Echinodermata: Blastozoa: Diploporita): Paleobiology and Systematics

Total Page:16

File Type:pdf, Size:1020Kb

Echinodermata: Blastozoa: Diploporita): Paleobiology and Systematics Th e North American Holocystites Fauna (Echinodermata: Blastozoa: Diploporita): Paleobiology and Systematics T. J. Frest, H. L. Strimple, and C. R. C. Paul Bulletins of American Paleontology Number 380, March 2011 BULLETINS OF AMERICAN PALEONTOLOGY Established 1895 Paula M. Mikkelsen Warren D. Allmon Editor-in-Chief Director Editorial Board Jason S. Anderson, University of Calgary Kenneth Angielczyk, Field Museum of Natural History Carlton Brett, University of Cincinnati Ann F. Budd, University of Iowa Peter Dodson, University of Pennsylvania Daniel Fisher, University of Michigan Dana H. Geary, University of Wisconsin-Madison Peter J. Harries, University of South Florida John Pojeta, United States Geological Survey Carrie E. Schweitzer, Kent State University Geerat J. Vermeij, University of California at Davis Emily H. Vokes, Tulane University (Emerita) William Zinsmeister, Purdue University Bulletins of American Paleontology is published semiannually by Paleontological Re- search Institution. For a list of titles and to order back issues online, go to http://museum- oftheearth.org. Numbers 1-94 (1895-1941) of Bulletins of American Paleontology are available from Periodicals Service Company, Germantown, New York, http://www.pe- riodicals.com. Subscriptions to Bulletins of American Paleontology are available in hard-copy and electronic formats to individuals or institutions; non-US addressees pay an additional fee for postage and handling. For current rates, additional information or to place an order, see http://museumoftheearth.org or contact: Publications Office Paleontological Research Institution 1259 Trumansburg Road Ithaca, New York 14850-1313 Tel. (607) 273-6623, ext. 20 Fax (607) 273-6620 [email protected] This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). Th e North American Holocystites Fauna (Echinodermata: Blastozoa: Diploporita): Paleobiology and Systematics T. J. Frest, H. L. Strimple, and C. R. C. Paul Bulletins of American Paleontology Number 380, March 2011 ISSN 0007-5779 ISBN 978-0-87710-493-3 Library of Congress Catalog Card Number 2011920734 © 2011, Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850, U. S. A. THE NORTH AMERICAN HOLOCYSTITES FAUNA (ECHINODERMATA, BLASTOZOA: DIPLOPORITA): PALEOBIOLOGY AND SYSTEMATICS T. J. Frest Deixis Consultants, 2517 NE 65th Street, Seattle, Washington 98115, USA1 H. L. Strimple Department of Geology, University of Iowa, Iowa City, Iowa 52242, USA2 and C. R. C. Paul Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK; email [email protected] abstract The Holocystites fauna of central North America includes most known Silurian Diploporita (Echinodermata: Blastozoa). This distinctive diploporite association, widespread in the Wenlockian of Wisconsin, Illinois, Indiana, Kentucky, Ohio, and Tennessee, consists of eight genera in the Aristocystitidae, Sphaeronitidae, and Holocystitidae. Species of Holocystites Hall, 1864, and Triamara Tillman, 1967, are particularly characteristic. The fauna is best known from the Osgood Member, Salamonie Dolomite (late Llandoverian-early Wenlockian) of southeastern Indiana. Expanded quarrying operations near Napoleon, Ripley County, Indiana, add materially to knowledge of the Holocystites fauna. Thousands of specimens were recovered, including some in life position. Information from this and other localities allows formulation of a paleoecological model for the Holocystites fauna, which is tested against previously known distributional information. Most Silurian diploporites were low-level feeders with relatively inefficient subvective systems as compared with co-occurring camerate crinoids. In the Osgood, they required firm attachment sites in comparatively quiet, offshore, dominantly soft-bottomed environments with a moderate rate of continuous terrigenous sedimentation, conditions limited in southeastern Indiana to the Ripley Island positive area. Two major adaptive strategies are recognized: one relatively eurytopic group comprising species with free adults with elongate thecae, narrow bases, and aboral, stem-like processes, and a more stenotopic group of globular, large-based, completely sessile (attached) species. New taxa include a species of Holocystites Hall, 1864 (H. clavus n. sp.), a new genus (Paulicystis n. gen.) related to Trematocystis Jaekel, 1899, but with uniquely large ambulacral facets, and a new Pentacystis-like genus (Osgoodicystis n. gen.). The fauna also has an advanced sphaeronitid (Finitiporus n. gen.), the only Silurian sphaeronitid yet known. Both the Sphaeronitidae and Holocystitidae are revised. Subfamilies are established in both (Sphaeronitidae: Sphaeronitinae and Herpetocystinae; Holocystitidae: Holocystitinae, Pentacystinae, and Trematocystinae), based largely on peristome morphology. Holocystites is divided into three new subgenera (Holocystites, Megacystites n. sgen., and Sepulticystis n. sgen.) on the basis of pore morphology. Evolutionary trends are noted in the Holocystitidae toward reduction in number of thecal and peristomial plates, enlargement of the subvective system, elevation of the theca. Humatipore morphology becomes more specialized and efficient, but average size decreased. Detailed specific and generic phylogenies are constructed, using both traditional and quantitative phenetic methods. All produced similar results. Osgood diploporite biostratigraphy is revised and a zonal scheme presented. Osgood diploporites are strongly endemic. 1Deceased 10 April 2008. Because Harrell Strimple was unable to INTRODUCTION contribute to the present manuscript beyond the first draft (Frest, The late Llandoverian-early Wenlockian Osgood (Osgood 1983), any remaining errors of fact or judgement are solely the Member, Salamonie Dolomite of Pinsak & Shaver, 1964) of responsibility of the senior author. Indiana, Kentucky, and Tennessee has long been a focus of 2Deceased 21 August 1983. paleontological interest because of its extraordinary diploporite 3Corresponding author, whose contribution (since September 2009) fauna. It served as the exemplar nonpareil of the Holocystites fau- has been almost entirely confined to proofing, indexing, and editorial na (Paul, 1971), reported from six horizons in the Wenlockian matters necessary to correct minor typographical errors introduced of eastern North America. The Holocystites fauna includes all when the original typescript was scanned using OCR software. As a known Silurian Diploporita (Echinodermata, Blastozoa), with result, some of the sections, especially those dealing with phylogeny, will seem dated now. New taxa introduced here are to be referred to the exception of the more cosmopolitan Gomphocystitidae, as "Frest & Strimple in Frest et al., 2011." common to Europe and North America (Bockelie, 1979). 2 Bulletins of American Paleontology, No. 380 Major impetus for the present work was provided by the Member and are only known from the American and European discovery of an important new Osgood diploporite locality in echinoderm Providences (Text-fig. 2). The Holocystites fauna is Ripley County, Indiana. Expanded quarrying operations at the endemic to the Eastern North American Province. New Point Stone Company's Napoleon quarry [SW 1/4 sec. 21 and NW 1/4 sec. 28, T9N, R11E, Osgood 7½' quadran- PREVIOUS STUDIES gle; this is the same as Paul's (1971: 164) Locality 12; Text-fig. The initial taxonomic phase of work on the Holocystites fau- 1], due to the discovery of an unusually thick Brassfield and na dates to Hall (1861, 1864, 1868) and Winchell & Marcy largely limestone Osgood section, led to the stripping off and (1865), who described internal molds from the Racine Dolomite dumping as waste of large quantities of very fossiliferous upper and Manistique Formation and equivalents of Wisconsin and Osgood shales. This material contained thousands of diplopo- Illinois. The much richer Osgood diploporite fauna was a later rite thecae and other echinoderms, as well as a rich normal ma- discovery, with early taxonomy largely the work of S. A. Miller rine invertebrate fauna. Prior to the Napoleon discovery, only (see Miller, 1878, 1879, 1880, 1882, 1889, 1891, 1892a-b, ca. 200 diploporites had been recovered in over a century of 1894; Miller & Faber, 1892; Miller & Gurley, 1894, 1895). collecting. Extensive collecting by several Cincinnati, Ohio, One more species was described by Foerste (1917) from Ohio. area collectors, notably W. Bruce Gibson, D. Cooper, and D. By 1920, over 50 nominal species had been established, all in Bissett salvaged much of the available material. Aside from our the genus Holocystites Hall, 1864. Much of the early work was own collections, we were able to examine some of their material, overly typological by modern standards. The total number of and all three generously donated numerous critical specimens. Osgood diploporite specimens Miller had, for example, appears Most Osgood localities lack macrofossils, and all but a to have been roughly equivalent to the number of species that handful of specimens previously found were from a doz- he established. en sites in southeastern Indiana (Paul, 1971; Frest et al., Following the first burst of taxonomic interest was a lull of 1977). Descriptions of diploporite localities are included as an several decades duration. A separate genus, Triamara Tillman, Appendix herein. Osgood fossil localities in this area generally 1967, was established for one Osgood form.
Recommended publications
  • From the Ordovician (Darriwillian) of Morocco
    Palaeogeographic implications of a new iocrinid crinoid (Disparida) from the Ordovician (Darriwillian) of Morocco Samuel Zamora1, Imran A. Rahman2 and William I. Ausich3 1 Instituto Geologico´ y Minero de Espana,˜ Zaragoza, Spain 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom 3 School of Earth Sciences, Ohio State University, Columbus, OH, United States ABSTRACT Complete, articulated crinoids from the Ordovician peri-Gondwanan margin are rare. Here, we describe a new species, Iocrinus africanus sp. nov., from the Darriwilian-age Taddrist Formation of Morocco. The anatomy of this species was studied using a combination of traditional palaeontological methods and non-destructive X-ray micro-tomography (micro-CT). This revealed critical features of the column, distal arms, and aboral cup, which were hidden in the surrounding rock and would have been inaccessible without the application of micro-CT. Iocrinus africanus sp. nov. is characterized by the presence of seven to thirteen tertibrachials, three in-line bifurcations per ray, and an anal sac that is predominantly unplated or very lightly plated. Iocrinus is a common genus in North America (Laurentia) and has also been reported from the United Kingdom (Avalonia) and Oman (middle east Gondwana). Together with Merocrinus, it represents one of the few geographically widespread crinoids during the Ordovician and serves to demonstrate that faunal exchanges between Laurentia and Gondwana occurred at this time. This study highlights the advantages of using both conventional
    [Show full text]
  • International Geological Correlation Programme. Project 591 "The Early to Middle Paleozoic Revolution"
    International Geological Correlation Programme. Project 591 "The Early to Middle Paleozoic Revolution". Proceedings of the 3rd IGCP 591 Annual Meeting : Lund, Sweden, 9–19 June 2013 Lindskog, Anders; Mehlqvist, Kristina 2013 Link to publication Citation for published version (APA): Lindskog, A., & Mehlqvist, K. (Eds.) (2013). International Geological Correlation Programme. Project 591 "The Early to Middle Paleozoic Revolution". Proceedings of the 3rd IGCP 591 Annual Meeting : Lund, Sweden, 9–19 June 2013. (International Geological Correlation Programme, UNESCO; Vol. 3). Department of Geology, Lund University. Total number of authors: 2 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 ANDERS LINDSKOG | KRISTINA MEHLQVIST Printed by Media-Tryck, Lund 2013 Proceedings of the 3rd IGCP 591 Annual Meeting Proceedings of the 3 Lund, Sweden, 9–19 June 2013 EDITED BY ANDERS LINDSKOG | KRISTINA MEHLQVIST DEPARTMENT OF GEOLOGY | LUND UNIVERSITY The abstracts within this volume were presented at the 3rd IGCP 591 Annual rd Meeting, which was held in Lund, Sweden, in June 2013.
    [Show full text]
  • Progress in Echinoderm Paleobiology
    Journal of Paleontology, 91(4), 2017, p. 579–581 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2017.20 Progress in echinoderm paleobiology Samuel Zamora1,2 and Imran A. Rahman3 1Instituto Geológico y Minero de España (IGME), C/Manuel Lasala, 44, 9ºB, 50006, Zaragoza, Spain 〈[email protected]〉 2Unidad Asociada en Ciencias de la Tierra, Universidad de Zaragoza-IGME, Zaragoza, Spain 3Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom 〈[email protected]〉 Echinoderms are a diverse and successful phylum of exclusively Universal elemental homology (UEH) has proven to be one marine invertebrates that have an extensive fossil record dating of the most powerful approaches for understanding homology back to Cambrian Stage 3 (Zamora and Rahman, 2014). There in early pentaradial echinoderms (Sumrall, 2008, 2010; Sumrall are five extant classes of echinoderms (asteroids, crinoids, and Waters, 2012; Kammer et al., 2013). This hypothesis echinoids, holothurians, and ophiuroids), but more than 20 focuses on the elements associated with the oral region, extinct groups, all of which are restricted to the Paleozoic identifying possible homologies at the level of specific plates. (Sumrall and Wray, 2007). As a result, to fully appreciate the Two papers, Paul (2017) and Sumrall (2017), deal with the modern diversity of echinoderms, it is necessary to study their homology of plates associated with the oral area in early rich fossil record. pentaradial echinoderms. The former contribution describes and Throughout their existence, echinoderms have been an identifies homology in various ‘cystoid’ groups and represents a important component of marine ecosystems.
    [Show full text]
  • A Probable Case of Heterochrony in the Solutan
    A probable case of heterochrony in the solutan Dendrocystites Barrande, 1887 (Echinodermata: Blastozoa) from the Upper Ordovician of the Prague Basin (Czech Republic) and a revision of the family Dendrocystitidae Bassler, 1938 FLEUR NOAILLES, BERTRAND LEFEBVRE & LIBOR KAIÈKA The morphology of the Late Ordovician solutan Dendrocystites is reevaluated based on more than 300 specimens from the Letná and Zahořany formations (Prague Basin, Czech Republic). This genus is reported for the first time from the Bohdalec Formation, and its presence is confirmed in the Vinice Formation. The morphology of all specimens of the stratigraphically older species D. barrandei (Sandbian) is identical to that of small to medium-size individuals of D. sedgwicki (Katian). Distinctive characters of D. sedgwicki occur only in the largest specimens, and are all size-related (more asymmetrical thecal outlines, stronger ornamentation, rosetting pattern of thecal plates, proliferation of platelets in the proxistele). Consequently, the transition from D. barrandei to D. sedgwicki is interpreted as the result of heterochronic processes, with the largest individuals of D. sedgwicki displaying hyperadult morphologies (hyper- morphosis). Dendrocystites is locally abundant in both the Letná and Zahořany formations, but extremely rare in the deeper deposits of the Vinice and Bohdalec formations. This pattern coincides closely with first order fluctuations of the sea-level in the Prague Basin. The life orientation and implied feeding strategy of Dendrocystites and other solutans are both critically discussed. Several independent lines of evidence suggest that solutans were more likely detritus-feeders. Finally, it is proposed that two morphologically distinct patterns of dististele organization were elaborated independently from the polyplated, undifferentiated stalk-like appendage of Coleicarpus (plesiomorphic condition).
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Proceedings of the Indiana Academy of Science 1919, 35:261-340
    Notes on the History of the Paleontological Collection, Department of Geology, Indiana University Alan Stanley Horowitz Department of Geology, Indiana University Bloomington, Indiana 47405 Introduction In the past, paleontologic papers, especially those printed prior to 1930, com- monly did not indicate the repository of the collections on which the published record was based. Workers generally assume the collections reside at the institution to which the author was associated as either student or faculty. Some early workers were not associated with any academic institution, and early collections have been scattered or destroyed. Because inquiries are made frequently to Indiana University concerning both the University and Indiana State Geological Survey collections, this paper provides some general information on earlier collections insofar as is presently known. According to Wylie (36), the records of Indiana University prior to 1883 were largely destroyed by fire. Wylie (36:31) quoted statements concerning geological col- lections from as early as 1852 in legislative acts affecting the University, e.g., "The Lecturers were also to make geological examinations, and collect mineralogical specimens for the cabinet by volunteer donations." No attempt has been made to reconstruct possible paleontological collections, other than the Owen collection, based on any ex- tant University catalogues or Reports of the President of Indiana University published prior to 1883, and I assume that any geological collections or catalogues prior to this date were lost in the 1883 fire reported by Wylie (36:83). The Owen Collection Our knowledge of the Indiana University Department of Geology (IUB) paleon- tological collections begins with the collection of David Dale Owen.
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • The Cambrian Substrate Revolution and the Early Evolution of Attachment in MARK Suspension-Feeding Echinoderms
    Earth-Science Reviews 171 (2017) 478–491 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The Cambrian Substrate Revolution and the early evolution of attachment in MARK suspension-feeding echinoderms ⁎ Samuel Zamoraa,b, , Bradley Delinec, J. Javier Álvarod, Imran A. Rahmane a Instituto Geológico y Minero de España, C/Manuel Lasala, 44, 9B, Zaragoza 50006, Spain b Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20013-7012, USA c University of West Georgia, Carrollton, GA, USA d Instituto de Geociencias (CSIC-UCM), c/José Antonio Novais 12, 28040 Madrid, Spain e Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK ARTICLE INFO ABSTRACT Keywords: The Cambrian, characterized by the global appearance of diverse biomineralized metazoans in the fossil record Palaeoecology for the first time, represents a pivotal point in the history of life. This period also documents a major change in Evolution the nature of the sea floor: Neoproterozoic-type substrates stabilized by microbial mats were replaced by un- fl Sea oor consolidated soft substrates with a well-developed mixed layer. The effect of this transition on the ecology and Attachment evolution of benthic metazoans is termed the Cambrian Substrate Revolution (CSR), and this is thought to have impacted greatly on early suspension-feeding echinoderms in particular. According to this paradigm, most echinoderms rested directly on non-bioturbated soft substrates as sediment attachers and stickers during the Cambrian Epoch 2. As the substrates became increasingly disturbed by burrowing, forming a progressively thickening mixed layer, echinoderms developed new strategies for attaching to firm and hard substrates.
    [Show full text]
  • The Diploporite Blastozoan Lepidocalix Pulcher from the Middle Ordovician of Northern Algeria: Taxonomic Revision and Palaeoecological Implications
    The diploporite blastozoan Lepidocalix pulcher from the Middle Ordovician of northern Algeria: Taxonomic revision and palaeoecological implications YAMOUNA MAKHLOUF, BERTRAND LEFEBVRE, ELISE NARDIN, AHMED NEDJARI, and CHRISTOPHER R.C. PAUL Makhlouf, Y., Lefebvre, B., Nardin, E., Nedjari, A., and Paul, C.R.C. 2017. The diploporite blastozoan Lepidocalix pulcher from the Middle Ordovician of northern Algeria: Taxonomic revision and palaeoecological implications. Acta Palaeontologica Polonica 62 (2): 299–310. We present revision of the taxonomy and palaeoecology of the Ordovician aristocystitid Lepidocalix pulcher from the Zaouïa of Stita (Great Kabylia, Algeria). An emended diagnosis is proposed, highlighting the four-fold ambulacral sys- tem and the typical thecal plating organised in circlets. Lepidocalix is here assigned to the subfamily Calicinae of the family Aristocystitidae. The latex casts show fitted sutures between plates, slightly abraded spines, and well-preserved oral surface. The thecal plates possess up to three dipores, each, included into the spines. The presence of such covered diplopores would have reduced the respiration rate, by restricting their exchange surface area. The spines covering the dipores are not articulated and they could have a protective role. Lepidocalix is interpreted as stationary epifauna, prob- ably using iceberg strategy to be stabilized into the soft substrate. Key words: Echinodermata, Diploporita, taxonomy, palaeoecology, Ordovician, Algeria, Stita. Yamouna Makhlouf [[email protected]],Université Frères Mentouri Constantine, FSTGAT, Campus Zouaghi Slimane, Route Aïn el Bey, 25000 Constantine, Algérie-Laboratoire Géodynamique des Bassins Sédimentaires et des Orogènes (LGBSO), Université des Sciences et de la Technologie Houari Boumediene, FSTGAT, BP 32, El Alia, Bab Ezzouar, 16000 Alger, Algeria.
    [Show full text]
  • Predation, Resistance, and Escalation in Sessile Crinoids
    Predation, resistance, and escalation in sessile crinoids by Valerie J. Syverson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in the University of Michigan 2014 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Research Scientist Janice L. Pappas Professor Emeritus Gerald R. Smith Research Scientist Miriam L. Zelditch © Valerie J. Syverson, 2014 Dedication To Mark. “We shall swim out to that brooding reef in the sea and dive down through black abysses to Cyclopean and many-columned Y'ha-nthlei, and in that lair of the Deep Ones we shall dwell amidst wonder and glory for ever.” ii Acknowledgments I wish to thank my advisor and committee chair, Tom Baumiller, for his guidance in helping me to complete this work and develop a mature scientific perspective and for giving me the academic freedom to explore several fruitless ideas along the way. Many thanks are also due to my past and present labmates Alex Janevski and Kris Purens for their friendship, moral support, frequent and productive arguments, and shared efforts to understand the world. And to Meg Veitch, here’s hoping we have a chance to work together hereafter. My committee members Miriam Zelditch, Janice Pappas, Jerry Smith, and Dan Fisher have provided much useful feedback on how to improve both the research herein and my writing about it. Daniel Miller has been both a great supervisor and mentor and an inspiration to good scholarship. And to the other paleontology grad students and the rest of the department faculty, thank you for many interesting discussions and much enjoyable socializing over the last five years.
    [Show full text]
  • Proquest Dissertations
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from tfie original or copy submitled. Thus, some ttiesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print t>leedthrough, sut)standard margins, and improper alignment can adversely affect reproduction. In the unlikely event tfiat the autfior did not send UMI a complete manuscript and there are missing pages, tfrese will be noted. Also, if unautfiorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced t>y sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in tfie original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any ptwtographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and teaming 300 North zeeb Road, Ann Arbor, Ml 4810B>1346 USA 800-521-0600 UMI* PALEONTOLOGY AND PALEOECOLOGY OF THE NADA MEMBER OF THE BORDEN FORMATION (LOWER MISSISSIPPIAN) IN EASTERN KENTUCKY DISSERTATION Presented in Partial Fullfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Aiguo Li, M.S. ***** The Ohio State University 2000 Dissertation Committee: Dr.
    [Show full text]
  • Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification Ve Ent
    University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 2020 Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification vE ent Adriane R. Lam University of Massachusetts Sarah L. Sheffield University of South Florida, [email protected] Nicholas J. Matzke University of Auckland Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Lam, Adriane R.; Sheffield, Sarah L.; and Matzke, Nicholas J., "Estimating Dispersal and Evolutionary Dynamics in Diploporan Blastozoans (Echinodermata) Across the Great Ordovician Biodiversification Event" (2020). School of Geosciences Faculty and Staff Publications. 2291. https://scholarcommons.usf.edu/geo_facpub/2291 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Paleobiology, 2020, pp. 1–23 DOI: 10.1017/pab.2020.24 Article Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event Adriane R. Lam†, Sarah L. Sheffield† , and Nicholas J. Matzke Abstract.—Echinoderms make up a substantial component of Ordovician marine invertebrates, yet their speciation and dispersal history as inferred within a rigorous phylogenetic and statistical framework is lacking. We use biogeographic stochastic mapping (BSM; implemented in the R package BioGeoBEARS) to infer ancestral area relationships and the number and type of dispersal events through the Ordovician for diploporan blastozoans and related species.
    [Show full text]