Genus Stumpffia) from Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

Genus Stumpffia) from Madagascar 67 (3): 271– 398 © Senckenberg Gesellschaft für Naturforschung, 2017. 28.11.2017 Describing the smaller majority: integrative taxonomy reveals twenty-six new species of tiny microhylid frogs (genus Stumpffia) from Madagascar Andolalao Rakotoarison 1, 2, Mark D. Scherz 1, 3, Frank Glaw 3, Jörn Köhler 4, Franco Andreone 5, Michael Franzen 3, Julian Glos 6, Oliver Hawlitschek 3, 7, Teppei Jono 8, 9, Akira Mori 8, Serge H. Ndriantsoa 2, Noromalala Rasoamam- pionona Raminosoa 2, Jana C. Riemann 6, Mark-Oliver Rödel 10, Gonçalo M. Rosa 11, 12, 13, David R. Vieites 14, Angelica Crottini 15, Miguel Vences 1, * 1 Division of Evolutionary Biology, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Braunschweig, Germany — 2 Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d’Antananarivo, Antananarivo 101, Madagascar — 3 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany — 4 Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany — 5 Museo Regionale di Scienze Naturali, Via G. Giolitti, 36, I-10123 Torino, Italy — 6 Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany — 7 Institut de Biologia Evolutiva (CSIC- UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain — 8 Department of Zoology, Graduate School of Science, Kyoto Univer- sity, Sakyo, Kyoto 606-8502, Japan — 9 Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 901- 0213, Japan — 10 Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany — 11 Department of Biology, University of Nevada, Reno, NV 89557, USA — 12 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, UK — 13 Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências Universidade de Lisboa, 1749-016 Lisboa, Portugal — 14 National Natural History Museum, Spanish Scientific Research Council (CSIC), C/José Gutierrez Abascal 2, 828006, Madrid, Spain — 15 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Nº 7, 4485-661 Vairão, Portugal — * Corresponding author; [email protected] Accepted 4.x.2017. Published online at www.senckenberg.de/vertebrate-zoology on 13.xi.2017. Abstract The genus Stumpffia BOETTGER, 1881 currently contains 15 named, small to miniaturized frog species, classified in the endemic Malagasy subfamily Cophylinae of the family Microhylidae. Stumpffia are terrestrial frogs with a largely unknown biology, probably due to their small size and secretive habits. Previous studies have suggested a large proportion of undescribed diversity in the genus. We revise the genus on the basis of a combination of molecular, bioacoustic, and morphological data and describe 26 new species that are all genetically divergent, almost all of them with high pairwise genetic divergences > 4% p-distance in a segment of the mitochondrial 16S rRNA gene and concord- ant differentiation in a segment of the nuclear Rag-1 gene. The majority of the new species can also be distinguished by the structure of their advertisement calls (where bioacoustic data are available), and in most comparisons the species can also be distinguished morphologically. Furthermore, a molecular phylogeny reconstructed from DNA sequences of one nuclear and four mitochondrial gene segments revealed that in many cases, morphologically similar species are not each other’s closest relatives, thus confirming their identity as independent evo- lutionary lineages and revealing repeated phenotypic divergence and convergence among and within clades. The phylogeny distinguishes four main clades in the genus: Clade A containing 17 species (Stumpffia be, S. hara, S. megsoni, S. staffordi, S. psologlossa, S. analamaina, S. gimmeli, S. madagascariensis, S. pygmaea, S. angeluci sp. nov., S. huwei sp. nov., S. iharana sp. nov., S. larinki sp. nov., S. maledicta sp. nov., S. mamitika sp. nov., S. sorata sp. nov., and S. yanniki sp. nov.) mostly from northern and northwestern Madagascar, generally characterized by limited digital reduction and divided in subclades of comparatively large, small, and miniaturized body size, respectively; Clade B with four species (S. miery, S. meikeae sp. nov., S. obscoena sp. nov., and S. davidattenboroughi sp. nov.) morphologically ranging from miniaturized with strong digital reduction to comparatively large-sized; Clade C with 18 species (S. grandis, S. kibomena, S. roseif- emoralis, S. tetradactyla, S. nigrorubra sp. nov., S. achillei sp. nov., S. diutissima sp. nov., S. pardus sp. nov., S. edmondsi sp. nov., S. fusca sp. nov., S. jeannoeli sp. nov., S. spandei sp. nov., S. garraffoi sp. nov., S. analanjirofo sp. nov., S. miovaova sp. nov., S. makira sp. nov., S. betampona sp. nov., and S. dolchi sp. nov.) mostly distributed in eastern and northeastern Madagascar, containing species of compara- ISSN 1864-5755 271 Rakotoarison, A. et al.: Integrative taxonomy of Stumpffia frogs tively large size as well as small-sized species, many of which are characterized by a moderate degree of digital reduction; and Clade D with two miniaturized species (S. tridactyla and S. contumelia sp. nov.) with strong digital reduction, which form the sister group of all other Stumpffia. Two of the newly described species (S. angeluci and S. maledicta) are not separated by the 4% threshold in the 16S gene but occur in sympatry and do not share Rag-1 haplotypes. To achieve a comprehensive review of this species-rich genus, we provide simplified dif- ferential diagnoses and descriptions and abbreviated descriptions of morphological variation. Despite the large number of Stumpffia species newly described herein, we identify several additional candidate species with currently insufficient data to warrant formal description, and highlight that some species such as S. analanjirofo, S. gimmeli, S. kibomena, S. madagascariensis, S. roseifemoralis and S. obscoena are composed of two or more deep mitochondrial lineages that might also turn out to be distinct taxa after in-depth study. We confirmStumpffia as a genus of highly microendemic frogs with many species apparently restricted to very small ranges, and provide evidence that two of the new species (S. achillei and S. davidattenboroughi) do not construct foam nests but lay their eggs in wet places in the leaf litter, or in cavi- ties such as empty snail shells. We propose a conservation status for all the described species according to IUCN Red List Criteria, but also discuss several problems applying these criteria to such microendemic and poorly known frogs. Key words Amphibia; Anura; Microhylidae; diversity; systematics; bioacoustics; molecular genetics; morphology; microendemism. Table of content Abstract ..................................................................................................................................................................... 271 Introduction ............................................................................................................................................................... 274 Materials and Methods .............................................................................................................................................. 275 Results ....................................................................................................................................................................... 279 Molecular species delimitation ................................................................................................................................. 279 Molecular phylogeny ................................................................................................................................................ 285 Morphological and bioacoustic comparisons ............................................................................................................ 286 Taxonomic accounts .................................................................................................................................................. 293 1. Small-sized or miniaturized species of clade A ............................................................................................. 294 Stumpffia psologlossa BOETTGER, 1881 (type species of the genus Stumpffia) ........................................ 295 Stumpffia analamaina KLAGES, GLAW, KÖHLER, MÜLLER, HIPSLEY & VENCES, 2013 ................................ 304 Stumpffia gimmeli GLAW & VENCES, 1992 ................................................................................................ 306 Stumpffia madagascariensis MOCQUARD, 1895 ........................................................................................ 307 Stumpffia pygmaeaV ENCES & GLAW, 1991 .............................................................................................. 310 Stumpffia angeluci sp. nov. ...................................................................................................................... 310 Stumpffia huwei sp. nov. .......................................................................................................................... 314 Stumpffia iharana sp. nov. ....................................................................................................................... 317 Stumpffa larinki sp. nov. .........................................................................................................................
Recommended publications
  • Extreme Miniaturization of a New Amniote Vertebrate and Insights Into the Evolution of Genital Size in Chameleons
    www.nature.com/scientificreports OPEN Extreme miniaturization of a new amniote vertebrate and insights into the evolution of genital size in chameleons Frank Glaw1*, Jörn Köhler2, Oliver Hawlitschek3, Fanomezana M. Ratsoavina4, Andolalao Rakotoarison4, Mark D. Scherz5 & Miguel Vences6 Evolutionary reduction of adult body size (miniaturization) has profound consequences for organismal biology and is an important subject of evolutionary research. Based on two individuals we describe a new, extremely miniaturized chameleon, which may be the world’s smallest reptile species. The male holotype of Brookesia nana sp. nov. has a snout–vent length of 13.5 mm (total length 21.6 mm) and has large, apparently fully developed hemipenes, making it apparently the smallest mature male amniote ever recorded. The female paratype measures 19.2 mm snout–vent length (total length 28.9 mm) and a micro-CT scan revealed developing eggs in the body cavity, likewise indicating sexual maturity. The new chameleon is only known from a degraded montane rainforest in northern Madagascar and might be threatened by extinction. Molecular phylogenetic analyses place it as sister to B. karchei, the largest species in the clade of miniaturized Brookesia species, for which we resurrect Evoluticauda Angel, 1942 as subgenus name. The genetic divergence of B. nana sp. nov. is rather strong (9.9‒14.9% to all other Evoluticauda species in the 16S rRNA gene). A comparative study of genital length in Malagasy chameleons revealed a tendency for the smallest chameleons to have the relatively largest hemipenes, which might be a consequence of a reversed sexual size dimorphism with males substantially smaller than females in the smallest species.
    [Show full text]
  • Zootaxa, Integrative Taxonomy of Malagasy Treefrogs
    Zootaxa 2383: 1–82 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2383 Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of Boophis FRANK GLAW1, 5, JÖRN KÖHLER2, IGNACIO DE LA RIVA3, DAVID R. VIEITES3 & MIGUEL VENCES4 1Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany 2Department of Natural History, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany 3Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (CSIC), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain 4Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany 5Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by S. Castroviejo: 8 Dec. 2009; published: 26 Feb. 2010 Frank Glaw, Jörn Köhler, Ignacio De la Riva, David R. Vieites & Miguel Vences Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and com- parative morphology reveals twelve additional species of Boophis (Zootaxa 2383) 82 pp.; 30 cm. 26 February 2010 ISBN 978-1-86977-485-1 (paperback) ISBN 978-1-86977-486-8 (Online edition) FIRST PUBLISHED IN 2010 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2010 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • Plethodontohyla Laevis (Boettger, 1913) and Transfer of Rhombophryne Alluaudi (Mocquard, 1901) to the Genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae)
    Zoosyst. Evol. 94(1) 2018, 109–135 | DOI 10.3897/zse.94.14698 museum für naturkunde Resurrection and re-description of Plethodontohyla laevis (Boettger, 1913) and transfer of Rhombophryne alluaudi (Mocquard, 1901) to the genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae) Adriana Bellati1,*, Mark D. Scherz2,*, Steven Megson3, Sam Hyde Roberts4, Franco Andreone5, Gonçalo M. Rosa6,7,8, Jean Noël9, Jasmin E. Randrianirina10, Mauro Fasola1, Frank Glaw2, Angelica Crottini11 1 Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy 2 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 3 School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK 4 SEED Madagascar, Studio 7, 1A Beethoven Street, London, W10 4LG, UK 5 Museo Regionale di Scienze Naturali, Sezione di Zoologia, Via G. Giolitti, 36, I-10123, Torino, Italy 6 Department of Biology, University of Nevada, Reno, Reno NV 89557, USA 7 Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK 8 Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal 9 Madagascar Fauna and Flora Group, BP 442, Morafeno, Toamasina 501, Madagascar 10 Parc Botanique et Zoologique de Tsimbazaza, BP 4096, Antananarivo 101, Madagascar 11 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Nº 7, 4485-661 Vairão, Portugal http://zoobank.org/AFA6C1FE-1627-408B-9684-F6240716C62B Corresponding author: Angelica Crottini ([email protected]) Abstract Received 26 June 2017 The systematics of the cophyline microhylid frog genera Plethodontohyla and Rhom- Accepted 19 January 2018 bophryne have long been intertwined, and their relationships have only recently started Published 2 February 2018 to become clear.
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • (Anura, Microhylidae) from the Sorata Massif in Northern Madagascar
    Zoosyst. Evol. 91 (2) 2015, 105–114 | DOI 10.3897/zse.91.4979 museum für naturkunde Leaping towards a saltatorial lifestyle? An unusually long-legged new species of Rhombophryne (Anura, Microhylidae) from the Sorata massif in northern Madagascar Mark D. Scherz1, Andolalao Rakotoarison2, Oliver Hawlitschek1,3, Miguel Vences2, Frank Glaw1 1 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 2 Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany 3 Current address: IBE, Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain http://zoobank.org/79F1E7CE-3ED3-4A6C-AA15-DC59AB3046B8 Corresponding author: Mark D. Scherz ([email protected]) Abstract Received 23 March 2015 The Madagascar-endemic microhylid genus Rhombophryne consists of a range of partly Accepted 15 June 2015 or completely fossorial frog species. They lead a poorly known, secretive lifestyle, and Published 16 July 2015 may be more diverse than previously thought. We describe a new species from the high altitude forests of the Sorata massif in north Madagascar with unusual characteristics Academic editor: for this genus; R. longicrus sp. n. has long, slender legs, unlike most of its fossorial or Peter Bartsch semi-fossorial congeners. The new species is closely related to R. minuta, a much smaller frog from the Marojejy massif to the southeast of Sorata with similarly long legs. We discuss the morphology of these species relative to the rest of the genus, and argue that Key Words it suggests adaptation away from burrowing and toward a more saltatorial locomotion and an accordingly more terrestrial lifestyle.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • IMPACT REPORT Center for Conservation in Madagascar
    IMPACT REPORT 2018 Center for Conservation in Madagascar IMPACT REPORT Center for Conservation in Madagascar In-Country Location The primary geographic scope of the MFG’s conservation fieldwork and research consists of 1) Parc Ivoloina and 2) Betampona Natural Reserve. 1. Parc Ivoloina is a former forestry station that has been transformed into a 282-hectare conservation education, research and training center. Located just 30 minutes north of Tamatave (Figure 1), Parc Ivoloina is also home to a four-hectare zoo that only exhibits endemic wildlife. 2. Betampona Natural Reserve is a 2,228-hectare rainforest fragment that contains high levels of plant and animal diversity (Figure 2). Recent research has Photo 1: Diademed sifaka in Betampona Natural Reserve shown Betampona to be a small center of endemism Background Summary for both amphibian and reptile species. There is little doubt that the MFG’s continual research presence Founded in 2004, the Center for Conservation in has protected Betampona from large-scale habitat Madagascar is one of the original centers of the loss and poaching. Saint Louis Zoo WildCare Institute. The basis of the Center is the Madagascar Fauna and Flora Group Figure 1. Primary locations of MFG presence (MFG), which is an international non-governmental in Madagascar. organization that collaborates with and supports in-country staff to achieve its conservation mission. The Zoo has invested expertise and funding in this organization since its inception in 1988. The Saint Louis Zoo has assumed chairmanship of the MFG twice; first with Dr. Jeffrey Bonner, President & CEO of the Saint Louis Zoo, from 2003 to 2006, and second under Dr.
    [Show full text]
  • A New Critically Endangered Frog Named After 'The Man from the Floodplain Full of Frogs' 25 May 2020
    A new Critically Endangered frog named after 'the man from the floodplain full of frogs' 25 May 2020 after him. The discovery, made by an international team of scientists from CIBIO (Research Centre in Biodiversity and Genetic Resources) of the University of Porto, Zoological Society of London, University of Lisbon, University of Brighton, University of Bristol, University of Antananarivo and Museo Regionale di Scienze Naturali, is published in the open-access peer-reviewed journal ZooKeys. The new species is reliably known only from a few specimens collected in three forest patches of the Sahamalaza region, an area severely threatened by fire, drought and high levels of forest clearance. Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of holotype ZSM 169/2019 (ACZCV 0940) from Anketsakely (Anabohazo Forest). Credit: Gonçalo M. Rosa A new species proposed to be classified as Critically Endangered of miniaturised stump-toed frog of the genus Stumpffia, found in Madagascar, is named Stumpffia froschaueri after "the man from the floodplain full of frogs", Christoph Froschauer. The namesake of the new frog is famous for being the first, and European wide renowned, printer from Zürich, famous for printing "Historia animalium" and the "Zürich Bible". Life colouration of Stumpffia froschaueri sp. nov., Christoph Froschauer's (ca. 1490—April 1564) dorsolateral view of paratype ZSM 166/2019 (ACZCV family name means "the man from the floodplain 0939) from Ankarafa Forest. Credit: Gonçalo M. Rosa full of frogs", and the printer used to sign his books with a woodcut, showing frogs under a tree in a landscape. Amongst his publications are works by Zwingli, Bullinger, Gessner, Erasmus von "In Anketsakely and Ankarafa this species has Rotterdam and Luther, and as a gift for his art, the been found only in areas with relatively undisturbed printer was given citizenship in Zürich in 1519.
    [Show full text]
  • An Enigmatic New Scaphiophryne Toadlet from the Rainforests of North-Eastern Madagascar (Amphibia: Microhylidae)
    64 (1): 95 – 102 © Senckenberg Gesellschaft für Naturforschung, 2014. 16.5.2014 An enigmatic new Scaphiophryne toadlet from the rainforests of north-eastern Madagascar (Amphibia: Microhylidae) Achille P. Raselimanana 1, Christopher J. Raxworthy 2, Franco Andreone 3, Frank Glaw 4 & Miguel Vences 5, * 1 Département de Biologie Animale, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar, and Association Vahatra, BP 3972, Antananarivo 101, Madagascar — 2 American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 USA — 3 Museo Regionale di Scienze Naturali, Via G. Giolitti, 36, 10123 Torino, Italy — 4 Zoologische Staatssammlung München, Münchhausenstrasse 21, 81247 München, Germany — 5 Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany — * Corresponding author; m.vences(at)tu-bs.de Accepted 21.ii.2014. Published online at www.senckenberg.de/vertebrate-zoology on 30.iv.2014. Abstract A new species of Scaphiophryne is described from north-eastern Madagascar. The new toadlet species is probably at least partly fossorial as can be judged from its large and sharp metatarsal tubercle, and seems to lead a secretive or strictly seasonal life since very few adult specimens were collected despite intensive field surveys in the region. The new species differs from all otherScaphiophryne , among other characters, by the absence of a tarsal tubercle and reminds the genus Paradoxophyla in its strongly marbled ventral pattern on belly and hindlimbs, and by its triangular head shape with pointed snout. Key words Anura; Microhylidae; Scaphiophryne; Scaphiophryne matsoko sp. n.; Marotondrano Special Reserve; tarsal tubercle. Introduction Madagascar harbors an extraordinary diversity of am- endemic clade (VAN DER MEIJDEN et al., 2007), (4) the phibians, with currently about 290 described species, and hyperoliid genus Heterixalus, and (5) the ptychadenid many others (at least 130) still waiting to be described species Ptychadena mascareniensis (GLAW & VENCES, (VIEITES et al., 2009).
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • Eulemur Flavifrons) and the Sportive Lemurs (Genus Lepilemur)
    Geospatial and genomic tools for conserving the critically endangered blue-eyed black lemur (Eulemur flavifrons) and the sportive lemurs (genus Lepilemur) Jen Tinsman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2019 Jen Tinsman All rights reserved Abstract Geospatial and genomic tools for conserving the Critically Endangered blue-eyed black lemur (Eulemur flavifrons) and the sportive lemurs (genus Lepilemur) Jen Tinsman Madagascar’s lemurs are the most endangered group of mammals in the world, with 94% of species threatened with extinction. Forest loss is one the greatest threat to these arboreal primates, but hunting, habitat degradation, and climate change also threaten their survival. Lemurs are a diverse group of more than 100 species; and their ecological traits shape how species respond to anthropogenic pressure. Incorporating knowledge of species’ ecological niches and evolutionary histories can contextualize threats and improve conservation assessments. In this dissertation, I investigate what constitutes suitable habitat for lemurs in light of the threats present, their sensitivity to forest fragmentation, their dispersal ability, and their ecological uniqueness. I obtained data about lemur distributions in two ways. First, I conducted field surveys of the Critically Endangered blue-eyed black lemur (Eulemur flavifrons), which only occurs in the ecotone between eastern rainforest and western dry forest in the Sahamalaza region. I also surveyed the range of sister species, the black lemur (E. macaco), which inhabits nearby eastern rainforest in the Manogarivo region. I focused on areas that have not been surveyed recently and on the poorly studied boundary between the species to collect observations from the breadth of these species’ ecological ranges.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]