Proyecto Domingo Sanchez Blazquez

Total Page:16

File Type:pdf, Size:1020Kb

Proyecto Domingo Sanchez Blazquez Desarrollo de una aplicación de Realidad Aumentada para simulación de moléculas Escuela Técnica Superior de Ingeniería Informática PROYECTO FIAL DE CARRERA Realizado por: Dirigido por: Domingo Sánchez Blázquez M. Carmen Juan Lizandra RESUMEN........................................................................................................................5 CAPITULO 1. MOTIVACIÓN Y OBJETIVOS DEL PROYECTO.................................7 1.1. Introducción...........................................................................................................7 1.2 Objetivos.................................................................................................................9 1.3 Estructura del proyecto...........................................................................................9 CAPÍTULO 2. INTRODUCCIÓN A REALIDAD AUMENTADA Y APLICACIONES PARA APRENDIZAJE, EN ESPECIAL DE QUÍMICA................................................11 2.1 Realidad Aumentada, conceptos...........................................................................11 2.2 Tipos de Realidad Aumentada..............................................................................12 2.3 Campos de aplicación...........................................................................................14 2.3.1 Medicina:.......................................................................................................14 2.3.2 Entretenimiento.............................................................................................15 2.3.3 Psicología......................................................................................................17 2.3.4 Área Militar...................................................................................................18 2.3.5 Diseño industrial...........................................................................................20 2.3.6 Robótica y telerrobótica................................................................................21 2.3.7 Fabricación, mantenimiento y reparación.....................................................22 2.3.8 Arquitectura y construcción..........................................................................24 2.3.9 Diseño de consumo.......................................................................................25 2.3.10 Enseñanza....................................................................................................27 CAPÍTULO 3: Programas de Modelado Molecular........................................................31 3.1 Introducción..........................................................................................................31 3.2 Exposición de las aplicaciones..............................................................................31 Abalone..................................................................................................................31 AutoDock...............................................................................................................34 Amira......................................................................................................................37 Ascalaph Graphics.................................................................................................42 Ascalaph Designer.................................................................................................44 Amber / Amber Tools.............................................................................................47 Avogadro................................................................................................................49 BOSS......................................................................................................................52 Maestro...................................................................................................................55 BALLView.............................................................................................................58 CAPITULO 4: Uso de ARToolKit e inclusión de moléculas..........................................60 4.1 Introducción..........................................................................................................60 4.2 Análisis de las herramientas a utilizar...................................................................60 4.2.1 ARToolKitVRML..........................................................................................60 4.2.1 Microsft Visual Studio 2005.........................................................................61 4.2.3 BALLView....................................................................................................62 4.2.4 DirectX, DirectShow.....................................................................................62 4.3 Trabajando con Microsoft Visual Studio 2005, BALLView y ARToolKit...........64 4.3.1 La cámara......................................................................................................64 4.3.2 Creación de Moléculas..................................................................................64 4.3.3 Búsqueda de marcas: Cálculo de la matriz de transformación......................65 4.3.4 Calibración de la cámara...............................................................................68 4.3.4.1 Calibrando por ARToolKit.....................................................................68 4.3.4.2 Calibrando mediante programa externo................................................69 4.3.5 Creación de patrones.....................................................................................70 4.3.6 Creación de la Aplicación de Realidad Aumentada......................................72 4.3.6.1 Main.......................................................................................................73 4.3.6.2 Init..........................................................................................................73 4.3.6.3 Mainloop................................................................................................74 2.3.6.4 Draw......................................................................................................76 2.3.6.5 Cleanup..................................................................................................77 4.3.7 Requisitos mínimos.......................................................................................79 CAPITULO 5 Conclusiones y trabajos futuros...............................................................81 5.1 Conclusiones.........................................................................................................81 5.2 Trabajos futuros....................................................................................................81 Capitulo 6 Bibliografía....................................................................................................82 Glosario...........................................................................................................................86 Desarrollo de una aplicación de Realidad Aumentada para simulación de moléculas RESUMEN El objetivo principal de este proyecto es desarrollar y evaluar un sistema de RA (Realidad Aumentada) enfocado a la química, bioquímica, farmacia, y ámbito molecular para facilitar el aprendizaje de las distintas proteínas o elementos químicos y orgánicos por parte de estudiantes tanto de educación media como educación superior. Lo que se pretende es facilitar el estudio de la composición, estructura y propiedades de la materia, como los cambios que esta experimenta durante las reacciones químicas y su relación con la energía. Las disciplinas de la química han sido agrupadas por la clase de materia bajo estudio o el tipo de estudio realizado. Entre estas se tienen la química inorgánica que estudia la materia inorgánica; la química orgánica que trata con la materia orgánica; la bioquímica el estudio de substancias en organismos biológicos; la físico-química comprende los aspectos energéticos de sistemas químicos a escalas macroscópicas, moleculares y atómicas; la química analítica que analiza muestras de materia tratando de entender su composición y estructura. Otras ramas de la química han emergido en tiempos recientes, por ejemplo, la neuroquímica que estudia los aspectos químicos del cerebro. La ubicuidad de la química en las ciencias naturales hace que sea considerada como una de las ciencias básicas. La química es de gran importancia en muchos campos del conocimiento, como la ciencia de materiales, la biología, la farmacia, la medicina, la geología, la ingeniería y la astronomía, entre otros. Los procesos naturales estudiados por la química involucran partículas fundamentales (electrones, protones y neutrones), partículas compuestas (núcleos atómicos, átomos y moléculas) o estructuras microscópicas como cristales y superficies. Desde el punto de vista microscópico, las partículas involucradas en una reacción química pueden considerarse como un sistema cerrado que intercambia energía con su entorno. En procesos exotérmicos, el sistema libera energía a su entorno, mientras que un proceso endotérmico solamente puede ocurrir cuando el entorno aporta energía al sistema que reacciona. En la gran mayoría de las reacciones químicas hay flujo de energía entre el sistema y su campo de influencia, por lo cual podemos extender la definición de reacción química e involucrar la energía cinética (calor) como un reactivo o producto. Es común que entre las comunidades académicas de químicos la química analítica no sea considerada entre
Recommended publications
  • Pyplif HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors
    molecules Article PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors Enade P. Istyastono 1,* , Nunung Yuniarti 2, Vivitri D. Prasasty 3 and Sudi Mungkasi 4 1 Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia 2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] 3 Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia; [email protected] 4 Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University, Yogyakarta 55282, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +62-274883037 Abstract: Identification of molecular determinants of receptor-ligand binding could significantly increase the quality of structure-based virtual screening protocols. In turn, drug design process, especially the fragment-based approaches, could benefit from the knowledge. Retrospective virtual screening campaigns by employing AutoDock Vina followed by protein-ligand interaction finger- printing (PLIF) identification by using recently published PyPLIF HIPPOS were the main techniques used here. The ligands and decoys datasets from the enhanced version of the database of useful de- coys (DUDE) targeting human G protein-coupled receptors (GPCRs) were employed in this research since the mutation data are available and could be used to retrospectively verify the prediction. The results show that the method presented in this article could pinpoint some retrospectively verified molecular determinants. The method is therefore suggested to be employed as a routine in drug Citation: Istyastono, E.P.; Yuniarti, design and discovery. N.; Prasasty, V.D.; Mungkasi, S. PyPLIF HIPPOS-Assisted Prediction Keywords: PyPLIF HIPPOS; AutoDock Vina; drug discovery; fragment-based; molecular determi- of Molecular Determinants of Ligand Binding to Receptors.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • Open Data, Open Source, and Open Standards in Chemistry: the Blue Obelisk Five Years On" Journal of Cheminformatics Vol
    Oral Roberts University Digital Showcase College of Science and Engineering Faculty College of Science and Engineering Research and Scholarship 10-14-2011 Open Data, Open Source, and Open Standards in Chemistry: The lueB Obelisk five years on Andrew Lang Noel M. O'Boyle Rajarshi Guha National Institutes of Health Egon Willighagen Maastricht University Samuel Adams See next page for additional authors Follow this and additional works at: http://digitalshowcase.oru.edu/cose_pub Part of the Chemistry Commons Recommended Citation Andrew Lang, Noel M O'Boyle, Rajarshi Guha, Egon Willighagen, et al.. "Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on" Journal of Cheminformatics Vol. 3 Iss. 37 (2011) Available at: http://works.bepress.com/andrew-sid-lang/ 19/ This Article is brought to you for free and open access by the College of Science and Engineering at Digital Showcase. It has been accepted for inclusion in College of Science and Engineering Faculty Research and Scholarship by an authorized administrator of Digital Showcase. For more information, please contact [email protected]. Authors Andrew Lang, Noel M. O'Boyle, Rajarshi Guha, Egon Willighagen, Samuel Adams, Jonathan Alvarsson, Jean- Claude Bradley, Igor Filippov, Robert M. Hanson, Marcus D. Hanwell, Geoffrey R. Hutchison, Craig A. James, Nina Jeliazkova, Karol M. Langner, David C. Lonie, Daniel M. Lowe, Jerome Pansanel, Dmitry Pavlov, Ola Spjuth, Christoph Steinbeck, Adam L. Tenderholt, Kevin J. Theisen, and Peter Murray-Rust This article is available at Digital Showcase: http://digitalshowcase.oru.edu/cose_pub/34 Oral Roberts University From the SelectedWorks of Andrew Lang October 14, 2011 Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on Andrew Lang Noel M O'Boyle Rajarshi Guha, National Institutes of Health Egon Willighagen, Maastricht University Samuel Adams, et al.
    [Show full text]
  • Molecular Structure Input on the Web Peter Ertl
    Ertl Journal of Cheminformatics 2010, 2:1 http://www.jcheminf.com/content/2/1/1 REVIEW Open Access Molecular structure input on the web Peter Ertl Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminfor- matics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on tech- nologies like JavaScript and Flash, is discussed. Introduction this trend and input of molecular structures directly A program for the input and editing of molecules is an within a web browser is therefore of utmost importance. indispensable part of every cheminformatics or molecu- In this overview a history of entering molecules into lar processing system. Such a program is known as a web applications will be covered, starting from simple molecule editor, molecular editor or structure sketcher.
    [Show full text]
  • Structural Insight Into Pichia Pastoris Fatty Acid Synthase Joseph S
    www.nature.com/scientificreports OPEN Structural insight into Pichia pastoris fatty acid synthase Joseph S. Snowden, Jehad Alzahrani, Lee Sherry, Martin Stacey, David J. Rowlands, Neil A. Ranson* & Nicola J. Stonehouse* Type I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identifed FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purifed from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identifed several diferences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classifcation, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further eforts to engineer yeast FAS for synthesis of alternate products. Fatty acid synthases (FASs) are critical metabolic enzymes for the endogenous biosynthesis of fatty acids in a diverse range of organisms. Trough iterative cycles of chain elongation, FASs catalyse the synthesis of long-chain fatty acids that can produce raw materials for membrane bilayer synthesis, lipid anchors of peripheral membrane proteins, metabolic energy stores, or precursors for various fatty acid-derived signalling compounds1. In addition to their key physiological importance, microbial FAS systems are also a common target of metabolic engineering approaches, usually with the aim of generating short chain fatty acids for an expanded repertoire of fatty acid- derived chemicals, including chemicals with key industrial signifcance such as α-olefns2–6.
    [Show full text]
  • Running Windows Programs on Ubuntu with Wine Wine Importer Shanna Korby, Fotolia
    KNoW-HoW Wine Running Windows programs on Ubuntu with Wine Wine importer Shanna Korby, Fotolia Korby, Shanna Users who move from Windows to Ubuntu often miss some of their favorite programs and games. Wouldn’t it be practical to run Windows applications on the free Ubuntu operating system? Time for a little taste of Wine. BY TIM SCHÜRMANN any Ubuntu migrants miss to develop something similar for Linux. Box or VMware, Wine does not emulate games and graphics programs A short while later, the first version of a whole PC and thus cannot be consid- Msuch as CorelDRAW or prod- Wine was released. Today, more than ered a real emulator. This also explains ucts such as Adobe Photoshop. The only 300 volunteer programmers from all over the name Wine, which means Wine Is solution is to install Windows parallel to the world continue to contribute to the Not an Emulator. Ubuntu – or try Wine, which tricks ap- Wine project. Because of the way Wine works, it of- plications into believing they are run- fers a number of advantages. Chiefly, ning on a Windows system. What’s in a Name? you do not need an expensive Windows The history of Wine goes back to the To run Windows programs on Ubuntu, license. Programs will run almost as fast year 1993. At the time, Sun developed a Wine uses a fairly complex trick: It sits as on the Redmond operating system, small tool to run Windows applications between the Windows application and and windows behave as if they belong on its own Solaris operating system, Ubuntu like a simultaneous interpreter.
    [Show full text]
  • ORGANIZATION of BIOMOLECULES in a 3-DIMENSIONAL SPACE by Sameer Sajja a Thesis Submitted to the Faculty of the University Of
    ORGANIZATION OF BIOMOLECULES IN A 3-DIMENSIONAL SPACE by Sameer Sajja A thesis submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Charlotte 2019 Approved by: ________________________________ Dr. Kirill Afonin ________________________________ Dr. Caryn Striplin ________________________________ Dr. Joanna Krueger ________________________________ Dr. Yuri Nesmelov ii ©2019 Sameer Sajja ALL RIGHTS RESERVED iii ABSTRACT SAMEER SAJJA. Organization of Biomolecules in a 3-Dimensional Space (Under the direction of DR. KIRILL A. AFONIN) The human body operates using various stimuli-responsive mechanisms, dictating biological activity via reaction to external cues. Hydrogels are networked hydrophilic polymeric materials that offer the potential to recreate aqueous environments with controlled organization of biomolecules for research purposes and potential therapeutic use. The unique, programmable structure of hydrogels exhibit similar physicochemical properties to those of living tissues while also introducing component-mediated biocompatibility. The design of stimuli-responsive biocompatible hydrogels would further allow for controllable mechanical and functional properties tuned by changes in environmental factors. This study investigates individual biomolecular components needed to potentially engineer biocompatible and stimuli-responsive hydrogels. By utilizing programmable biomolecules such as nucleic acids (DNA and RNA) and proteins
    [Show full text]
  • A Web-Based 3D Molecular Structure Editor and Visualizer Platform
    Mohebifar and Sajadi J Cheminform (2015) 7:56 DOI 10.1186/s13321-015-0101-7 SOFTWARE Open Access Chemozart: a web‑based 3D molecular structure editor and visualizer platform Mohamad Mohebifar* and Fatemehsadat Sajadi Abstract Background: Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimen- sional structures of molecules. Results: With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user- friendly interface is composed. More than 30 packages are used to compose this application which adds enough flex- ibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Conclusions: Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (applica- tion programming interface). JavaScript libraries which allow creation of web pages containing interactive three- dimensional molecular structures has also been made available.
    [Show full text]
  • Virtualgl / Turbovnc Survey Results Version 1, 3/17/2008 -- the Virtualgl Project
    VirtualGL / TurboVNC Survey Results Version 1, 3/17/2008 -- The VirtualGL Project This report and all associated illustrations are licensed under the Creative Commons Attribution 3.0 License. Any works which contain material derived from this document must cite The VirtualGL Project as the source of the material and list the current URL for the VirtualGL web site. Between December, 2007 and March, 2008, a survey of the VirtualGL community was conducted to ascertain which features and platforms were of interest to current and future users of VirtualGL and TurboVNC. The larger purpose of this survey was to steer the future development of VirtualGL and TurboVNC based on user input. 1 Statistics 49 users responded to the survey, with 32 complete responses. When listing percentage breakdowns for each response to a question, this report computes the percentages relative to the total number of complete responses for that question. 2 Responses 2.1 Server Platform “Please select the server platform(s) that you currently use or plan to use with VirtualGL/TurboVNC” Platform Number of Respondees (%) Linux/x86 25 / 46 (54%) ● Enterprise Linux 3 (x86) 2 / 46 (4.3%) ● Enterprise Linux 4 (x86) 5 / 46 (11%) ● Enterprise Linux 5 (x86) 6 / 46 (13%) ● Fedora Core 4 (x86) 1 / 46 (2.2%) ● Fedora Core 7 (x86) 1 / 46 (2.2%) ● Fedora Core 8 (x86) 4 / 46 (8.7%) ● SuSE Linux Enterprise 9 (x86) 1 / 46 (2.2%) 1 Platform Number of Respondees (%) ● SuSE Linux Enterprise 10 (x86) 2 / 46 (4.3%) ● Ubuntu (x86) 7 / 46 (15%) ● Debian (x86) 5 / 46 (11%) ● Gentoo (x86) 1 /
    [Show full text]
  • Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department
    Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department Name of FOSS Applications Employability GChemPaint GChemPaint is an editor for 2Dchem- GChemPaint is currently being developed ical structures with a multiple docu- as part of The Chemistry Development ment interface. Kit, and a Standard Widget Tool kit- based GChemPaint application is being developed, as part of Bioclipse. Jmol Jmol applet is used to explore the Jmol is a free, open source molecule viewer structure of molecules. Jmol applet is for students, educators, and researchers used to depict X-ray structures in chemistry and biochemistry. It is cross- platform, running on Windows, Mac OS X, and Linux/Unix systems. For PG Students LaTeX Document markup language and Value addition to academic Skills set. preparation system for Tex typesetting Essential for International paper presentation and scientific journals. For PG student for their project work Scilab Scientific Computation package for Value addition in technical problem numerical computations solving via use of computational methods for engineering problems, Applicable in Chemical, ECE, Electrical, Electronics, Civil, Mechanical, Mathematics etc. For PG student who are taking Physical Chemistry Avogadro Avogadro is a free and open source, Research and Development in Chemistry, advanced molecule editor and Pharmacist and University lecturers. visualizer designed for cross-platform use in computational chemistry, molecular modeling, material science, bioinformatics, etc. Spoken Tutorial Project, IIT Bombay Brochure for Commerce and Commerce IT Name of FOSS Applications / Employability LibreOffice – Writer, Calc, Writing letters, documents, creating spreadsheets, tables, Impress making presentations, desktop publishing LibreOffice – Base, Draw, Managing databases, Drawing, doing simple Mathematical Math operations For Commerce IT Students Drupal Drupal is a free and open source content management system (CMS).
    [Show full text]
  • Evaluation of Protein-Ligand Docking Methods on Peptide-Ligand
    bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides Sandeep Singh1#, Hemant Kumar Srivastava1#, Gaurav Kishor1#, Harinder Singh1, Piyush Agrawal1 and G.P.S. Raghava1,2* 1CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India. 2Indraprastha Institute of Information Technology, Okhla Phase III, Delhi India #Authors Contributed Equally Emails of Authors: SS: [email protected] HKS: [email protected] GK: [email protected] HS: [email protected] PA: [email protected] * Corresponding author Professor of Center for Computation Biology, Indraprastha Institute of Information Technology (IIIT Delhi), Okhla Phase III, New Delhi-110020, India Phone: +91-172-26907444 Fax: +91-172-26907410 E-mail: [email protected] Running Title: Benchmarking of docking methods 1 bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In the past, many benchmarking studies have been performed on protein-protein and protein-ligand docking however there is no study on peptide-ligand docking.
    [Show full text]
  • BOSS, Version 4.6 Biochemical and Organic Simulation System User’S Manual for UNIX, Linux, and Windows
    BOSS, Version 4.6 Biochemical and Organic Simulation System User’s Manual for UNIX, Linux, and Windows William L. Jorgensen Department of Chemistry, Yale University P. O. Box 208107 New Haven, Connecticut 06520-8107 Phone: (203) 432-6278 Fax: (203) 432-6299 Internet: [email protected] January 2004 Contents Page Introduction 4 1 Can’t Wait to Start – Use the x Scripts 6 2 Statistical Mechanics Simulation – Theory 6 3 Energy and Free Energy Evaluation 7 4 New Features 9 5 Operating Systems 14 6 Installation 14 7 Files 14 8 Command or bat File Input 16 9 Parameter File Input 18 10 Z-matrix File Input 26 10.1 Atom Input 29 10.2 Geometry Variations 29 10.3 Bond Length Variations 29 10.4 Additional Bonds 30 10.5 Harmonic Restraints 30 10.6 Bond Angle Variations 30 10.7 Additional Bond Angles 31 10.8 Dihedral Angle Variations 31 10.9 Additional Dihedral Angles 33 10.10 Domain Definitions 34 10.11 Conformational Searching 34 10.12 Sample Z-matrix 34 10.13 Z-matrix Input for Custom Solvents 35 11 PDB Input 37 12 Coordinate Input in Mind Format and Reaction Path Following 38 13 Pure Liquid Simulations 39 14 Cluster Simulations 39 2 15 Solventless and Molecular Mechanics Calculations 40 15.1 Continuum Simulations 40 15.2 Energy Minimizations 41 15.3 Dihedral Angle Driving 42 15.4 Potential Surface Scanning 42 15.5 Normal Coordinate Analysis 43 15.6 Conformational Searching 45 16 Available Solvent Boxes 48 17 Ewald Summation for Long-Range Electrostatics 50 18 Test Jobs 51 19 Output 56 19.1 Some Variable Definitions 58 20 Contents of the Distribution Files 59 21 Appendix – No.
    [Show full text]