Decelerating Growth in Tropical Forest Trees

Total Page:16

File Type:pdf, Size:1020Kb

Decelerating Growth in Tropical Forest Trees Ecology Letters, (2007) 10: 461–469 doi: 10.1111/j.1461-0248.2007.01033.x LETTER Decelerating growth in tropical forest trees Abstract Kenneth J. Feeley,1* S. Joseph The impacts of global change on tropical forests remain poorly understood. We Wright,2 M. N. Nur Supardi,3 examined changes in tree growth rates over the past two decades for all species occurring Abd Rahman Kassim3 and Stuart in large (50-ha) forest dynamics plots in Panama and Malaysia. Stem growth rates 2,4 J. Davies declined significantly at both forests regardless of initial size or organizational level 1 Center for Tropical Forest (species, community or stand). Decreasing growth rates were widespread, occurring in Science, Arnold Arboretum Asia 24–71% of species at Barro Colorado Island, Panama (BCI) and in 58–95% of species at Program, Harvard University, 22 Pasoh, Malaysia (depending on the sizes of stems included). Changes in growth were not Divinity Avenue, Cambridge, consistently associated with initial growth rate, adult stature, or wood density. Changes in MA 02138, USA 2Smithsonian Tropical Research growth were significantly associated with regional climate changes: at both sites growth Institute, Panama City, Panama was negatively correlated with annual mean daily minimum temperatures, and at BCI 3Forest Environment Division, growth was positively correlated with annual precipitation and number of rainfree days Forest Research Institute (a measure of relative insolation). While the underlying cause(s) of decelerating growth is Malaysia, Kuala Lumpur, still unresolved, these patterns strongly contradict the hypothesized pantropical increase Malaysia 52109 in tree growth rates caused by carbon fertilization. Decelerating tree growth will have 4Center for Tropical Forest important economic and environmental implications. Science, Panama City, Panama *Correspondence: E-mail: Keywords [email protected] Carbon cycling, carbon fertilization, climate change, forest dynamics, tree growth rates. Ecology Letters (2007) 10: 461–469 Manaus, Brazil, and found that the growth rates of most INTRODUCTION genera (87%) had increased over time. This increase was It is well documented that human activities are affecting most pronounced in genera of large fast-growing canopy environmental conditions world-wide. Given the high trees and was therefore considered a response to carbon diversity as well as ecological and economical importance fertilization. In contrast, in the only species-level study to of lowland tropical rainforests it is critical that we date, Clark et al. (2003) looked at changes in the diameter understand their responses to these changes (Malhi & growth of six canopy tree species at La Selva, Costa Rica, Phillips 2004; Wright 2005; Lewis 2006). Recent studies and found that annual growth rates decreased steadily have reported that growth rates of tropical rainforests have over time in all species. Growth rates were negatively accelerated over the past several decades (Laurance et al. correlated with daily minimum temperatures and therefore 2004; Lewis et al. 2004b) consistent with the hypothesis of the declines were attributed to increasing nighttime increased productivity caused by rising concentrations of temperatures and the associated increases in respiratory atmospheric CO2 and carbon fertilization (Melillo et al. costs relative to photosynthetic gains. However, this study 1993; Laurance et al. 2004; Lewis et al. 2004a; Lewis 2006). tracked growth rates only within a single cohort of trees However, these studies have focused primarily on changes (i.e. new recruits were not incorporated; Clark et al. 2003) in stand-level growth rates (i.e. change in total basal area or and thus decreased growth rates may alternatively be biomass per unit area). One potential limitation of this attributable to a decrease in the relative growth of larger approach is that stand-level growth rates provide little trees. Clearly additional work is needed if we hope to information about the dynamics of most species as changes understand how the dynamics of tropical trees respond to may be driven by compositional shifts and/or the responses global anthropogenic disturbances such as rising concen- of just a few dominant species. trations of CO2 and climate change (Clark 2004; Nelson Laurance et al. (2004) investigated changes in tree 2005; Wright 2005). Understanding these responses will dynamics at the genera-level in forest plots located near have important implications for the world’s carbon Ó 2007 Blackwell Publishing Ltd/CNRS 462 K. J. Feeley et al. Letter budget; for example, models show that accelerated stem collaboratively with the Center for Tropical Forest Science growth may lead to persistent increases in carbon which ensures strict standardization of methods. sequestration, potentially helping to offset emissions (Chambers et al. 2001). Stand-level growth rates Here we use long-term tree census data from New- and Old-World 50-ha tree plots [Barro Colorado Island, In order to estimate stand-level growth rates at BCI and Panama (BCI), and Pasoh, Malaysia] to examine changes Pasoh, each plot was subdivided into 50 non-overlapping in relative basal area growth rates over the past several 1-ha (100 · 100 m) subplots. Relative stand-level growth decades for various size classes of stems (saplings, poles, rates (RGRstand) were then calculated for each hectare and canopy trees) at the species-, community- and stand- subplot during each census period as: level. Species-level growth describes the mean growth lnðBAt ÞlnðBA0Þ across individuals within each species; community-level RGRstand ¼ growth describes the mean relative growth across all t 2 species in the plot (i.e. species weighted equally); and where BA is the total basal area of all trees in mm , stand-level growth rates are the relative change in total regardless of species, that were alive and measurable at both basal area (all stems combined regardless of species) caused the start (BA0) and end (BAt) of the census period annual- by growth per hectare. Based on the species-specific ized by the number of years (t, measured in days) between growth rates, we then test if there are consistent censuses. Changes in basal area due to mortality or differences between decelerating vs. non-decelerating spe- recruitment are excluded. Estimates of RGRstand were log- cies in several species traits related to life-history strategy normally distributed and thus we used log transformed including initial growth rate, adult stature, and wood values for all analyses. density. Finally, using long-term meteorological data from In the first two censuses at BCI and the first census at BCI we test the relationship between the observed changes Pasoh the diameter of stems < 55 mm dbh were recorded in community-wide growth rates and changes in temper- at 5 mm increments (always rounded down). To account for ature and precipitation. this, the growth rates of these stems for the first two intervals at BCI and the first interval at Pasoh were based on diameter measurements rounded down to the nearest 5 mm METHODS (Condit et al. 2006). To correct for measurement errors, the ) maximum diameter growth rate was set to 75 mm year 1.In Study sites addition, we assumed zero growth (i.e. BA0 ¼ BAt) for any This study was conducted using data from 50-ha Forest individuals in which the point of measurement (POM) Dynamics Plots located on BCI and at Pasoh, Malaysia changed between censuses (e.g. due to growth of buttresses) (Table 1). These plots differ greatly in their local weather (Condit et al. 2006). POM corrections affected only a small regimes, soil characteristics, and history (Leigh et al. 2004; percentage of individuals at BCI (0.3–6.7% depending on Manokaran et al. 2004). In both plots, all woody stems the census interval and size of stems included (Appen- ‡ 10 mm dbh (excluding lianas) have been identified to dix S1), and no individuals at Pasoh. Still, we recalculated species, mapped, tagged and measured to the nearest mm growth rates using several methods to estimate growth rates (but see below) in repeated censuses. The plot on BCI of trees for which POM changed (Appendix S1). Our was initiated in 1981/1982 and has been recensused in results are robust to these corrections (Appendix S1). Here 1985, 1990, 1995, 2000, and 2005. The plot at Pasoh was we only present results based on the correction method initiated in 1986 and has been recensused in 1990, 1995, described above. and 2000 (Pasoh was recensused in 2005 but these data The rates of change in RGRstand through time were are currently unavailable). Both plots are administered determined by calculating the linear least-squares regression Table 1 Characteristics of study plots Mean No. of months Number of species Location(latitude, Elevation annual with <100 mm * Site longitude) (m) precipitation(mm) precipitation Total Saplings Poles Trees BCI 9° 09¢N, 79° 51¢E 120–160 2551 3 – 4 (January – April) 320 242 219 217 Pasoh 2° 58¢N, 102°18¢E 80–104 1788 0 – 1 (January) 823 775 692 651 *Includes all species, even those present in only a single census. Includes only those species occurring in all censuses. Ó 2007 Blackwell Publishing Ltd/CNRS Letter Decelerating tropical tree growth 463 coefficient (b) of RGRstand (log transformed) vs. date (b) of RGRcomm and RGRspecies (log transformed) vs. date at separately for each of the 50 subplots. The 95% confidence Pasoh and BCI (RGRspecies was calculated for each species intervals (CIs) for the median b at BCI and Pasoh were that occurred in all censuses). We calculated the significance determined through bootstrapping (5000 resamples) and of b for each individual species through a stratified compared with the null expectation of no consistent change bootstrapping procedure: an estimate of the species-specific (i.e. b ¼ 0). growth rate was sampled with replacement from the As growth rates are strongly related to tree size, we also corresponding posterior distribution of RGRspecies for each calculated stand-level growth rates and the associated rates of of the census intervals and b was recalculated.
Recommended publications
  • Dynamics and Disturbance in an Old-Growth Forest Remnant In
    DYNAMICS AND DISTURBANCE IN AN OLD-GROWTH FOREST REMNANT IN WESTERN OHIO Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Biology By Sean Michael Goins UNIVERSITY OF DAYTON Dayton, Ohio August, 2012 DYNAMICS AND DISTURBANCE IN AN OLD-GROWTH FOREST REMNANT IN WESTERN OHIO Name: Goins, Sean Michael APPROVED BY: __________________________________________ Ryan W. McEwan, Ph.D. Committee Chair Assistant Professor __________________________________________ M. Eric Benbow, Ph.D. Committee Member Assistant Professor __________________________________________ Mark G. Nielsen, Ph.D. Committee Member Associate Professor ii ABSTRACT DYNAMICS AND DISTURBANCE IN AN OLD-GROWTH FOREST REMNANT IN WESTERN OHIO Name: Goins, Sean Michael University of Dayton Advisor: Dr. Ryan W. McEwan Forest communities are dynamic through time, reacting to shifts in disturbance and climate regimes. A widespread community shift has been witnessed in many forests of eastern North America wherein oak (Quercus spp.) populations are decreasing while maple (Acer spp.) populations are increasing. Altered fire regimes over the last century are thought to be the primary driver of oak-to-maple community shifts; however, the influence of other non-equilibrium processes on this community shift remains under- explored. Our study sought to determine the community structure and disturbance history of an old-growth forest remnant in an area of western Ohio where fires were historically uncommon. To determine community structure, abundance of woody species was measured within 32 plots at 4 canopy strata and dendrochronology was used to determine the relative age-structure of the forest.
    [Show full text]
  • Old-Growth Forests
    Pacific Northwest Research Station NEW FINDINGS ABOUT OLD-GROWTH FORESTS I N S U M M A R Y ot all forests with old trees are scientifically defined for many centuries. Today’s old-growth forests developed as old growth. Among those that are, the variations along multiple pathways with many low-severity and some Nare so striking that multiple definitions of old-growth high-severity disturbances along the way. And, scientists forests are needed, even when the discussion is restricted to are learning, the journey matters—old-growth ecosystems Pacific coast old-growth forests from southwestern Oregon contribute to ecological diversity through every stage of to southwestern British Columbia. forest development. Heterogeneity in the pathways to old- growth forests accounts for many of the differences among Scientists understand the basic structural features of old- old-growth forests. growth forests and have learned much about habitat use of forests by spotted owls and other species. Less known, Complexity does not mean chaos or a lack of pattern. Sci- however, are the character and development of the live and entists from the Pacific Northwest (PNW) Research Station, dead trees and other plants. We are learning much about along with scientists and students from universities, see the structural complexity of these forests and how it leads to some common elements and themes in the many pathways. ecological complexity—which makes possible their famous The new findings suggest we may need to change our strat- biodiversity. For example, we are gaining new insights into egies for conserving and restoring old-growth ecosystems. canopy complexity in old-growth forests.
    [Show full text]
  • Sass Forestecomgt 2018.Pdf
    Forest Ecology and Management 419–420 (2018) 31–41 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Lasting legacies of historical clearcutting, wind, and salvage logging on old- T growth Tsuga canadensis-Pinus strobus forests ⁎ Emma M. Sassa, , Anthony W. D'Amatoa, David R. Fosterb a Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA b Harvard Forest, Harvard University, 324 N Main St, Petersham, MA 01366, USA ARTICLE INFO ABSTRACT Keywords: Disturbance events affect forest composition and structure across a range of spatial and temporal scales, and Coarse woody debris subsequent forest development may differ after natural, anthropogenic, or compound disturbances. Following Compound disturbance large, natural disturbances, salvage logging is a common and often controversial management practice in many Forest structure regions of the globe. Yet, while the short-term impacts of salvage logging have been studied in many systems, the Large, infrequent natural disturbance long-term effects remain unclear. We capitalized on over eighty years of data following an old-growth Tsuga Pine-hemlock forests canadensis-Pinus strobus forest in southwestern New Hampshire, USA after the 1938 hurricane, which severely Pit and mound structures damaged forests across much of New England. To our knowledge, this study provides the longest evaluation of salvage logging impacts, and it highlights developmental trajectories for Tsuga canadensis-Pinus strobus forests under a variety of disturbance histories. Specifically, we examined development from an old-growth condition in 1930 through 2016 across three different disturbance histories: (1) clearcut logging prior to the 1938 hurricane with some subsequent damage by the hurricane (“logged”), (2) severe damage from the 1938 hurricane (“hurricane”), and (3) severe damage from the hurricane followed by salvage logging (“salvaged”).
    [Show full text]
  • The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States
    Global Change Biology (2016) 22, 2329–2352, doi: 10.1111/gcb.13160 SPECIAL FEATURE The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States JAMES S. CLARK1 , LOUIS IVERSON2 , CHRISTOPHER W. WOODALL3 ,CRAIGD.ALLEN4 , DAVID M. BELL5 , DON C. BRAGG6 , ANTHONY W. D’AMATO7 ,FRANKW.DAVIS8 , MICHELLE H. HERSH9 , INES IBANEZ10, STEPHEN T. JACKSON11, STEPHEN MATTHEWS12, NEIL PEDERSON13, MATTHEW PETERS14,MARKW.SCHWARTZ15, KRISTEN M. WARING16 andNIKLAUS E. ZIMMERMANN17 1Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, 2Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, 3Forest Service 1992 Folwell Avenue,Saint Paul, MN 55108, USA, 4U.S. Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, 5Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, 6Forest Service, Southern Research Station, Monticello, AR 71656, USA, 7Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, 8Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, 9Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, 10School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, 11U.S. Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell
    [Show full text]
  • Ecological Insights from Long-Term Research Plots in Tropical and Temperate Forests
    Ecological Insights from Long-term Research Plots in Tropical and Temperate Forests Organized Oral Session 40 was co-organized by Amy Wolf, Stuart Davies, and Richard Condit, and held on 6 August 2009 during the 94th ES A Annual Meeting in Albuquerque, New Mexico. An International Network of Forest Research Sites This session was devoted to findings from an international network of long-term forest dynamics plots, providing some of the first comparisons between the tropical and temperate study areas. Whereas most ecologists recognize the importance of long-term research (Callahan 1984, Likens 1989, Magnuson 1990, Hobbie et al. 2003, and others), large-scale projects like this one are rare. The global network of forest dynamics plots has expanded since its origin in the early 1980s, yet research at the plots has remained integrated due to a combination of individual scientists' efforts and institutional commitments from the Center for Tropical Forest Science (CTFS, <www.ctfs.si.edu> of the Smithsonian Tropical Research Institute and the Arnold Arboretum of Harvard University (Hubbell and Foster 1983, Condit 1995). Today, 26 large plots have been established in tropical or subtropical forests of Central and South America, Africa, Asia, and Oceania, along with 8 recently added temperate forest plots. A standard protocol (Condit 1998) is followed at all sites, including the marking, mapping, and measuring of all trees and shrubs with stem diameters >1 cm. Reports October 2009 519 Reports An underlying objective of the ESA session was to illustrate how an understanding of forest dynamics can contribute to long-term strategies of sustainable forest management in a changing global environment.
    [Show full text]
  • Silvicultural Activities: Description and Terminology 1
    WHITE PAPER F14-SO-WP-SILV-34 Silvicultural Activities: Description and Terminology 1 David C. Powell; Forest Silviculturist Supervisor’s Office; Pendleton, OR Initial Version: JUNE 1992 Most Recent Revision: FEBRUARY 2018 Introduction ........................................................................................................................ 2 Silvicultural systems ............................................................................................................ 2 Age-based silvicultural systems .................................................................................... 2 Even-aged management ............................................................................................... 3 Figure 1 – Three common stand structures ........................................................................... 4 Figure 2 – Clearcutting ............................................................................................................ 5 Figure 3 – Seed-tree and shelterwood cutting ....................................................................... 6 Figure 4 – Windthrow in spruce-fir forest in the northern Blue Mountains .......................... 8 Figure 5 – Examples of overstory removal and understory removal cutting ......................... 9 Uneven-aged management ........................................................................................ 10 Figure 6 – Examples of individual-tree selection cutting in ponderosa pine ....................... 12 Figure 7 – Examples of group selection
    [Show full text]
  • Pre-Fire Treatment Effects and Post-Fire Forest Dynamics on the Rodeo-Chediski Burn Area, Arizona
    Pre-fire treatment effects and post-fire forest dynamics on the Rodeo-Chediski burn area, Arizona by Barbara A. Strom A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science in Forestry Northern Arizona University May 2005 Approved: __________________________________ Peter Z. Fulé, Ph.D., Chair __________________________________ Stephen C. Hart, Ph.D. __________________________________ Thomas E. Kolb, Ph.D. ABSTRACT Pre-fire treatment effects and post-fire forest dynamics on the Rodeo-Chediski burn area, Arizona Barbara A. Strom The 2002 Rodeo-Chediski fire was the largest wildfire in Arizona history at 189,000 ha (468,000 acres), and exhibited some of the most extreme fire behavior ever seen in the Southwest. Pre-fire fuel reduction treatments of thinning, timber harvesting, and prescribed burning on the White Mountain Apache Tribal lands (WMAT) and thinning on the Apache-Sitgreaves National Forest (A-S) set the stage for a test of the upper boundary of effectiveness of fuel reduction treatments at decreasing burn severity. On the WMAT, we sampled 90 six-hectare study sites two years after the fire, representing 30% of the entire burn area on White Mountain Apache Tribe lands, or 34,000 hectares, and comprising a matrix of three burn severities (low, moderate, or high) and three treatments (cutting and prescribed burning, prescribed burning only, or no treatment). Prescribed burning without cutting was associated with reduced burn severity, but the combination of cutting and prescribed burning had the greatest ameliorative effect. Increasing degree of treatment was associated with an increase in the number of live trees and a decrease in the extremity of fire behavior as indicated by crown base height and bole char height.
    [Show full text]
  • FAO Forestry Paper 120. Decline and Dieback of Trees and Forests
    FAO Decline and diebackdieback FORESTRY of tretreess and forestsforests PAPER 120 A globalgIoia overviewoverview by William M. CieslaCiesla FADFAO Forest Resources DivisionDivision and Edwin DonaubauerDonaubauer Federal Forest Research CentreCentre Vienna, Austria Food and Agriculture Organization of the United Nations Rome, 19941994 The designations employedemployed and the presentation of material inin thisthis publication do not imply the expression of any opinion whatsoever onon the part ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concerning the legallega! status ofof anyany country,country, territory,territory, citycity oror area or of itsits authorities,authorities, oror concerningconcerning thethe delimitationdelimitation ofof itsits frontiers or boundarboundaries.ies. M-34M-34 ISBN 92-5-103502-492-5-103502-4 All rights reserved. No part of this publicationpublication may be reproduced,reproduced, stored in aa retrieval system, or transmittedtransmitted inin any form or by any means, electronic, mechani-mechani­ cal, photocopying or otherwise, without the prior permission of the copyrightownecopyright owner.r. Applications for such permission, withwith aa statement of the purpose andand extentextent ofof the reproduction,reproduction, should bebe addressed toto thethe Director,Director, Publications Division,Division, FoodFood andand Agriculture Organization ofof the United Nations,Nations, VVialeiale delle Terme di Caracalla, 00100 Rome, Italy.Italy. 0© FAO FAO 19941994
    [Show full text]
  • Margaret Rowan Metz
    CURRICULUM VITAE Margaret Rowan Metz Department of Biology 503-768-7684 (tel) Lewis & Clark College 503-768-7658 (fax) 0615 SW Palatine Hill Rd., MSC 53 [email protected] Portland, OR 97219 www.margaretmetz.com PROFESSIONAL APPOINTMENTS Assistant Professor Department of Biology, Lewis & Clark College, Portland, OR. August 2014-present. Project Scientist Department of Plant Pathology, University of California, Davis. 2014. Postdoctoral Researcher Department of Plant Pathology, University of California, Davis. 2008-2014. EDUCATION Ph.D. University of California, Berkeley, Integrative Biology. 2007. Spatiotemporal variation in seedling dynamics and the maintenance of forest diversity in an Amazonian forest. Thesis committee: Drs. Wayne Sousa (advisor), David Ackerly, John Battles, & Carla D’Antonio. A.B. Princeton University, Ecology and Evolutionary Biology, cum laude. 1998. GRANTS AND FELLOWSHIPS 2017 Center for Tropical Forest Science, Smithsonian Tropical Research Institute $34,500 “Long-term studies of flowering, fruiting and seedling dynamics at Yasuní.” 2016-2020 NSF Dimensions of Biodiversity $1,600,000 “Dynamical interactions between plant and oomycete biodiversity in a temperate forest.” PIs: B. Tyler, N. Grunwald, A. Jones, M. Metz, J. Lutz, D. Oline. Subaward to Lewis & Clark College to support undergraduate research experiences $127,355 2011-2017 NSF Long-term Research in Environmental Biology (renewal) $450,000 “Collaborative Research: LTREB Renewal - Long-term studies of flowering, fruiting and seedling recruitment in Neotropical forests: global change, climate variability and mechanisms.” PIs: N. C. Garwood, M. R. Metz, H. C. Muller-Landau, N. Swenson, M. Uriarte, S. J. Wright, J. K. Zimmerman. 2011-2016 NSF Ecology of Infectious Diseases $785,398 “Collaborative Research: Interacting disturbances: leaf to landscape dynamics of emerging disease, fire and drought in California coastal forests.” Lead PI D.
    [Show full text]
  • Disturbance History and Dynamics of an Old-Growth Nothofagus Forest in Southern Patagonia
    Article Disturbance History and Dynamics of an Old-Growth Nothofagus Forest in Southern Patagonia Mariano Martín Amoroso 1,2,* and Ana Paula Blazina 3 1 Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Mitre 630, San Carlos de Bariloche CP 8400, Argentina 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Av. de los Pioneros 2350, San Carlos de Bariloche CP 8400, Argentina 3 Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo Houssay 200, Ushuaia V9410, Argentina; [email protected] * Correspondence: [email protected] Received: 3 December 2019; Accepted: 10 January 2020; Published: 14 January 2020 Abstract: The identification of disturbance events using disturbance chronologies has become a valuable tool in reconstructing disturbance history in temperate forests worldwide; yet detailed reconstructions of disturbance history and their effect on the structure and dynamics of the old-growth Nothofagus forests in the southern Patagonia are scarce. We reconstructed forest dynamics and disturbance history of an old-growth N. pumilio forest in the Toro River Valley, Santa Cruz, Argentina using dendroecological techniques. Since a variation in the disturbance regimes was expected with changing elevation, we sampled at different elevations. We found distinct differences in forest structure, dynamics, and disturbance history with changes in the elevation. The disturbance chronologies provided robust evidence that forests in the study area have been subjected to multiple disturbance events over the last 200 years. Yet, recognizing the agent of disturbance could be difficult in these montane forests and further studies are required.
    [Show full text]
  • Restoring Fire-Adapted Ecosystems: Proceedings of the 2005 National Silviculture Workshop
    United States Department of Restoring Fire-Adapted Agriculture Forest Service Ecosystems: Proceedings of the Pacific Southwest 2005 National Silviculture Research Station Workshop General Technical Report PSW-GTR-203 June 6-10, 2005 Tahoe City, California January 2007 Historic and Future Trends Management Strategies Silvicultural Options Risks And Impacts Abstract Powers, Robert F., tech. editor. 2007. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop. Gen. Tech. Rep. PSW-GTR-203. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. 306 p. Many federal forests are at risk to catastrophic wild fire owing to past management practices and policies. Mangers of these forests face the immense challenge of making their forests resilient to wild fire, and the problem is complicated by the specter of climate change that may affect wild fire frequency and intensity. Some of the Nationʼs leading scientists and practitioner present approaches in tackling the problem. Key words: wild fire, fuel management, thinning, climate change, fire history, resilience The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).
    [Show full text]
  • Biodiversity, Carbon Storage and Dynamics of Old Northern Forests Biodiversity, Carbon Storage and Dynamics of Old Northern Forests
    TemaNord 2013:507 TemaNord Ved Stranden 18 DK-1061 Copenhagen K www.norden.org Biodiversity, carbon storage and dynamics of old northern forests Biodiversity, carbon storage and dynamics of old northern forests Forests play a key role in the global climate system. The Nordic countri- es have extensive forests with large and growing tree biomass that captures substantial amounts of the greenhouse gas carbon dioxide. Nordic forests are also important for biodiversity, with complex eco- systems providing habitats for about half of all known native species and threatened species in Finland, Norway, and Sweden. Forests also supply the basis for the economically important forest sector. In this report we review current knowledge on the role of old forests in the carbon cycle, their natural dynamics and importance for biodiversity. Based on evidence in the literature, it is clear that old forests continue to accumulate carbon for a long time, well past the normal logging age. The carbon uptake of old forests represents an important co-benefit for the well-documented value of old forests for biodiversity. TemaNord 2013:507 ISBN 978-92-893-2510-3 TN2013507 omslag.indd 1 24-01-2013 11:18:04 Biodiversity, carbon storage and dynamics of old northern forests Erik Framstad, Heleen de Wit, Raisa Mäkipää, Markku Larjavaara, Lars Vesterdal and Erik Karltun TemaNord 2013:507 Biodiversity, carbon storage and dynamics of old northern forests Erik Framstad, Heleen de Wit, Raisa Mäkipää, Markku Larjavaara, Lars Vesterdal and Erik Karltun ISBN 978-92-893-2510-3 http://dx.doi.org/10.6027/TN2013-507 TemaNord 2013:507 © Nordic Council of Ministers 2013 Layout: NMR Cover photo: Erkki Oksanen, Metla Print: Rosendahls-Schultz Grafisk Copies: 130 Printed in Denmark This publication has been published with financial support by the Nordic Council of Ministers.
    [Show full text]