Supercell Thunderstorm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Severe Storms in the Midwest
Informational/Education Material 2006-06 Illinois State Water Survey SEVERE STORMS IN THE MIDWEST Stanley A. Changnon Kenneth E. Kunkel SEVERE STORMS IN THE MIDWEST By Stanley A. Changnon and Kenneth E. Kunkel Midwestern Regional Climate Center Illinois State Water Survey Champaign, IL Illinois State Water Survey Report I/EM 2006-06 i This report was printed on recycled and recyclable papers ii TABLE OF CONTENTS Abstract........................................................................................................................................... v Chapter 1. Introduction .................................................................................................................. 1 Chapter 2. Thunderstorms and Lightning ...................................................................................... 7 Introduction ........................................................................................................................ 7 Causes ................................................................................................................................. 8 Temporal and Spatial Distributions .................................................................................. 12 Impacts.............................................................................................................................. 13 Lightning........................................................................................................................... 14 References ....................................................................................................................... -
The Fujita Scale Is Used to Rate the Intensity of a Tornado by Examining the Damage Caused by the Tornado After It Has Passed Over a Man-Made Structure
The Fujita Scale is used to rate the intensity of a tornado by examining the damage caused by the tornado after it has passed over a man-made structure. The "Percentage of All Tornadoes 1950- 1994" pie chart reveals that the vast majority of tornadoes are either weak or do damage that can only be attributed to a weak tornado. Only a small percentage of tornadoes can be correctly classed as violent. Such a chart became possible only after the acceptance of the Fujita Scale as the official classification system for tornado damage. It is quite possible that an even higher percentage of all tornadoes are weak. Each year the National Weather Service documents about 1000 tornado touchdowns in the United States. There is evidence that 1000 or more additional weak tornadoes may occur each year and go completely undocumented. The "Percentage of Tornado-Related Deaths 1950-1994" pie chart shows that while violent tornadoes are few in number, they cause a very high percentage of tornado-related deaths. The Tornado Project has analyzed data prior to 1950, and found that the percentage of deaths from violent tornadoes was even greater in the past. This is because the death tolls prior to the introduction of the forecasting/awareness programs were enormous: 695 dead(Missouri-Illinois-Indiana, March 18, 1925); 317 dead(Natchez, Mississippi, May 7, 1840);.255 dead(St. Louis, Missouri and East St. Louis, Illinois, May 27, 1896); 216 dead(Tupelo, Mississippi, April 5, 1936); 203 dead(Gainesville, GA, April 6, 1936). In more recent times, no single tornado has killed more than 50 people since 1971. -
Improving Lightning and Precipitation Prediction of Severe Convection Using of the Lightning Initiation Locations
PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Improving Lightning and Precipitation Prediction of Severe 10.1002/2017JD027340 Convection Using Lightning Data Assimilation Key Points: With NCAR WRF-RTFDDA • A lightning data assimilation method was developed Haoliang Wang1,2, Yubao Liu2, William Y. Y. Cheng2, Tianliang Zhao1, Mei Xu2, Yuewei Liu2, Si Shen2, • Demonstrate a method to retrieve the 3 3 graupel fields of convective clouds Kristin M. Calhoun , and Alexandre O. Fierro using total lightning data 1 • The lightning data assimilation Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information method improves the lightning and Science and Technology, Nanjing, China, 2National Center for Atmospheric Research, Boulder, CO, USA, 3Cooperative convective precipitation short-term Institute for Mesoscale Meteorological Studies (CIMMS), NOAA/National Severe Storms Laboratory, University of Oklahoma forecasts (OU), Norman, OK, USA Abstract In this study, a lightning data assimilation (LDA) scheme was developed and implemented in the Correspondence to: Y. Liu, National Center for Atmospheric Research Weather Research and Forecasting-Real-Time Four-Dimensional [email protected] Data Assimilation system. In this LDA method, graupel mixing ratio (qg) is retrieved from observed total lightning. To retrieve qg on model grid boxes, column-integrated graupel mass is first calculated using an Citation: observation-based linear formula between graupel mass and total lightning rate. Then the graupel mass is Wang, H., Liu, Y., Cheng, W. Y. Y., Zhao, distributed vertically according to the empirical qg vertical profiles constructed from model simulations. … T., Xu, M., Liu, Y., Fierro, A. O. (2017). Finally, a horizontal spread method is utilized to consider the existence of graupel in the adjacent regions Improving lightning and precipitation prediction of severe convection using of the lightning initiation locations. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
American Meteorological Society Revised Manuscript Click Here to Download Manuscript (Non-Latex): JAMC-D-14-0252 Revision3.Docx
AMERICAN METEOROLOGICAL SOCIETY Journal of Applied Meteorology and Climatology EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version. The DOI for this manuscript is doi: 10.1175/JAMC-D-14-0252.1 The final published version of this manuscript will replace the preliminary version at the above DOI once it is available. If you would like to cite this EOR in a separate work, please use the following full citation: Wang, Y., and B. Geerts, 2015: Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations. J. Appl. Meteor. Climatol. doi:10.1175/JAMC-D-14- 0252.1, in press. © 2015 American Meteorological Society Revised manuscript Click here to download Manuscript (non-LaTeX): JAMC-D-14-0252_revision3.docx Vertical-plane dual-Doppler radar observations of cumulus toroidal circulations Yonggang Wang1, and Bart Geerts University of Wyoming Submitted to J. Appl. Meteor. Climat. October 2014 Revised version submitted in May 2015 1 Corresponding author address: Yonggang Wang, Department of Atmospheric Science, University of Wyoming, Laramie WY 82071, USA; email: [email protected] 1 Profiling dual-Doppler radar observations of cumulus toroidal circulations 2 3 Abstract 4 5 6 High-resolution vertical-plane dual-Doppler velocity data, collected by an airborne profiling 7 cloud radar in transects across non-precipitating orographic cumulus clouds, are used to examine 8 vortical circulations near cloud top. -
Temperature Change and Its Effects on the Great Lakes Climate
Temperature Change and its Effects on the Great Lake’s Climate. Ross Ellet Professor: Matthew Huber April 28, 2005 Temperature change and its effects on the Great Lakes climate. The Great Lakes create a very unique sub climate zone that is unlike most areas in the world. The Great Lakes act as a climate moderator. They contain some of the biggest fresh water lakes in the world. This allows temperature moderation to occur. Typically the lakes keep the eastward coastlines more humid. Since there is more humidity, clouds are more frequent. Thus the temperature fluctuation on a daily basis is a little less than areas not affected by the Great Lakes. This in turn affects the precipitation that falls, when it falls, and where it falls. In the winter time the cold air masses blow over the relatively warm water which creates lake-effect snowfall. This is a very important social and economical impact the climate has on the Great Lakes region. So what happens when a climate change occurs in this area? What types of impacts will it have on the Great Lakes region? Will it be any different than those areas directly west of the Great Lakes? Theory and Research Aral Sea In order to understand climate change in the Great Lakes, first one must understand the dynamics of what is already occurring. The Great Lakes is unlike most lakes in the world due to its size, power, and potential to affect climate. However, there is another body of water that is just as significant. The Aral Sea, which is located in Uzbekistan and Kazakhstan, is an important tool to see how much a large body of water affects climate. -
The Social Life of Climate Change Models Routledge Studies in Anthropology
The Social Life of Climate Change Models Routledge Studies in Anthropology 1 Student Mobility and Narrative 8 The Social Life of Climate in Europe Change Models The New Strangers Anticipating Nature Elizabeth Murphy-Lejeune Edited by Kirsten Hastrup and Martin Skrydstrup 2 The Question of the Gift Essays across Disciplines Edited by Mark Osteen 3 Decolonising Indigenous Rights Edited by Adolfo de Oliveira 4 Traveling Spirits Migrants, Markets and Mobilities Edited by Gertrud Hüwelmeier and Kristine Krause 5 Anthropologists, Indigenous Scholars and the Research Endeavour Seeking Bridges Towards Mutual Respect Edited by Joy Hendry and Laara Fitznor 6 Confronting Capital Critique and Engagement in Anthropology Edited by Pauline Gardiner Barber, Belinda Leach and Winnie Lem 7 Adolescent Identity Evolutionary, Cultural and Developmental Perspectives Edited by Bonnie L. Hewlett The Social Life of Climate Change Models Anticipating Nature Edited by Kirsten Hastrup and Martin Skrydstrup NEW YORK LONDON First published 2013 by Routledge 711 Third Avenue, New York, NY 10017 Simultaneously published in the UK by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN Routledge is an imprint of the Taylor & Francis Group, an informa business © 2013 Taylor & Francis The right of Kirsten Hastrup and Martin Skrydstrup to be identified as the authors of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. -
More Observations of Small Funnel Clouds and Other Tubular Clouds
3714 MONTHLY WEATHER REVIEW VOLUME 133 PICTURE OF THE MONTH More Observations of Small Funnel Clouds and Other Tubular Clouds HOWARD B. BLUESTEIN School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 14 March 2005, in final form 20 May 2005) ABSTRACT In this brief contribution, photographic documentation is provided of a variety of small, tubular-shaped clouds and of a small funnel cloud pendant from a convective cloud that appears to have been modified by flow over high-altitude mountains in northeast Colorado. These funnel clouds are contrasted with others that have been documented, including those pendant from high-based cumulus clouds in the plains of the United States. It is suggested that the mountain funnel cloud is unique in that flow over high terrain is probably responsible for its existence; other types of small funnel clouds are seen both over elevated, mountainous terrain and over flat terrain at lower elevations. 1. Introduction which the benign funnel clouds occur so that if they are observed, severe weather warnings are not issued. Fur- Bluestein (1994) and others (e.g., Doswell 1985, p. thermore, the small funnel clouds are of interest in their 107; McCaul and Blanchard 1990) have documented, in own right because their dynamics are not well under- the plains of the United States, small funnel clouds pen- stood, and they have not been discussed in the litera- dant from convective clouds whose updrafts appear to ture to the much greater extent that the dynamics of be rooted above the boundary layer. Above many of tornadoes have (e.g., Davies-Jones 1986). -
The Lagrange Torando During Vortex2. Part Ii: Photogrammetry Analysis of the Tornado Combined with Dual-Doppler Radar Data
6.3 THE LAGRANGE TORANDO DURING VORTEX2. PART II: PHOTOGRAMMETRY ANALYSIS OF THE TORNADO COMBINED WITH DUAL-DOPPLER RADAR DATA Nolan T. Atkins*, Roger M. Wakimoto#, Anthony McGee*, Rachel Ducharme*, and Joshua Wurman+ *Lyndon State College #National Center for Atmospheric Research +Center for Severe Weather Research Lyndonville, VT 05851 Boulder, CO 80305 Boulder, CO 80305 1. INTRODUCTION studies, however, that have related the velocity and reflectivity features observed in the radar data to Over the years, mobile ground-based and air- the visual characteristics of the condensation fun- borne Doppler radars have collected high-resolu- nel, debris cloud, and attendant surface damage tion data within the hook region of supercell (e.g., Bluestein et al. 1993, 1197, 204, 2007a&b; thunderstorms (e.g., Bluestein et al. 1993, 1997, Wakimoto et al. 2003; Rasmussen and Straka 2004, 2007a&b; Wurman and Gill 2000; Alexander 2007). and Wurman 2005; Wurman et al. 2007b&c). This paper is the second in a series that pre- These studies have revealed details of the low- sents analyses of a tornado that formed near level winds in and around tornadoes along with LaGrange, WY on 5 June 2009 during the Verifica- radar reflectivity features such as weak echo holes tion on the Origins of Rotation in Tornadoes Exper- and multiple high-reflectivity rings. There are few iment (VORTEX 2). VORTEX 2 (Wurman et al. 5 June, 2009 KCYS 88D 2002 UTC 2102 UTC 2202 UTC dBZ - 0.5° 100 Chugwater 100 50 75 Chugwater 75 330° 25 Goshen Co. 25 km 300° 50 Goshen Co. 25 60° KCYS 30° 30° 50 80 270° 10 25 40 55 dBZ 70 -45 -30 -15 0 15 30 45 ms-1 Fig. -
Hurricane Response Annex Overview Introduction
TABLE OF CONTENTS SECTION I – HURICANE RESPONSE ANNEX OVERVIEW ............................................................... 2 INTRODUCTION .................................................................................................................................................. 3 PLANNING ASSUMPTIONS ................................................................................................................................... 4 COMMUNITY IMPACTS ........................................................................................................................................ 4 SECTION II – CONCEPT OF OPERATIONS ........................................................................................ 5 DEFINING THE HAZARD ...................................................................................................................................... 5 Tropical Cyclones ..................................................................................................................................................... 5 TIMELINES ........................................................................................................................................................... 6 HURRICANE SEASON ...................................................................................................................................... 6 RESPONDER REENTRY HOUR ......................................................................................................................... 7 SECTION III – ROLES & RESPONSIBILITIES -
Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetr
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 11-2018 Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations Kun-Yuan Lee University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Atmospheric Sciences Commons, Meteorology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Lee, Kun-Yuan, "Quantification of Cloud Condensation Nuclei Effects on the Microphysical Structure of Continental Thunderstorms Using Polarimetric Radar Observations" (2018). Dissertations & Theses in Earth and Atmospheric Sciences. 113. https://digitalcommons.unl.edu/geoscidiss/113 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS by Kun-Yuan Lee A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Matthew S. Van Den Broeke Lincoln, Nebraska November, 2018 i QUANTIFICATION OF CLOUD CONDENSATION NUCLEI EFFECTS ON THE MICROPHYSICAL STRUCTURE OF CONTINENTAL THUNDERSTORMS USING POLARIMETRIC RADAR OBSERVATIONS Kun-Yuan Lee, M.S. University of Nebraska, 2019 Advisor: Matthew S. -
Skip Talbot Photography by Jennifer Brindley
STORM SPOTTING Skip Talbot SECRETS Photography by Jennifer Brindley Ubl and others Topics • Supercell Visualization • Radar Presentation • Structure Identification • Storm Properties • Walk Through Disclaimers • Attend spotter training • Your safety is more important than spotting, photos, video, or tornado reports Supercell Visualization Lemon and Doswell 1979 Supercell Visualization Supercell Visualization Photo: Chris Gullikson Supercell Visualization Photo: Chris Gullikson Anvil Anvil Backshear Mammatus Cumulonimbus Flanking Line Cloud Base Striations Precipitation Wall Cloud Precipitation-free Base Supercell Visualization Radar Presentation Classic Hook Echo Radar Presentation Android / iOS Android Windows GrLevel3 / GrLevel2 Radar Presentation Classic Hook Echo Radar Presentation Radar Presentation Radar Presentation Radar Presentation Storm Spotting Zoo • Bear’s Cage • Whale’s Mouth • Beaver Tail • Horseshoe • Ghost Train Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe - Cyclical supercell with multiple tornadoes HorseshoeHorseshoe HorseshoeHorseshoe Horseshoe Horseshoe – Anticyclonic Funnel Horseshoe Horseshoe – Anticyclonic Funnel Horseshoe - No Wall Cloud Horseshoe - No Wall Cloud