the ecological impacts of deep drains across the Wheatbelt which found that the loss of stream and He found that rising acid groundwater tables were wetland invertebrates could impact other organisms flowing into waterways as a result of agricultural such as frogs and fish that feed on them.
    [Show full text]
  • Surveys of Waterbirds Using the Lake Warden and Lake Gore Ramsar Sites in November 2020 and February 2021
    Surveys of waterbirds using the Lake Warden and Lake Gore Ramsar sites in November 2020 and February 2021 Adrian Pinder1, Fiona Felton1, Michael Venarsky1, David Cale1 and Plaxy Barratt2 1Department of Biodiversity, Conservation and Attractions 2 Birdlife Australia March 2021 Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000 Fax: (08) 9334 0498 www.dbca.wa.gov.au © Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2021 This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions. Questions regarding the use of this material should be directed to: Program Leader Ecosystem Science Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Email: [email protected] The recommended reference for this publication is: Pinder A, Felton F, Venarsky M, Cale D and Barratt P (2021), Surveys of Waterbirds using the Lake Warden and Lake Gore Ramsar sites in November 2020 and February 2021, Department of Biodiversity, Conservation and Attractions, Perth. Cover image: Lake Warden, Adrian Pinder © DBCA Acknowledgements. Thanks to Stephen Butler (DBCA Esperance) for logistical support and Dave Thornburg (DBCA, Stokes Inlet) for assisting with the surveys of Lake Quallilup and the flow-through system.
    [Show full text]