The Historical Development of Algebraic Geometry∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bézout's Theorem
Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces. -
LOOKING BACKWARD: from EULER to RIEMANN 11 at the Age of 24
LOOKING BACKWARD: FROM EULER TO RIEMANN ATHANASE PAPADOPOULOS Il est des hommes auxquels on ne doit pas adresser d’´eloges, si l’on ne suppose pas qu’ils ont le goˆut assez peu d´elicat pour goˆuter les louanges qui viennent d’en bas. (Jules Tannery, [241] p. 102) Abstract. We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann’s predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017. AMS Mathematics Subject Classification: 01-02, 01A55, 01A67, 26A42, 30- 03, 33C05, 00A30. Keywords: Bernhard Riemann, function of a complex variable, space, Rie- mannian geometry, trigonometric series, zeta function, differential geometry, elliptic integral, elliptic function, Abelian integral, Abelian function, hy- pergeometric function, topology, Riemann surface, Leonhard Euler, space, integration. Contents 1. Introduction 2 2. Functions 10 3. Elliptic integrals 21 arXiv:1710.03982v1 [math.HO] 11 Oct 2017 4. Abelian functions 30 5. Hypergeometric series 32 6. The zeta function 34 7. On space 41 8. Topology 47 9. Differential geometry 63 10. Trigonometric series 69 11. Integration 79 12. Conclusion 81 References 85 Date: October 12, 2017. -
Dynamical Systems/Syst`Emes Dynamiques SIMPLE
Dynamical systems/Systemes` dynamiques SIMPLE EXPONENTIAL ESTIMATE FOR THE NUMBER OF REAL ZEROS OF COMPLETE ABELIAN INTEGRALS Dmitri Novikov, Sergeı˘ Yakovenko The Weizmann Institute of Science (Rehovot, Israel) Abstract. We show that for a generic real polynomial H = H(x, y) and an arbitrary real differential 1-form ω = P (x, y) dx + Q(x, y) dy with polynomial coefficients of degree 6 d, the number of ovals of the foliation H = const, which yield the zero value of the complete H Abelian integral I(t) = H=t ω, grows at most as exp OH (d) as d → ∞, where OH (d) depends only on H. This result essentially improves the previous double exponential estimate obtained in [1] for the number of zero ovals on a bounded distance from singular level curves of H. La borne simplement exponentielle pour le nombre de zeros´ reels´ isoles´ des integrales completes` abeliennes´ R´esum´e. Soit H = H(x, y) un polynˆome r´eel de deux variables et ω = P (x, y) dx + Q(x, y) dy une forme diff´erentielle quelconque avec des coefficients polynomiaux r´eels de degr´e d. Nous montrons que le nombre des ovales (c’est-a-dire les composantes compactes connexes) des courbes de niveau H = const, telles que l’int´egrale de la forme s’annule, est au plus exp OH (d) quand d → ∞, o`u OH (d) ne d´epend que du polynˆome H. Ce th´eor`emeam´eliore de mani`ere essentielle la borne doublement exponentielle obtenue dans [1]. Nous ´etablissons aussi les bornes sup´erieures exponentielles similaires pour le nom- bre de z´eros isol´espour les enveloppes polynomiales des ´equations diff´erentielles ordinaires lin´eaires irr´eductibles ou presque irr´eductibles. -
Abelian Integrals and the Genesis of Abel's Greatest Discovery
Abelian integrals and the genesis of Abel's greatest discovery Christian F. Skau Department of Mathematical Sciences, Norwegian University of Science and Technology March 20, 2020 Draft P(x) R(x) = Q(x) 3x 7 − 18x 6 + 46x 5 − 84x 4 + 127x 3 − 122x 2 + 84x − 56 = (x − 2)3(x + i)(x − i) 4x 4 − 12x 3 + 7x 2 − x + 1 = 3x 2 + 7 + (x − 2)3(x + i)(x − i) (−1) 3 4 i=2 (−i=2) = 3x 2 + 7 + + + + + (x − 2)3 (x − 2)2 x − 2 x + i x − i Draft Z 1=2 −3 R(x) dx = x 3 + 7x + + + 4 log (x − 2) (x − 2)2 x − 2 i −i + log (x + i) + log (x − i) 2 2 i −i = Re(x) + 4 log (x − 2) + log (x + i) + log (x − i) 2 2 The integral of a rational function R(x) is a rational function Re(x) plus a sum of logarithms of the form log(x + a), a 2 C, multiplied with constants. Draft eix − e−ix 1 p sin x = arcsin x = log ix + 1 − x 2 2i i Trigonometric functions and the inverse arcus-functions can be expressed by (complex) exponential and logarithmic functions. Draft A rational function R(x; y) of x and y is of the form P(x; y) R(x; y) = ; Q(x; y) where P and Q are polynomials in x and y. So, P i j aij x y R(x; y) = P k l bkl x y Similarly we define a rational function of x1; x2;:::; xn. -
INTERSECTION NUMBERS, TRANSFERS, and GROUP ACTIONS by Daniel H. Gottlieb and Murad Ozaydin Purdue University University of Oklah
INTERSECTION NUMBERS, TRANSFERS, AND GROUP ACTIONS by Daniel H. Gottlieb and Murad Ozaydin Purdue University University of Oklahoma Abstract We introduce a new definition of intersection number by means of umkehr maps. This definition agrees with an obvious definition up to sign. It allows us to extend the concept parametrically to fibre bundles. For fibre bundles we can then define intersection number transfers. Fibre bundles arise naturally in equivariant situations, so the trace of the action divides intersection numbers. We apply this to equivariant projective varieties and other examples. Also we study actions of non-connected groups and their traces. AMS subject classification 1991: Primary: 55R12, 57S99, 55M25 Secondary: 14L30 Keywords: Poincare Duality, trace of action, Sylow subgroups, Euler class, projective variety. 1 1. Introduction When two manifolds with complementary dimensions inside a third manifold intersect transversally, their intersection number is defined. This classical topological invariant has played an important role in topology and its applications. In this paper we introduce a new definition of intersection number. The definition naturally extends to the case of parametrized manifolds over a base B; that is to fibre bundles over B . Then we can define transfers for the fibre bundles related to the intersection number. This is our main objective , and it is done in Theorem 6. The method of producing transfers depends upon the Key Lemma which we prove here. Special cases of this lemma played similar roles in the establishment of the Euler–Poincare transfer, the Lefschetz number transfer, and the Nakaoka transfer. Two other features of our definition are: 1) We replace the idea of submanifolds with the idea of maps from manifolds, and in effect we are defining the intersection numbers of the maps; 2) We are not restricted to only two maps, we can define the intersection number for several maps, or submanifolds. -
Positivity in Algebraic Geometry I
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 48 Positivity in Algebraic Geometry I Classical Setting: Line Bundles and Linear Series Bearbeitet von R.K. Lazarsfeld 1. Auflage 2004. Buch. xviii, 387 S. Hardcover ISBN 978 3 540 22533 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1650 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Introduction to Part One Linear series have long stood at the center of algebraic geometry. Systems of divisors were employed classically to study and define invariants of pro- jective varieties, and it was recognized that varieties share many properties with their hyperplane sections. The classical picture was greatly clarified by the revolutionary new ideas that entered the field starting in the 1950s. To begin with, Serre’s great paper [530], along with the work of Kodaira (e.g. [353]), brought into focus the importance of amplitude for line bundles. By the mid 1960s a very beautiful theory was in place, showing that one could recognize positivity geometrically, cohomologically, or numerically. During the same years, Zariski and others began to investigate the more complicated be- havior of linear series defined by line bundles that may not be ample. -
Arxiv:1710.06183V2 [Math.AG]
ALGEBRAIC INTEGRABILITY OF FOLIATIONS WITH NUMERICALLY TRIVIAL CANONICAL BUNDLE ANDREAS HÖRING AND THOMAS PETERNELL Abstract. Given a reflexive sheaf on a mildly singular projective variety, we prove a flatness criterion under certain stability conditions. This implies the algebraicity of leaves for sufficiently stable foliations with numerically trivial canonical bundle such that the second Chern class does not vanish. Combined with the recent work of Druel and Greb-Guenancia-Kebekus this establishes the Beauville-Bogomolov decomposition for minimal models with trivial canon- ical class. 1. introduction 1.A. Main result. Let X be a normal complex projective variety that is smooth in codimension two, and let E be a reflexive sheaf on X. If E is slope-stable with respect to some ample divisor H of slope µH (E)=0, then a famous result of Mehta-Ramanathan [MR84] says that the restriction EC to a general complete intersection C of sufficiently ample divisors is stable and nef. On the other hand the variety X contains many dominating families of irreducible curves to which Mehta-Ramanathan does not apply; therefore one expects that, apart from very special situations, EC will not be nef for many curves C. If E is locally free, denote by π : P(E) → X the projectivisation of E and by ζ := c1(OP(E)(1)) the tautological class on P(E). The nefness of EC then translates into the nefness of the restriction of ζ to P(EC). Thus, the stability of E implies some positivity of the tautological class ζ. On the other hand, the non-nefness of EC on many curves can be rephrased by saying that the tautological class ζ should not be pseudoeffective. -
Intersection Theory
APPENDIX A Intersection Theory In this appendix we will outline the generalization of intersection theory and the Riemann-Roch theorem to nonsingular projective varieties of any dimension. To motivate the discussion, let us look at the case of curves and surfaces, and then see what needs to be generalized. For a divisor D on a curve X, leaving out the contribution of Serre duality, we can write the Riemann-Roch theorem (IV, 1.3) as x(.!Z'(D)) = deg D + 1 - g, where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write the Riemann-Roch theorem (V, 1.6) as 1 x(!l'(D)) = 2 D.(D - K) + 1 + Pa· In each case, on the left-hand side we have something involving cohomol ogy groups of the sheaf !l'(D), while on the right-hand side we have some numerical data involving the divisor D, the canonical divisor K, and some invariants of the variety X. Of course the ultimate aim of a Riemann-Roch type theorem is to compute the dimension of the linear system IDI or of lnDI for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems of Serre (III, 5.2) or Kodaira (III, 7.15). We will now generalize these results so as to give an expression for x(!l'(D)) on a nonsingular projective variety X of any dimension. And while we are at it, with no extra effort we get a formula for x(t&"), where @" is any coherent locally free sheaf. -
Half-Order Differentials on Riemann Surfaces
HALF-ORDER DIFFERENTIALS ON RIEMANN SURFACES BY N. S. HAWLEY and M. SCHIFFER Stanford University, Stanford, Ca//f., U.S.A. (1) Dedicated to Professor R. Ncvanllnna on the occasion of his 70th birthday Introduction In this paper we wish to exhibit the utility of differentials of half integer order in the theory of Riemann surfaces. We have found that differentials of order and order - have been involved implicitly in numerous earlier investigations, e.g., Poincar~'s work on Fuchsian functions and differential equations on Riemann surfaces. But the explicit recognition of these differentials as entities to be studied for their own worth seems to be new. We believe that such a study will have a considerable unifying effect on various aspects of the theory of Riemarm surfaces, and we wish to show, by means of examples and applications, how some parts of this theory are clarified and brought together through investigating these half-order differentials. A strong underlying reason for dealing with half-order differentials comes from the general technique of contour integration; already introduced by Riemann. In the standard theory one integrates a differential (linear) against an Abelian integral (additive function) and uses period relations and the residue theorem to arrive at identities. As we shall demonstrate, one can do an analogous thing by multiplying two differentials of order and using the same techniques of contour integration. As often happens, when one discovers a new (at least to him) entity and starts looking around to see where it occurs naturally, one is stunned to find so many of its hiding places --and all so near the surface. -
Abelian Integrals Related to Morse Polynomials and Perturbations of Plane Hamiltonian Vector fields Annales De L’Institut Fourier, Tome 49, No 2 (1999), P
ANNALES DE L’INSTITUT FOURIER LUBOMIR GAVRILOV Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields Annales de l’institut Fourier, tome 49, no 2 (1999), p. 611-652 <http://www.numdam.org/item?id=AIF_1999__49_2_611_0> © Annales de l’institut Fourier, 1999, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 49, 2 (1999), 611-652 ABELIAN INTEGRALS RELATED TO MORSE POLYNOMIALS AND PERTURBATIONS OF PLANE HAMILTONIAN VECTOR FIELDS by Lubomir GAVRILOV Contents. 1. Introduction 2. Modules of polynomial differential forms 3. Milnor bundles 4. Abelian integrals related to Morse polynomials 5. Polynomial perturbations of conservative vector fields 6. Abelian integrals which arise in polynomial perturbations of quadratic Hamil- tonian vector fields with a center 6.1. Generic quadratic Hamiltonian vector fields with a center 6.2. Reversible quadratic Hamiltonian vector fields with a center 7. Polynomial deformations of a quadratic Hamiltonian vector field and non- oscillation of Abelian integrals Bibliography 1. Introduction. Let Y -H 9 H 9 ^-^Qx'^ay be a polynomial Hamiltonian vector field. Consider a small polynomial deformation X, = XH + eY + o(e) Keywords: Abelian integrals - Limit cycles. -
£June, REPORT on CURVES TRACED on ALGEBRAIC
242 S. LEFSCHETZ £June, REPORT ON CURVES TRACED ON ALGEBRAIC SURFACES* BY S. LEFSCHETZ 1. Introduction. An extensive literature to which we pro pose to devote this report has grown up around the following question and the related transcendental theory. Given an algebraic surface, what can be said in regard to the distribution of its continuous systems of algebraic curves'! f For various reasons we have chosen in place of the chronological presenta tion one in which function theory and analysis situs play the predominant part, and that has been made possible by two papers of Poincaré (s, I, II). We must however recall at the outset that the general answer to the above question had been given earlier by Severi (u, V, VI), his methods being largely of an algebro-geometric nature (see § 14), except for the use of a very important transcendental theorem due to Picard (g, II, p. 241). In favor of the methods which domi nate this report, it must be stated that they alone made pos sible the solution of some important problems, and further more have notably enriched the theory. A question similar to the above may be asked concerning algebraic varieties, but in order to remain within proper bounds, we have deemed it best to omit them altogether. 2. Connectivity Indices. We shall have occasion to con sider throughout a basic n-dimensional manifold Wn, % usually an algebraic curve (n = 2), or a surface (n = 4). A sum of closed, fc-dimensional, two-sided, analytic manifolds in Wn is called a k-cycle of the manifold, and shall be denoted by IV If it bounds, it is a zero-cycle; the fact being expressed by a homology: Tk ~ 0 mod Wn. -
Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 16 (2020), 016, 12 pages Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space Kiumars KAVEH y and Askold G. KHOVANSKII zx y Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA E-mail: [email protected] z Department of Mathematics, University of Toronto, Toronto, Canada E-mail: [email protected] x Moscow Independent University, Moscow, Russia Received November 04, 2019, in final form March 14, 2020; Published online March 20, 2020 https://doi.org/10.3842/SIGMA.2020.016 Abstract. We prove a version of the BKK theorem for the ring of conditions of a spherical homogeneous space G=H. We also introduce the notion of ring of complete intersections, firstly for a spherical homogeneous space and secondly for an arbitrary variety. Similarly to the ring of conditions of the torus, the ring of complete intersections of G=H admits a description in terms of volumes of polytopes. Key words: BKK theorem; spherical variety; Newton{Okounkov polytope; ring of conditions 2020 Mathematics Subject Classification: 14M27; 14M25; 14M10 1 Introduction ∗ n Let Γ1;:::; Γn be a set of n hypersurfaces in the n-dimensional complex torus (C ) defined by equations P1 = 0;:::;Pn = 0 where P1;:::;Pn are generic Laurent polynomials with given Newton polyhedra ∆1;:::; ∆n. The Bernstein{Koushnirenko{Khovanskii theorem (or BKK the- orem, see [2, 16, 18]) claims that the intersection number of the hypersurfaces Γ1;:::; Γn is equal to the mixed volume of ∆1;:::; ∆n multiplied by n!. In particular when ∆1 = ··· = ∆n = ∆ this theorem can be regarded as giving a formula for the degree of an ample divisor class in a projective toric variety.