ALGEBRAIC GEOMETRY I, FALL 2016. 1. Weil and Cartier Divisors

Total Page:16

File Type:pdf, Size:1020Kb

ALGEBRAIC GEOMETRY I, FALL 2016. 1. Weil and Cartier Divisors ALGEBRAIC GEOMETRY I, FALL 2016. DIVISORS. 1. Weil and Cartier divisors Let X be an algebraic variety. Define a Weil divisor on X as a formal (finite) linear combination of irreducible subvarieties of codimension 1 with integral coefficients: m P D = aiDi, where ai 2 Z. Define a Cartier divisor on X as a collection of rational i=1 S functions fi on Ui, where X = Ui is an open cover, such that fi=fj has no zeroes or poles on Ui \ Uj, up to the following equivalence relation: we say that f(Ui;Fi)g is equivalent to f(Wj; gj)g if the covers fUig and fWjg have a common refinemenent fZkg, and if Zk ⊂ Ui, Zk ⊂ Wj, then (fijZk )=(gjjZk ) has neither zeroes nor poles on Zk. Definition 1. A principal divisor is a Cartier divisor that is defined by a single rational function f on X. On a reasonably good variety (such as a smooth variety) we can define the order of a rational function f along a subvariety Y ⊂ X of codimension 1. If X is the affine line k1, Y is a point, and f = P=Q is a rational function, the order of f at (along) Y is k if P has a zero at Y with multiplicity k, and −k if Q has a zero at Y with multiplicity k. Once we have this notion, we can define a Weil divisor for any principal Cartier P divisor by taking the sum aiXi over all subvarieties Xi ⊂ X of codimension 1 where ai is the order of the function f along Xi. This sum will be finite. Then we can define a Weil divisor for any Cartier divisor f(Ui; fi)g by taking the above sum on every Ui and noticing that these Weil divisors agree on the intersections Ui \ Uj. On smooth varieties, Weil divisors are in bijection with Cartier divisors. On singular varieties, there may be Weil divisors that cannot be given as Cartier divisors, or non-trivial Cartier divisors for which the operation above produces a zero Weil divisor. Weil divisors naturally form an abelian group (we just add the linear combinations formally). Cartier divisors also form an abelian group: for two Cartier divisors we can take a common refinement of the open covers and take the product of the functions defining the divisors. It is easy to see that the map from Cartier to Weil divisors described above is a group homomorphism. Definition 2. Two divisors (Weil or Cartier) are called linearly equivalent if their difference is a principal divisor. The group of all Cartier divisors on X modulo linear equivalence is called the Picard group of X and denoted by Pic(X). 1 2 DIVISORS. 2. Cartier divisors and line bundles The data of a Cartier divisor in fact consists of the data of a line bundle with a rational section: having f(Ui; fi)g take the bundle that is trivial over each Ui, and define the transition functions as gij = fj=fi (regular function on Ui \Uj). Then ffig define a rational section. A sum of two divisors corresponds to the tensor product of their respective ine bundles. Lemma 1. Two Cartier divisors are linearly equivalent if and only if the line bundles that correspond to them are isomorphic. Proof. Suppose we have two sections f(Ui; si)g and f(Wj; tj)g of the same line bundle. By choosing a common refinement, we can assume that the coverings fUig and fWig are the same. Then on each open set si=ti defines a rational function, and these functions coincide on the intersections Ui\Uj, so they define a global rational function that gives the linear equivalence between the corresponding Cartier divisors. On the other hand, if two Cartier divisors are linearly equivalent, we can again assume that they are described by functions on the same covering: f(Ui; fi)g and f(Ui; gi)g with fi = fgi for some rational function f on X. Then the corresponding line bundles have transition functions gi=gj and fi=fj = fgi=fgj = gi=gj, which gives the same line bundle. As a corollary, we get an alternative definition of Pic(X) as the group of line bundles on X with tensor product as the operation. n Example 1. We have established that every line bundle on P is of the form O(k) for some k 2 Z. Since O(k) ⊗ O(m) 'O(k + m), we have an isomorphism of abelian n groups Pic(P ) ' Z. 3. Linear systems P Definition 3. A divisor D = aiDi on an algebraic variety X is effective if ai > 0 for all i. Let X be a smooth variety, and let D be an effective divisor on it. Then D is the divisor of a regular section s of the line bundle O(D). Any other effective divisor D0 that is linearly equivalent to D is the divisor of another section s0 of O(D). These sections are defined uniquely up to multiplication by a non-zero scalar, and each section of O(D) defines an effective divisor. The space Γ(O(D)) of all global regular sections of O(D) is a vector space, so effective divisors that are linearly equivalent to D are in bijection with its projectivization P(Γ(O(D))). Definition 4. A complete linear system jDj of divisors on X is the set of all effective divisors that are linearly equivalent to a given divisor D, viewed as a projective space P(Γ(O(D))) (the divisor D itself does not have to be effective). A linear system of divisors is a projective subspace of a complete linear system, i.e. a projectivization of a linear subspace in Γ(O(D)) for some D. n Examples of complete linear systems are the space of all hyperplanes in P , the 2 space of all quadric curves on P , etc. An example of a linear system that is not a 2 complete linear system would be all quadric curves on P passing through a given point. ALGEBRAIC GEOMETRY I, FALL 2016. 3 Definition 5. The base locus of a linear system of divisors is the set of points such that all of the divisors in the linear system pass through them. We say that the line bundle O(D) is generated by global sections if for any point x 2 X there is a section s 2 Γ(O(D) such that s(x) 6= 0; equivalently, O(D) is generated by global sections if the base locus of the linear system jDj is empty. A finite collection of sections s0; : : : ; sN of a line bundle L on X such that for N every x 2 X there is i such that si(x) 6= 0 determines a map X ! P . Indeed, let fUig be a covering of X such that L is trivial on every Ui. Each sk is given by a collection of functions fik on Ui. Then to each x 2 Ui we can associate the N point (fi0(x): ::: : fiN (x)) in P . This point is well-defined because all these values cannot be zero simutaneously, and it does not depend on i because for every k the values fik(x) and fjk(x) differ by the same scalar factor gij(x), where gij are N transition functions for L. The space P here is naturally the dual space to the projectivization of the space spanned by si themselves. In the case where D is a divisor such that O(D) is generated by global sections _ and dim Γ(O(D)) < 1, we get a map X ! P(Γ(O(D))) . 1 Example 2. If D is a divisor of degree d on P , then the map defined by jDj is the 1 vd d Veronese embedding P −! P . n Example 3. If X ⊂ P and D is the intersection of X and a hyperplane (equiv- alently, O(D) is the restriction of O(1) to X), then the map defined by jDj is the n embedding X ! P that we started with. π n n Example 4. If X −! P is the blow-up of a point p in P and D is the preimage of n a hyperplane in P that does not contain p, the map defined by jDj is π. 4. Ample and very ample divisors So far we have established that any linear system with empty base locus defines a map from X to a projective space. This map is not always injective (see example of the blow-up above), but we are especially interested in the divisors whose complete linear system does define an injective map. _ Definition 6. A divisor D on X is very ample if the map X ! P(Γ(O(D))) is an embedding. Equivalently, D is very ample if the line bundle O(D) is isomorphic to N N the restriction of the line bundle O(1) from P to X for some embedding X ⊂ P . A divisor D is ample, if mD is very ample for some m > 0. n Example 5. For X = P and a line bundle L'O(k) the following are equivalent: L is ample, L is very ample, L is generated by global sections, k > 0. Example 6. On a smooth projective curve X, a divisor D is ample if and only if its degree is positive. This follows from the Riemann-Roch Theorem. We will not give the proof for the following theorem and proposition.
Recommended publications
  • Bézout's Theorem
    Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces.
    [Show full text]
  • Divisors and the Picard Group
    18.725 Algebraic Geometry I Lecture 15 Lecture 15: Divisors and the Picard Group Suppose X is irreducible. The (Weil) divisor DivW (X) is defined as the formal Z combinations of subvarieties of codimension 1. On the other hand, the Cartier divisor group, DivC (X), consists of subvariety locally given by a nonzero rational function defined up to multiplication by a nonvanishing function. Definition 1. An element of DivC (X) is given by 1. a covering Ui; and 2. Rational functions fi on Ui, fi 6= 0, ∗ such that on Ui \ Uj, fj = 'ijfi, where 'ij 2 O (Ui \ Uj). ∗ ∗ ∗ Another way to express this is that DivC (X) = Γ(K =O ), where K is the sheaf of nonzero rational functions, where O∗ is the sheaf of regular functions. Remark 1. Cartier divisors and invertible sheaves are equivalent (categorically). Given D 2 DivC (X), then we get an invertible subsheaf in K, locally it's fiO, the O-submodule generated by fi by construction it is locally isomorphic to O. Conversely if L ⊆ K is locally isomorphic to O, A system of local generators defines the data as above. Note that the abelian group structure on Γ(K∗=O∗) corresponds to multiplying by the ideals. ∗ ∗ ∗ ∗ Proposition 1. Pic(X) = DivC (X)=Im(K ) = Γ(K =O )= im Γ(K ). Proof. We already have a function DivC (X) = IFI ! Pic (IFI: invertible frational ideals) given by (L ⊆ K) 7! L. This map is an homomorphism. It is also onto: choosing a trivialization LjU = OjU gives an isomorphism ∼ ∗ ∗ L ⊗O⊇L K = K.No w let's look at its kernel: it consits of sections of K =O coming from O ⊆ K, which is just the same as the set of nonzero rational functions, which is im Γ(K∗) = Γ(K∗)=Γ(O∗).
    [Show full text]
  • Prime Divisors in the Rationality Condition for Odd Perfect Numbers
    Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied.
    [Show full text]
  • Arxiv:2006.16553V2 [Math.AG] 26 Jul 2020
    ON ULRICH BUNDLES ON PROJECTIVE BUNDLES ANDREAS HOCHENEGGER Abstract. In this article, the existence of Ulrich bundles on projective bundles P(E) → X is discussed. In the case, that the base variety X is a curve or surface, a close relationship between Ulrich bundles on X and those on P(E) is established for specific polarisations. This yields the existence of Ulrich bundles on a wide range of projective bundles over curves and some surfaces. 1. Introduction Given a smooth projective variety X, polarised by a very ample divisor A, let i: X ֒→ PN be the associated closed embedding. A locally free sheaf F on X is called Ulrich bundle (with respect to A) if and only if it satisfies one of the following conditions: • There is a linear resolution of F: ⊕bc ⊕bc−1 ⊕b0 0 → OPN (−c) → OPN (−c + 1) →···→OPN → i∗F → 0, where c is the codimension of X in PN . • The cohomology H•(X, F(−pA)) vanishes for 1 ≤ p ≤ dim(X). • For any finite linear projection π : X → Pdim(X), the locally free sheaf π∗F splits into a direct sum of OPdim(X) . Actually, by [18], these three conditions are equivalent. One guiding question about Ulrich bundles is whether a given variety admits an Ulrich bundle of low rank. The existence of such a locally free sheaf has surprisingly strong implications about the geometry of the variety, see the excellent surveys [6, 14]. Given a projective bundle π : P(E) → X, this article deals with the ques- tion, what is the relation between Ulrich bundles on the base X and those on P(E)? Note that answers to such a question depend much on the choice arXiv:2006.16553v3 [math.AG] 15 Aug 2021 of a very ample divisor.
    [Show full text]
  • Algebraic Cycles and Fibrations
    Documenta Math. 1521 Algebraic Cycles and Fibrations Charles Vial Received: March 23, 2012 Revised: July 19, 2013 Communicated by Alexander Merkurjev Abstract. Let f : X → B be a projective surjective morphism between quasi-projective varieties. The goal of this paper is the study of the Chow groups of X in terms of the Chow groups of B and of the fibres of f. One of the applications concerns quadric bundles. When X and B are smooth projective and when f is a flat quadric fibration, we show that the Chow motive of X is “built” from the motives of varieties of dimension less than the dimension of B. 2010 Mathematics Subject Classification: 14C15, 14C25, 14C05, 14D99 Keywords and Phrases: Algebraic cycles, Chow groups, quadric bun- dles, motives, Chow–K¨unneth decomposition. Contents 1. Surjective morphisms and motives 1526 2. OntheChowgroupsofthefibres 1530 3. A generalisation of the projective bundle formula 1532 4. On the motive of quadric bundles 1534 5. Onthemotiveofasmoothblow-up 1536 6. Chow groups of varieties fibred by varieties with small Chow groups 1540 7. Applications 1547 References 1551 Documenta Mathematica 18 (2013) 1521–1553 1522 Charles Vial For a scheme X over a field k, CHi(X) denotes the rational Chow group of i- dimensional cycles on X modulo rational equivalence. Throughout, f : X → B will be a projective surjective morphism defined over k from a quasi-projective variety X of dimension dX to an irreducible quasi-projective variety B of di- mension dB, with various extra assumptions which will be explicitly stated. Let h be the class of a hyperplane section in the Picard group of X.
    [Show full text]
  • Projective Varieties and Their Sheaves of Regular Functions
    Math 6130 Notes. Fall 2002. 4. Projective Varieties and their Sheaves of Regular Functions. These are the geometric objects associated to the graded domains: C[x0;x1; :::; xn]=P (for homogeneous primes P ) defining“global” complex algebraic geometry. Definition: (a) A subset V ⊆ CPn is algebraic if there is a homogeneous ideal I ⊂ C[x ;x ; :::; x ] for which V = V (I). 0 1 n p (b) A homogeneous ideal I ⊂ C[x0;x1; :::; xn]isradical if I = I. Proposition 4.1: (a) Every algebraic set V ⊆ CPn is the zero locus: V = fF1(x1; :::; xn)=F2(x1; :::; xn)=::: = Fm(x1; :::; xn)=0g of a finite set of homogeneous polynomials F1; :::; Fm 2 C[x0;x1; :::; xn]. (b) The maps V 7! I(V ) and I 7! V (I) ⊂ CPn give a bijection: n fnonempty alg sets V ⊆ CP g$fhomog radical ideals I ⊂hx0; :::; xnig (c) A topology on CPn, called the Zariski topology, results when: U ⊆ CPn is open , Z := CPn − U is an algebraic set (or empty) Proof: Note the similarity with Proposition 3.1. The proof is the same, except that Exercise 2.5 should be used in place of Corollary 1.4. Remark: As in x3, the bijection of (b) is \inclusion reversing," i.e. V1 ⊆ V2 , I(V1) ⊇ I(V2) and irreducibility and the features of the Zariski topology are the same. Example: A projective hypersurface is the zero locus: n n V (F )=f(a0 : a1 : ::: : an) 2 CP j F (a0 : a1 : ::: : an)=0}⊂CP whose irreducible components, as in x3, are obtained by factoring F , and the basic open sets of CPn are, as in x3, the complements of hypersurfaces.
    [Show full text]
  • SMOOTH PROJECTIVE SURFACES 1. Surfaces Definition 1.1. Let K Be
    SMOOTH PROJECTIVE SURFACES SCOTT NOLLET Abstract. This talk will discuss some basics about smooth projective surfaces, leading to an open question. 1. Surfaces Definition 1.1. Let k be an algebraically closed field. A surface is a two dimensional n nonsingular closed subvariety S ⊂ Pk . Example 1.2. A few examples. (a) The simplest example is S = P2. (b) The nonsingular quadric surfaces Q ⊂ P3 with equation xw − yz = 0 has Picard group Z ⊕ Z generated by two opposite rulings. (c) The zero set of a general homogeneous polynomial f 2 k[x; y; z; w] of degree d gives rise to a smooth surface of degree d in P3. (d) If C and D are any two nonsingular complete curves, then each is projective (see previous lecture's notes), and composing with the Segre embedding we obtain a closed embedding S = C × D,! Pn. 1.1. Intersection theory. Given a surface S, let DivS be the group of Weil divisors. There is a unique pairing DivS × DivS ! Z denoted (C; D) 7! C · D such that (a) The pairing is bilinear. (b) The pairing is symmetric. (c) If C; D ⊂ S are smooth curves meeting transversely, then C · D = #(C \ D). (d) If C1 ∼ C2 (they are linearly equivalent), then C1 · D = C2 · D. Remark 1.3. When k = C one can describe the intersection pairing with topology. The divisor C gives rise to the line bundle L = OS(C) which has a first Chern class 2 c1(L) 2 H (S; Z) and similarly D gives rise to a class D 2 H2(S; Z) by triangulating the 0 ∼ components of D as real surfaces.
    [Show full text]
  • Unit 6: Multiply & Divide Fractions Key Words to Know
    Unit 6: Multiply & Divide Fractions Learning Targets: LT 1: Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b) LT 2: Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g. by using visual fraction models or equations to represent the problem. LT 3: Apply and extend previous understanding of multiplication to multiply a fraction or whole number by a fraction. LT 4: Interpret the product (a/b) q ÷ b. LT 5: Use a visual fraction model. Conversation Starters: Key Words § How are fractions like division problems? (for to Know example: If 9 people want to shar a 50-lb *Fraction sack of rice equally by *Numerator weight, how many pounds *Denominator of rice should each *Mixed number *Improper fraction person get?) *Product § 3 pizzas at 10 slices each *Equation need to be divided by 14 *Division friends. How many pieces would each friend receive? § How can a model help us make sense of a problem? Fractions as Division Students will interpret a fraction as division of the numerator by the { denominator. } What does a fraction as division look like? How can I support this Important Steps strategy at home? - Frac&ons are another way to Practice show division. https://www.khanacademy.org/math/cc- - Fractions are equal size pieces of a fifth-grade-math/cc-5th-fractions-topic/ whole. tcc-5th-fractions-as-division/v/fractions- - The numerator becomes the as-division dividend and the denominator becomes the divisor. Quotient as a Fraction Students will solve real world problems by dividing whole numbers that have a quotient resulting in a fraction.
    [Show full text]
  • Arxiv:1412.5226V1 [Math.NT] 16 Dec 2014 Hoe 11
    q-PSEUDOPRIMALITY: A NATURAL GENERALIZATION OF STRONG PSEUDOPRIMALITY JOHN H. CASTILLO, GILBERTO GARC´IA-PULGAR´IN, AND JUAN MIGUEL VELASQUEZ-SOTO´ Abstract. In this work we present a natural generalization of strong pseudoprime to base b, which we have called q-pseudoprime to base b. It allows us to present another way to define a Midy’s number to base b (overpseudoprime to base b). Besides, we count the bases b such that N is a q-probable prime base b and those ones such that N is a Midy’s number to base b. Furthemore, we prove that there is not a concept analogous to Carmichael numbers to q-probable prime to base b as with the concept of strong pseudoprimes to base b. 1. Introduction Recently, Grau et al. [7] gave a generalization of Pocklignton’s Theorem (also known as Proth’s Theorem) and Miller-Rabin primality test, it takes as reference some works of Berrizbeitia, [1, 2], where it is presented an extension to the concept of strong pseudoprime, called ω-primes. As Grau et al. said it is right, but its application is not too good because it is needed m-th primitive roots of unity, see [7, 12]. In [7], it is defined when an integer N is a p-strong probable prime base a, for p a prime divisor of N −1 and gcd(a, N) = 1. In a reading of that paper, we discovered that if a number N is a p-strong probable prime to base 2 for each p prime divisor of N − 1, it is actually a Midy’s number or a overpseu- doprime number to base 2.
    [Show full text]
  • MORE-ON-SEMIPRIMES.Pdf
    MORE ON FACTORING SEMI-PRIMES In the last few years I have spent some time examining prime numbers and their properties. Among some of my new results are the a Prime Number Function F(N) and the concept of Number Fraction f(N). We can define these quantities as – (N ) N 1 f (N 2 ) 1 f (N ) and F(N ) N Nf (N 3 ) Here (N) is the divisor function of number theory. The interesting property of these functions is that when N is a prime then f(N)=0 and F(N)=1. For composite numbers f(N) is a positive fraction and F(N) will be less than one. One of the problems of major practical interest in number theory is how to rapidly factor large semi-primes N=pq, where p and q are prime numbers. This interest stems from the fact that encoded messages using public keys are vulnerable to decoding by adversaries if they can factor large semi-primes when they have a digit length of the order of 100. We want here to show how one might attempt to factor such large primes by a brute force approach using the above f(N) function. Our starting point is to consider a large semi-prime given by- N=pq with p<sqrt(N)<q By the basic definition of f(N) we get- p q p2 N f (N ) f ( pq) N pN This may be written as a quadratic in p which reads- p2 pNf (N ) N 0 It has the solution- p K K 2 N , with p N Here K=Nf(N)/2={(N)-N-1}/2.
    [Show full text]
  • The Riemann-Roch Theorem
    The Riemann-Roch Theorem by Carmen Anthony Bruni A project presented to the University of Waterloo in fulfillment of the project requirement for the degree of Master of Mathematics in Pure Mathematics Waterloo, Ontario, Canada, 2010 c Carmen Anthony Bruni 2010 Declaration I hereby declare that I am the sole author of this project. This is a true copy of the project, including any required final revisions, as accepted by my examiners. I understand that my project may be made electronically available to the public. ii Abstract In this paper, I present varied topics in algebraic geometry with a motivation towards the Riemann-Roch theorem. I start by introducing basic notions in algebraic geometry. Then I proceed to the topic of divisors, specifically Weil divisors, Cartier divisors and examples of both. Linear systems which are also associated with divisors are introduced in the next chapter. These systems are the primary motivation for the Riemann-Roch theorem. Next, I introduce sheaves, a mathematical object that encompasses a lot of the useful features of the ring of regular functions and generalizes it. Cohomology plays a crucial role in the final steps before the Riemann-Roch theorem which encompasses all the previously developed tools. I then finish by describing some of the applications of the Riemann-Roch theorem to other problems in algebraic geometry. iii Acknowledgements I would like to thank all the people who made this project possible. I would like to thank Professor David McKinnon for his support and help to make this project a reality. I would also like to thank all my friends who offered a hand with the creation of this project.
    [Show full text]
  • Arxiv:1307.5568V2 [Math.AG]
    PARTIAL POSITIVITY: GEOMETRY AND COHOMOLOGY OF q-AMPLE LINE BUNDLES DANIEL GREB AND ALEX KURONYA¨ To Rob Lazarsfeld on the occasion of his 60th birthday Abstract. We give an overview of partial positivity conditions for line bundles, mostly from a cohomological point of view. Although the current work is to a large extent of expository nature, we present some minor improvements over the existing literature and a new result: a Kodaira-type vanishing theorem for effective q-ample Du Bois divisors and log canonical pairs. Contents 1. Introduction 1 2. Overview of the theory of q-ample line bundles 4 2.1. Vanishing of cohomology groups and partial ampleness 4 2.2. Basic properties of q-ampleness 7 2.3. Sommese’s geometric q-ampleness 15 2.4. Ample subschemes, and a Lefschetz hyperplane theorem for q-ample divisors 17 3. q-Kodaira vanishing for Du Bois divisors and log canonical pairs 19 References 23 1. Introduction Ampleness is one of the central notions of algebraic geometry, possessing the extremely useful feature that it has geometric, numerical, and cohomological characterizations. Here we will concentrate on its cohomological side. The fundamental result in this direction is the theorem of Cartan–Serre–Grothendieck (see [Laz04, Theorem 1.2.6]): for a complete arXiv:1307.5568v2 [math.AG] 23 Jan 2014 projective scheme X, and a line bundle L on X, the following are equivalent to L being ample: ⊗m (1) There exists a positive integer m0 = m0(X, L) such that L is very ample for all m ≥ m0. (2) For every coherent sheaf F on X, there exists a positive integer m1 = m1(X, F, L) ⊗m for which F ⊗ L is globally generated for all m ≥ m1.
    [Show full text]