Algebraic Cycles and Fibrations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Divisors and the Picard Group
18.725 Algebraic Geometry I Lecture 15 Lecture 15: Divisors and the Picard Group Suppose X is irreducible. The (Weil) divisor DivW (X) is defined as the formal Z combinations of subvarieties of codimension 1. On the other hand, the Cartier divisor group, DivC (X), consists of subvariety locally given by a nonzero rational function defined up to multiplication by a nonvanishing function. Definition 1. An element of DivC (X) is given by 1. a covering Ui; and 2. Rational functions fi on Ui, fi 6= 0, ∗ such that on Ui \ Uj, fj = 'ijfi, where 'ij 2 O (Ui \ Uj). ∗ ∗ ∗ Another way to express this is that DivC (X) = Γ(K =O ), where K is the sheaf of nonzero rational functions, where O∗ is the sheaf of regular functions. Remark 1. Cartier divisors and invertible sheaves are equivalent (categorically). Given D 2 DivC (X), then we get an invertible subsheaf in K, locally it's fiO, the O-submodule generated by fi by construction it is locally isomorphic to O. Conversely if L ⊆ K is locally isomorphic to O, A system of local generators defines the data as above. Note that the abelian group structure on Γ(K∗=O∗) corresponds to multiplying by the ideals. ∗ ∗ ∗ ∗ Proposition 1. Pic(X) = DivC (X)=Im(K ) = Γ(K =O )= im Γ(K ). Proof. We already have a function DivC (X) = IFI ! Pic (IFI: invertible frational ideals) given by (L ⊆ K) 7! L. This map is an homomorphism. It is also onto: choosing a trivialization LjU = OjU gives an isomorphism ∼ ∗ ∗ L ⊗O⊇L K = K.No w let's look at its kernel: it consits of sections of K =O coming from O ⊆ K, which is just the same as the set of nonzero rational functions, which is im Γ(K∗) = Γ(K∗)=Γ(O∗). -
Arxiv:2006.16553V2 [Math.AG] 26 Jul 2020
ON ULRICH BUNDLES ON PROJECTIVE BUNDLES ANDREAS HOCHENEGGER Abstract. In this article, the existence of Ulrich bundles on projective bundles P(E) → X is discussed. In the case, that the base variety X is a curve or surface, a close relationship between Ulrich bundles on X and those on P(E) is established for specific polarisations. This yields the existence of Ulrich bundles on a wide range of projective bundles over curves and some surfaces. 1. Introduction Given a smooth projective variety X, polarised by a very ample divisor A, let i: X ֒→ PN be the associated closed embedding. A locally free sheaf F on X is called Ulrich bundle (with respect to A) if and only if it satisfies one of the following conditions: • There is a linear resolution of F: ⊕bc ⊕bc−1 ⊕b0 0 → OPN (−c) → OPN (−c + 1) →···→OPN → i∗F → 0, where c is the codimension of X in PN . • The cohomology H•(X, F(−pA)) vanishes for 1 ≤ p ≤ dim(X). • For any finite linear projection π : X → Pdim(X), the locally free sheaf π∗F splits into a direct sum of OPdim(X) . Actually, by [18], these three conditions are equivalent. One guiding question about Ulrich bundles is whether a given variety admits an Ulrich bundle of low rank. The existence of such a locally free sheaf has surprisingly strong implications about the geometry of the variety, see the excellent surveys [6, 14]. Given a projective bundle π : P(E) → X, this article deals with the ques- tion, what is the relation between Ulrich bundles on the base X and those on P(E)? Note that answers to such a question depend much on the choice arXiv:2006.16553v3 [math.AG] 15 Aug 2021 of a very ample divisor. -
The Cones of Effective Cycles on Projective Bundles Over Curves
The cones of effective cycles on projective bundles over curves Mihai Fulger 1 Introduction The study of the cones of curves or divisors on complete varieties is a classical subject in Algebraic Geometry (cf. [10], [9], [4]) and it still is an active research topic (cf. [1], [11] or [2]). However, little is known if we pass to higher (co)dimension. In this paper we study this problem in the case of projective bundles over curves and describe the cones of effective cycles in terms of the numerical data appearing in a Harder–Narasimhan filtration. This generalizes to higher codimension results of Miyaoka and others ([15], [3]) for the case of divisors. An application to projective bundles over a smooth base of arbitrary dimension is also given. Given a smooth complex projective variety X of dimension n, consider the real vector spaces The real span of {[Y ] : Y is a subvariety of X of codimension k} N k(X) := . numerical equivalence of cycles We also denote it by Nn−k(X) when we work with dimension instead of codimension. The direct sum n k N(X) := M N (X) k=0 is a graded R-algebra with multiplication induced by the intersection form. i Define the cones Pseff (X) = Pseffn−i(X) as the closures of the cones of effective cycles in i N (X). The elements of Pseffi(X) are usually called pseudoeffective. Dually, we have the nef cones k k Nef (X) := {α ∈ Pseff (X)| α · β ≥ 0 ∀β ∈ Pseffk(X)}. Now let C be a smooth complex projective curve and let E be a locally free sheaf on C of rank n, deg E degree d and slope µ(E) := rankE , or µ for short. -
SMOOTH PROJECTIVE SURFACES 1. Surfaces Definition 1.1. Let K Be
SMOOTH PROJECTIVE SURFACES SCOTT NOLLET Abstract. This talk will discuss some basics about smooth projective surfaces, leading to an open question. 1. Surfaces Definition 1.1. Let k be an algebraically closed field. A surface is a two dimensional n nonsingular closed subvariety S ⊂ Pk . Example 1.2. A few examples. (a) The simplest example is S = P2. (b) The nonsingular quadric surfaces Q ⊂ P3 with equation xw − yz = 0 has Picard group Z ⊕ Z generated by two opposite rulings. (c) The zero set of a general homogeneous polynomial f 2 k[x; y; z; w] of degree d gives rise to a smooth surface of degree d in P3. (d) If C and D are any two nonsingular complete curves, then each is projective (see previous lecture's notes), and composing with the Segre embedding we obtain a closed embedding S = C × D,! Pn. 1.1. Intersection theory. Given a surface S, let DivS be the group of Weil divisors. There is a unique pairing DivS × DivS ! Z denoted (C; D) 7! C · D such that (a) The pairing is bilinear. (b) The pairing is symmetric. (c) If C; D ⊂ S are smooth curves meeting transversely, then C · D = #(C \ D). (d) If C1 ∼ C2 (they are linearly equivalent), then C1 · D = C2 · D. Remark 1.3. When k = C one can describe the intersection pairing with topology. The divisor C gives rise to the line bundle L = OS(C) which has a first Chern class 2 c1(L) 2 H (S; Z) and similarly D gives rise to a class D 2 H2(S; Z) by triangulating the 0 ∼ components of D as real surfaces. -
Stability and Extremal Metrics on Toric and Projective Bundles
STABILITY AND EXTREMAL METRICS ON TORIC AND PROJECTIVE BUNDLES VESTISLAV APOSTOLOV, DAVID M. J. CALDERBANK, PAUL GAUDUCHON, AND CHRISTINA W. TØNNESEN-FRIEDMAN Abstract. This survey on extremal K¨ahlermetrics is a synthesis of several recent works—of G. Sz´ekelyhidi [39, 40], of Ross–Thomas [35, 36], and of our- selves [5, 6, 7]—but embedded in a new framework for studying extremal K¨ahler metrics on toric bundles following Donaldson [13] and Szekelyhidi [40]. These works build on ideas Donaldson, Tian, and many others concerning stability conditions for the existence of extremal K¨ahler metrics. In particular, we study notions of relative slope stability and relative uniform stability and present ex- amples which suggest that these notions are closely related to the existence of extremal K¨ahlermetrics. Contents 1. K-stability for extremal K¨ahlermetrics 2 1.1. Introduction to stability 2 1.2. Finite dimensional motivation 2 1.3. The infinite dimensional analogue 3 1.4. Test configurations 3 1.5. The modified Futaki invariant 4 1.6. K-stability 5 2. Rigid toric bundles with semisimple base 6 2.1. The rigid Ansatz 6 2.2. The semisimple case 8 2.3. The isometry Lie algebra in the semisimple case 8 2.4. The extremal vector field 9 2.5. K-energy and the Futaki invariant 9 2.6. Stability under small perturbations 10 2.7. Existence? 14 2.8. The homogeneous formalism and projective invariance 15 2.9. Examples 16 3. K-stability for rigid toric bundles 19 3.1. Toric test configurations 19 3.2. -
Arxiv:1409.5404V2 [Math.AG]
MOTIVIC CLASSES OF SOME CLASSIFYING STACKS DANIEL BERGH Abstract. We prove that the class of the classifying stack B PGLn is the multiplicative inverse of the class of the projective linear group PGLn in the Grothendieck ring of stacks K0(Stackk) for n = 2 and n = 3 under mild conditions on the base field k. In particular, although it is known that the multiplicativity relation {T } = {S} · {PGLn} does not hold for all PGLn- torsors T → S, it holds for the universal PGLn-torsors for said n. Introduction Recall that the Grothendieck ring of varieties over a field k is defined as the free group on isomorphism classes {X} of varieties X subject to the scissors relations {X} = {X \ Z} + {Z} for closed subvarieties Z ⊂ X. We denote this ring by K0(Vark). Its multiplicative structure is induced by {X}·{Y } = {X × Y } for varieties X and Y . A fundamental question regarding K0(Vark) is for which groups G the multi- plicativity relation {T } = {G}·{S} holds for all G-torsors T → S. If G is special, in the sense of Serre and Grothendieck, this relation always holds. However, it was shown by Ekedahl that if G is a non-special connected linear group, then there exists a G-torsor T → S for which {T } 6= {G}·{S} in the ring K0(VarC) and its completion K0(VarC) [12, Theorem 2.2]. One can also construct a Grothendieck ring K (Stack ) for the larger 2-category b 0 k of algebraic stacks. We will recall its precise definition in Section 2. -
Nef Cones of Some Quot Schemes on a Smooth Projective Curve
NEF CONES OF SOME QUOT SCHEMES ON A SMOOTH PROJECTIVE CURVE CHANDRANANDAN GANGOPADHYAY AND RONNIE SEBASTIAN Abstract. Let C be a smooth projective curve over C. Let n; d ≥ 1. Let Q be the Quot scheme parameterizing torsion quotients of the vector n bundle OC of degree d. In this article we study the nef cone of Q. We give a complete description of the nef cone in the case of elliptic curves. We compute it in the case when d = 2 and C very general, in terms of the nef cone of the second symmetric product of C. In the case when n ≥ d and C very general, we give upper and lower bounds for the Nef cone. In general, we give a necessary and sufficient criterion for a divisor on Q to be nef. 1. Introduction Throughout this article we assume that the base field to be C. Let X 1 be a smooth projective variety and let N (X) be the R-vector space of R- divisors modulo numerical equivalence. It is known that N 1(X) is a finite dimensional vector space. The closed cone Nef(X) ⊂ N 1(X) is the cone of all R-divisors whose intersection product with any curve in X is non-negative. It has been an interesting problem to compute Nef(X). For example, when X = P(E) where E is a semistable vector bundle over a smooth projective curve, Miyaoka computed the Nef(X) in [Miy87]. In [BP14], Nef(X) was computed in the case when X is the Grassmann bundle associated to a vector bundle E on a smooth projective curve C, in terms of the Harder Narasimhan filtration of E. -
'Cycle Groups for Artin Stacks'
Cycle groups for Artin stacks Andrew Kresch1 28 October 1998 Contents 1 Introduction 2 2 Definition and first properties 3 2.1 Thehomologyfunctor .......................... 3 2.2 BasicoperationsonChowgroups . 8 2.3 Results on sheaves and vector bundles . 10 2.4 Theexcisionsequence .......................... 11 3 Equivalence on bundles 12 3.1 Trivialbundles .............................. 12 3.2 ThetopChernclassoperation . 14 3.3 Collapsing cycles to the zero section . ... 15 3.4 Intersecting cycles with the zero section . ..... 17 3.5 Affinebundles............................... 19 3.6 Segre and Chern classes and the projective bundle theorem...... 20 4 Elementary intersection theory 22 4.1 Fulton-MacPherson construction for local immersions . ........ 22 arXiv:math/9810166v1 [math.AG] 28 Oct 1998 4.2 Exteriorproduct ............................. 24 4.3 Intersections on Deligne-Mumford stacks . .... 24 4.4 Boundedness by dimension . 25 4.5 Stratificationsbyquotientstacks . .. 26 5 Extended excision axiom 29 5.1 AfirsthigherChowtheory. 29 5.2 The connecting homomorphism . 34 5.3 Homotopy invariance for vector bundle stacks . .... 36 1Funded by a Fannie and John Hertz Foundation Fellowship for Graduate Study and an Alfred P. Sloan Foundation Dissertation Fellowship 1 6 Intersection theory 37 6.1 IntersectionsonArtinstacks . 37 6.2 Virtualfundamentalclass . 39 6.3 Localizationformula ........................... 39 1 Introduction We define a Chow homology functor A∗ for Artin stacks and prove that it satisfies some of the basic properties expected from intersection theory. Consequences in- clude an integer-valued intersection product on smooth Deligne-Mumford stacks, an affirmative answer to the conjecture that any smooth stack with finite but possibly nonreduced point stabilizers should possess an intersection product (this provides a positive answer to Conjecture 6.6 of [V2]), and more generally an intersection prod- uct (also integer-valued) on smooth Artin stacks which admit stratifications by global quotient stacks. -
The Homotopy Limit Problem and the Cellular Picard Group of Hermitian K-Theory
THE HOMOTOPY LIMIT PROBLEM AND THE CELLULAR PICARD GROUP OF HERMITIAN K-THEORY DREW HEARD Abstract. We use descent theoretic methods to solve the homotopy limit problem for Hermit- ian K-theory over quasi-compact and quasi-separated base schemes. As another application of these descent theoretic methods, we compute the cellular Picard group of 2-complete Hermit- ian K-theory over Spec(C), showing that the only invertible cellular spectra are suspensions of the tensor unit. 1. Introduction 1 2. Background 3 3. Some descent theory6 4. The cellular Picard group of Hermitian K-theory 10 References 14 Contents 1. Introduction Let KGL denote the motivic spectrum representing algebraic K-theory, along with its C2- action, and KQ the motivic spectrum representing Hermitian K-theory (both always taken over a fixed based scheme S). There is a map f : KQ KGL which is the motivic analog of the map f 0 : KO KU from real K-theory to topological! K-theory in stable homotopy. The purpose of this paper! is to investigate the ways in which f behaves like f 0. For example, there is an equivalence KO KUhC2 , and the homotopy limit problem in motivic homotopy ' hC theory asks if there is an equivalence KQ KGL 2 . For a field F , let vcd (F ) denote the ' 2 mod-2 cohomological dimension of the absolute Galois group of F (p 1). R¨ondigs{Spitzweck{ − Østvær [RSØ18] have shown that if F is a field of char(F ) = 2, and vcd2(F ) < , then the homotopy limit problem holds after η-completion over S =6 Spec(F ), that is, there1 is an equivalence KQ^ KGLhC2 . -
Chow Groupsand Derived Categories of K3 Surfaces
Current Developments in Algebraic Geometry MSRI Publications Volume 59, 2011 Chow groups and derived categories of K3 surfaces DANIEL HUYBRECHTS The geometry of a K3 surface (over C or over QN ) is reflected by its Chow group and its bounded derived category of coherent sheaves in different ways. The Chow group can be infinite dimensional over C (Mumford) and is expected to inject into cohomology over QN (Bloch–Beilinson). The derived category is difficult to describe explicitly, but its group of autoequivalences can be studied by means of the natural representation on cohomology. Conjecturally (Bridge- land) the kernel of this representation is generated by squares of spherical twists. The action of these spherical twists on the Chow ring can be determined explicitly by relating it to the natural subring introduced by Beauville and Voisin. 1. Introduction In algebraic geometry a K3 surface is a smooth projective surface X over a fixed 2 1 field K with trivial canonical bundle !X ' X and H .X; ᏻX / D 0. For us the field K will be either a number field, the field of algebraic numbers QN or the complex number field C. Nonprojective K3 surfaces play a central role in the theory of K3 surfaces and for some of the results that will be discussed in this text in particular, but here we will not discuss those more analytical aspects. An explicit example of a K3 surface is provided by the Fermat quartic in P3 4 C···C 4 given as the zero set of the polynomial x0 x3 . Kummer surfaces, i.e., minimal resolutions of the quotient of abelian surfaces by the sign involution, and elliptic K3 surfaces form other important classes of examples. -
Algebraic Geometry
University of Cambridge Mathematics Tripos Part III Algebraic Geometry Michaelmas, 2019 Lectures by M. Gross Notes by Qiangru Kuang Contents Contents 0 Introduction 2 0.1 Variety vs Scheme .......................... 2 0.2 Categorical philosophy ........................ 2 1 Sheaves 4 1.1 Sheafification ............................. 7 2 Schemes 10 2.1 Projective schemes .......................... 16 2.2 Open and closed subschemes .................... 19 2.3 Fibre products ............................ 20 3 Sheaves of OX -modules 25 3.1 Morphisms into projective space .................. 27 3.2 Divisors and the Picard groups ................... 30 3.3 Cartier divisor ............................ 34 4 Cohomology of sheaves 40 4.1 Čech cohomology ........................... 41 Index 53 1 0 Introduction 0 Introduction 0.1 Variety vs Scheme In classical algebraic geometry, we study varieties which are points where poly- nomials vanish. Why do we need schemes? Why not varieties? 1. With varieties, we always work with algebraically closed fields. Otherwise, the ideals are not really classical geometric objects. For example, consider I = (x2 + y2 + 1) ⊆ R[x; y]. V (I) = ;, I(V (I)) = R[x; y]. 2. Suppose one want to work on number theory. One is usually interested in n Diophantine equations, for example if I ⊆ Z[x1; : : : ; xn] then V (I) ⊆ Z . 2 2 3. Consider X1 = V (x − y ) ⊆ A ;X2 = V (x). Then 2 X1 \ X2 = V (x; x − y ): Consider I = (x; x − y2) = (x; y2) ⊆ k[x; y]. V (I) contains exactly one point, namely the origin, but the ideal I is not radical, reflecting the fact that X2 is the tangent to X1. Might it be reasonable to consider 2 k[x; y]=(x; y ) as the coordinate ring of X1 \ X2 rather than k[x; y]=(x; y)? Note y 2 k[x; y]=(x; y2) is non-zero but y2 = 0. -
On Banica Sheaves and Fano Manifolds
December 1993 On Bˇanicˇasheaves and Fano manifolds Dedicated to the memory of Constantin Bˇanicˇa Edoardo Ballico and Jaros law A. Wi´sniewski Introduction. Reflexive sheaves are nowadays a common tool to study projective varieties. In the present paper we apply reflexive sheaves to study projective morphisms. Given a projective map ϕ : X → Y and an ample line bundle L on X one may consider an associated coherent sheaf F := ϕ∗L on Y . The knowledge of the sheaf F allows sometimes to understand some properties of the variety X and of the map ϕ. This is a typical way to study cyclic coverings (or, more generally, finite maps) and projective bundles. In the latter case one may choose the bundle L to be a relative O(1)-sheaf so that X = P(F). A similar approach can be applied to study equidimensional quadric bundles: again, choosing L as the relative O(1), one produces a projective bundle P(F) in which X embedds as a divisor of a relative degree two. Note that, in all the above examples, if X and Y are smooth then the map ϕ is flat and the resulting sheaf F is locally free. In the present paper we want to extend the method also to non-flat maps. In particular, we will consider varieties which arise as projectivizations of coherent sheaves. Our motivation for this study was originally two-fold: firstly we wanted to under- stand the class of varieties called by Sommese (smooth) scrolls — they occur naturally in his adjunction theory — and secondly we wanted to complete a classification of Fano manifolds of index r, dimension 2r and b2 ≥ 2 — the task which was undertaken by the second named author of the present paper.