Mouse Hars2 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Hars2 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Hars2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Hars2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Hars2 gene (NCBI Reference Sequence: NM_080636 ; Ensembl: ENSMUSG00000019143 ) is located on Mouse chromosome 18. 13 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 13 (Transcript: ENSMUST00000152954). Exon 5~8 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Hars2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-56M5 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 26.2% of the coding region. The knockout of Exon 5~8 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 1295 bp, and the size of intron 8 for 3'-loxP site insertion: 486 bp. The size of effective cKO region: ~1662 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 11 12 13 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Hars2 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(8155bp) | A(25.05% 2043) | C(19.67% 1604) | T(30.96% 2525) | G(24.32% 1983) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr18 + 36784253 36787252 3000 browser details YourSeq 223 498 1078 3000 88.5% chr11 - 72555350 72555711 362 browser details YourSeq 221 558 1081 3000 90.1% chr16 + 17231542 17231988 447 browser details YourSeq 208 558 1063 3000 88.6% chr8 - 13970336 13970601 266 browser details YourSeq 198 646 1081 3000 87.9% chr7 + 27630398 27630785 388 browser details YourSeq 197 558 1063 3000 85.1% chr14 - 63518559 63518828 270 browser details YourSeq 195 499 1064 3000 91.5% chr7 + 28397022 28397597 576 browser details YourSeq 191 873 1080 3000 94.5% chr9 + 6237817 6238014 198 browser details YourSeq 187 873 1063 3000 99.0% chr6 + 47857719 47857909 191 browser details YourSeq 186 877 1078 3000 97.0% chr7 + 31493942 31494142 201 browser details YourSeq 184 558 1063 3000 86.1% chr5 - 121563921 121564167 247 browser details YourSeq 183 873 1063 3000 98.0% chr8 - 119180199 119180389 191 browser details YourSeq 183 873 1063 3000 98.0% chr3 - 10432318 10432508 191 browser details YourSeq 183 873 1063 3000 96.9% chr9 + 114502463 114502652 190 browser details YourSeq 183 873 1063 3000 96.9% chr6 + 113175930 113176119 190 browser details YourSeq 183 872 1063 3000 98.0% chr11 + 49810673 49810866 194 browser details YourSeq 182 876 1063 3000 98.5% chr4 + 132798935 132799122 188 browser details YourSeq 182 875 1063 3000 96.8% chr3 + 88154076 88154262 187 browser details YourSeq 182 873 1063 3000 98.0% chr18 + 56582308 56582502 195 browser details YourSeq 180 871 1080 3000 95.1% chr2 - 167064436 167064649 214 Note: The 3000 bp section upstream of Exon 5 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr18 + 36788915 36791914 3000 browser details YourSeq 1151 248 3000 3000 88.1% chrX + 59196963 59198442 1480 browser details YourSeq 111 828 2995 3000 84.3% chr1 + 85547364 85914416 367053 browser details YourSeq 77 2 176 3000 88.9% chr10 - 101476053 101476237 185 browser details YourSeq 65 834 1037 3000 84.1% chr16 - 44147085 44147271 187 browser details YourSeq 64 66 159 3000 82.5% chr5 - 125234758 125234837 80 browser details YourSeq 64 837 1034 3000 91.1% chr17 - 4600656 4600941 286 browser details YourSeq 64 836 1034 3000 87.5% chr15 + 99286100 99286297 198 browser details YourSeq 63 42 121 3000 90.0% chr6 - 31239203 31239287 85 browser details YourSeq 62 73 170 3000 90.6% chr2 - 74641666 74641817 152 browser details YourSeq 61 80 176 3000 78.5% chr1 - 141109337 141109425 89 browser details YourSeq 60 839 1037 3000 79.5% chr11 - 6465115 6465283 169 browser details YourSeq 59 827 1035 3000 77.5% chr1 - 59694496 59694687 192 browser details YourSeq 58 837 1034 3000 94.0% chr11 - 48777724 48778067 344 browser details YourSeq 55 1 151 3000 92.5% chr10 - 4343530 4344078 549 browser details YourSeq 53 1006 1166 3000 92.1% chr1 + 153505882 153506156 275 browser details YourSeq 50 828 1036 3000 87.0% chr10 - 61243822 61244149 328 browser details YourSeq 49 968 1036 3000 98.1% chr10 - 56346906 56347277 372 browser details YourSeq 48 2916 2991 3000 81.6% chr4 - 149816304 149816379 76 browser details YourSeq 48 2913 2990 3000 80.8% chr1 - 16558404 16558481 78 Note: The 3000 bp section downstream of Exon 8 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Hars2 histidyl-tRNA synthetase 2 [ Mus musculus (house mouse) ] Gene ID: 70791, updated on 12-Aug-2019 Gene summary Official Symbol Hars2 provided by MGI Official Full Name histidyl-tRNA synthetase 2 provided by MGI Primary source MGI:MGI:1918041 See related Ensembl:ENSMUSG00000019143 Gene type protein coding RefSeq status REVIEWED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as HO3; HARSR; Harsl; 4631412B19Rik Summary This gene encodes a putative member of the class II family of aminoacyl-tRNA synthetases. These enzymes play a critical Expression role in protein biosynthesis by charging tRNAs with their cognate amino acids. This protein is encoded by the nuclear genome but is likely to be imported to the mitochondrion where it is thought to catalyze the ligation of histidine to tRNA molecules. Mutations in a similar gene in human have been associated with Perrault syndrome 2 (PRLTS2). [provided by RefSeq, Mar 2015] Orthologs Ubiquitous expression in CNS E11.5 (RPKM 11.8), CNS E14 (RPKM 10.4) and 28 other tissues See more human all Genomic context Location: 18; 18 B2 See Hars2 in Genome Data Viewer Exon count: 14 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 18 NC_000084.6 (36783202..36792562) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 18 NC_000084.5 (36942934..36952216) Chromosome 18 - NC_000084.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 7 transcripts Gene: Hars2 ENSMUSG00000019143 Description histidyl-tRNA synthetase 2 [Source:MGI Symbol;Acc:MGI:1918041] Gene Synonyms 4631412B19Rik, HARSR, HO3, Harsl Location Chromosome 18: 36,783,008-36,792,562 forward strand. GRCm38:CM001011.2 About this gene This gene has 7 transcripts (splice variants), 225 orthologues, 1 paralogue and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Hars2-206 ENSMUST00000152954.7 3336 505aa ENSMUSP00000117231.1 Protein coding CCDS29165 Q99KK9 TSL:1 GENCODE basic APPRIS P1 Hars2-201 ENSMUST00000019287.8 2002 424aa ENSMUSP00000019287.8 Protein coding CCDS84376 G5E823 TSL:1 GENCODE basic Hars2-203 ENSMUST00000131952.1 819 No protein - Retained intron - - TSL:5 Hars2-205 ENSMUST00000145876.1 772 No protein - Retained intron - - TSL:2 Hars2-202 ENSMUST00000124204.1 769 No protein - Retained intron - - TSL:1 Hars2-207 ENSMUST00000155842.1 406 No protein - Retained intron - - TSL:5 Hars2-204 ENSMUST00000134122.7 896 No protein - lncRNA - - TSL:3 Page 6 of 8 https://www.alphaknockout.com 29.55 kb Forward strand 36.78Mb 36.79Mb 36.80Mb Genes Hars2-206 >protein coding Zmat2-201 >protein coding (Comprehensive set... Hars2-204 >lncRNA Zmat2-202 >retained intron Hars2-201 >protein coding Vaultrc5-201 >misc RNA Hars2-205 >retained intron Hars2-207 >retained intron Hars2-203 >retained intron Hars2-202 >retained intron Contigs AC027740.11 > Genes < Hars-201protein coding (Comprehensive set... < Hars-204retained intron < Hars-203nonsense mediated decay Regulatory Build 36.78Mb 36.79Mb 36.80Mb Reverse strand 29.55 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000152954 9.55 kb Forward strand Hars2-206 >protein coding ENSMUSP00000117... Low complexity (Seg) Cleavage site (Sign... TIGRFAM Histidine-tRNA ligase Superfamily SSF55681 SSF52954 Pfam Class II Histidinyl-tRNA synthetase (HisRS)-like catalytic core domain Anticodon-binding PROSITE profiles Aminoacyl-tRNA synthetase, class II PIRSF Histidine-tRNA ligase/ATP phosphoribosyltransferase regulatory subunit PANTHER PTHR11476 PTHR11476:SF6 Gene3D 3.30.930.10 Anticodon-binding domain superfamily CDD Class II Histidinyl-tRNA synthetase (HisRS)-like catalytic core domain Histidyl-anticodon-binding All sequence SNPs/i..
Recommended publications
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • HARS2 Gene Histidyl-Trna Synthetase 2, Mitochondrial
    HARS2 gene histidyl-tRNA synthetase 2, mitochondrial Normal Function The HARS2 gene provides instructions for making an enzyme called mitochondrial histidyl-tRNA synthetase. This enzyme is important in the production (synthesis) of proteins in cellular structures called mitochondria, the energy-producing centers in cells. While most protein synthesis occurs in the fluid surrounding the nucleus (cytoplasm), some proteins are synthesized in the mitochondria. During protein synthesis, in either the mitochondria or the cytoplasm, a type of RNA called transfer RNA (tRNA) helps assemble protein building blocks (amino acids) into a chain that forms the protein. Each tRNA carries a specific amino acid to the growing chain. Enzymes called aminoacyl-tRNA synthetases, including mitochondrial histidyl- tRNA synthetase, attach a particular amino acid to a specific tRNA. Mitochondrial histidyl-tRNA synthetase attaches the amino acid histidine to the correct tRNA, which helps ensure that histidine is added at the proper place in the mitochondrial protein. Health Conditions Related to Genetic Changes Perrault syndrome At least two mutations in the HARS2 gene have been found to cause Perrault syndrome. This rare condition is characterized by hearing loss in males and females with the disorder and abnormalities of the ovaries in affected females. The HARS2 gene mutations involved in Perrault syndrome reduce the activity of mitochondrial histidyl- tRNA synthetase. A shortage of functional mitochondrial histidyl-tRNA synthetase prevents the normal assembly of new proteins within mitochondria. Researchers speculate that impaired protein assembly disrupts mitochondrial energy production. However, it is unclear exactly how HARS2 gene mutations lead to hearing problems and ovarian abnormalities in affected individuals.
    [Show full text]
  • Aminoacyl-Trna Synthetase Deficiencies in Search of Common Themes
    © American College of Medical Genetics and Genomics ARTICLE Aminoacyl-tRNA synthetase deficiencies in search of common themes Sabine A. Fuchs, MD, PhD1, Imre F. Schene, MD1, Gautam Kok, BSc1, Jurriaan M. Jansen, MSc1, Peter G. J. Nikkels, MD, PhD2, Koen L. I. van Gassen, PhD3, Suzanne W. J. Terheggen-Lagro, MD, PhD4, Saskia N. van der Crabben, MD, PhD5, Sanne E. Hoeks, MD6, Laetitia E. M. Niers, MD, PhD7, Nicole I. Wolf, MD, PhD8, Maaike C. de Vries, MD9, David A. Koolen, MD, PhD10, Roderick H. J. Houwen, MD, PhD11, Margot F. Mulder, MD, PhD12 and Peter M. van Hasselt, MD, PhD1 Purpose: Pathogenic variations in genes encoding aminoacyl- with unreported compound heterozygous pathogenic variations in tRNA synthetases (ARSs) are increasingly associated with human IARS, LARS, KARS, and QARS extended the common phenotype disease. Clinical features of autosomal recessive ARS deficiencies with lung disease, hypoalbuminemia, anemia, and renal tubulo- appear very diverse and without apparent logic. We searched for pathy. common clinical patterns to improve disease recognition, insight Conclusion: We propose a common clinical phenotype for recessive into pathophysiology, and clinical care. ARS deficiencies, resulting from insufficient aminoacylation activity Methods: Symptoms were analyzed in all patients with recessive to meet translational demand in specific organs or periods of life. ARS deficiencies reported in literature, supplemented with Assuming residual ARS activity, adequate protein/amino acid supply unreported patients evaluated in our hospital. seems essential instead of the traditional replacement of protein by Results: In literature, we identified 107 patients with AARS, glucose in patients with metabolic diseases. DARS, GARS, HARS, IARS, KARS, LARS, MARS, RARS, SARS, VARS, YARS, and QARS deficiencies.
    [Show full text]
  • Mouse Hars2 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Hars2 Knockout Project (CRISPR/Cas9) Objective: To create a Hars2 knockout Mouse model (C57BL/6N) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Hars2 gene (NCBI Reference Sequence: NM_080636 ; Ensembl: ENSMUSG00000019143 ) is located on Mouse chromosome 18. 13 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 13 (Transcript: ENSMUST00000152954). Exon 2~13 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 6.8% of the coding region. Exon 2~13 covers 93.27% of the coding region. The size of effective KO region: ~5562 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 11 12 13 Legends Exon of mouse Hars2 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • AUCTSP: an Improved Biomarker Gene Pair Class Predictor Dimitri Kagaris1* , Alireza Khamesipour1 and Constantin T
    Kagaris et al. BMC Bioinformatics (2018) 19:244 https://doi.org/10.1186/s12859-018-2231-1 RESEARCH ARTICLE Open Access AUCTSP: an improved biomarker gene pair class predictor Dimitri Kagaris1* , Alireza Khamesipour1 and Constantin T. Yiannoutsos2 Abstract Background: The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable to selecting genes which do not have differential expression in the two conditions (“pivot" genes). Results: We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less prone to selecting non-informative (pivot) genes.
    [Show full text]
  • The Genetic Architecture of the Human Thalamus and Its Overlap with Ten
    ARTICLE https://doi.org/10.1038/s41467-021-23175-z OPEN The genetic architecture of the human thalamus and its overlap with ten common brain disorders ✉ Torbjørn Elvsåshagen 1,2,3 , Alexey Shadrin 1,3, Oleksandr Frei1,3,4, Dennis van der Meer1,5, Shahram Bahrami1,3, Vinod Jangir Kumar6, Olav Smeland 1,3, Lars T. Westlye 1,7,8, ✉ Ole A. Andreassen 1,3,8 & Tobias Kaufmann 1,3,9 The thalamus is a vital communication hub in the center of the brain and consists of distinct 1234567890():,; nuclei critical for consciousness and higher-order cortical functions. Structural and functional thalamic alterations are involved in the pathogenesis of common brain disorders, yet the genetic architecture of the thalamus remains largely unknown. Here, using brain scans and genotype data from 30,114 individuals, we identify 55 lead single nucleotide polymorphisms (SNPs) within 42 genetic loci and 391 genes associated with volumes of the thalamus and its nuclei. In an independent validation sample (n = 5173) 53 out of the 55 lead SNPs of the discovery sample show the same effect direction (sign test, P = 8.6e-14). We map the genetic relationship between thalamic nuclei and 180 cerebral cortical areas and find over- lapping genetic architectures consistent with thalamocortical connectivity. Pleiotropy ana- lyses between thalamic volumes and ten psychiatric and neurological disorders reveal shared variants for all disorders. Together, these analyses identify genetic loci linked to thalamic nuclei and substantiate the emerging view of the thalamus having central roles in cortical functioning and common brain disorders. 1 NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
    [Show full text]
  • Two Novel Likely Pathogenic Variants of HARS2 Identified in a Chinese
    Yu et al. Hereditas (2020) 157:47 https://doi.org/10.1186/s41065-020-00157-7 BRIEF REPORT Open Access Two novel likely pathogenic variants of HARS2 identified in a Chinese family with sensorineural hearing loss Jing Yu1†, Wei Jiang2,3†, Li Cao1, Xiaoxue Na2,3 and Jiyun Yang2,3* Abstract Mutations in HARS2 are one of the genetic causes of Perrault syndrome, characterized by sensorineural hearing loss (SNHL) and ovarian dysfunction. Here, we identified two novel putative pathogenic variants of HARS2 in a Chinese family with sensorineural hearing loss including two affected male siblings, c.349G > A (p.Asp117Asn) and c.908 T > C (p.Leu303Pro), through targeted next-generation sequencing methods. The two affected siblings (13 and 11 years old) presented with early-onset, rapidly progressive SNHL. The affected siblings did not have any inner ear malformations or delays in gross motor development. Combined with preexisting clinical reports, Perrault syndrome may be latent in some families with non-syndromic deafness associated with HARS2 mutations. The definitive diagnosis of Perrault syndrome based on clinical features alone is a challenge in sporadic males, and preadolescent females with no signs of POI. Our findings further expanded the existing spectrum of HARS2 variants and Perrault syndrome phenotypes, which will assist in molecular diagnosis and genetic counselling of patients with HARS2 mutations. Keywords: HARS2, Perrault syndrome, Next-generation sequencing Introduction of bilateral SNHL, a mild to profound degree of hearing The HARS2 gene is mapped to chromosome 5q31.3, loss, and ovarian dysgenesis in females. When the onset contains 13 exons and spans approximately 7.9 kb.
    [Show full text]
  • Network Mining Approach to Cancer Biomarker Discovery
    NETWORK MINING APPROACH TO CANCER BIOMARKER DISCOVERY THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Praneeth Uppalapati, B.E. Graduate Program in Computer Science and Engineering The Ohio State University 2010 Thesis Committee: Dr. Kun Huang, Advisor Dr. Raghu Machiraju Copyright by Praneeth Uppalapati 2010 ABSTRACT With the rapid development of high throughput gene expression profiling technology, molecule profiling has become a powerful tool to characterize disease subtypes and discover gene signatures. Most existing gene signature discovery methods apply statistical methods to select genes whose expression values can differentiate different subject groups. However, a drawback of these approaches is that the selected genes are not functionally related and hence cannot reveal biological mechanism behind the difference in the patient groups. Gene co-expression network analysis can be used to mine functionally related sets of genes that can be marked as potential biomarkers through survival analysis. We present an efficient heuristic algorithm EigenCut that exploits the properties of gene co- expression networks to mine functionally related and dense modules of genes. We apply this method to brain tumor (Glioblastoma Multiforme) study to obtain functionally related clusters. If functional groups of genes with predictive power on patient prognosis can be identified, insights on the mechanisms related to metastasis in GBM can be obtained and better therapeutical plan can be developed. We predicted potential biomarkers by dividing the patients into two groups based on their expression profiles over the genes in the clusters and comparing their survival outcome through survival analysis.
    [Show full text]
  • RNA Granules in the Mitochondria and Their Organization Under Mitochondrial Stresses
    International Journal of Molecular Sciences Review RNA Granules in the Mitochondria and Their Organization under Mitochondrial Stresses Vanessa Joanne Xavier and Jean-Claude Martinou * Department of Cell Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland; [email protected] * Correspondence: [email protected] Abstract: The human mitochondrial genome (mtDNA) regulates its transcription products in spe- cialised and distinct ways as compared to nuclear transcription. Thanks to its mtDNA mitochondria possess their own set of tRNAs, rRNAs and mRNAs that encode a subset of the protein subunits of the electron transport chain complexes. The RNA regulation within mitochondria is organised within specialised, membraneless, compartments of RNA-protein complexes, called the Mitochon- drial RNA Granules (MRGs). MRGs were first identified to contain nascent mRNA, complexed with many proteins involved in RNA processing and maturation and ribosome assembly. Most recently, double-stranded RNA (dsRNA) species, a hybrid of the two complementary mRNA strands, were found to form granules in the matrix of mitochondria. These RNA granules are therefore components of the mitochondrial post-transcriptional pathway and as such play an essential role in mitochondrial gene expression. Mitochondrial dysfunctions in the form of, for example, RNA processing or RNA quality control defects, or inhibition of mitochondrial fission, can cause the loss or the aberrant accumulation of these RNA granules. These findings underline the important link between mitochondrial maintenance and the efficient expression of its genome. Citation: Xavier, V.J.; Martinou, J.-C. RNA Granules in the Mitochondria Keywords: mitochondrial RNA granules (MRGs); dsRNA; degradosome; nucleoids; mitochondrial and Their Organization under gene expression; RNA processing; RNA degradation; liquid–liquid phase separation (LLPS) Mitochondrial Stresses.
    [Show full text]
  • New Fusion Transcripts Identified in Normal Karyotype Acute Myeloid Leukemia
    University of Nebraska Medical Center DigitalCommons@UNMC Journal Articles: Genetics, Cell Biology & Anatomy Genetics, Cell Biology & Anatomy 12-2012 New fusion transcripts identified in normal karyotype acute myeloid leukemia Hongxiu Wen University of Nebraska Medical Center Yongjin Li University of Texas at Dallas Sami N. Malek University of Michigan - Ann Arbor Yeong C. Kim University of Nebraska Medical Center, [email protected] Jia Xu Shandong University FSeeollow next this page and for additional additional works authors at: https:/ /digitalcommons.unmc.edu/com_gcba_articles Part of the Medical Anatomy Commons, Medical Cell Biology Commons, and the Medical Genetics Commons Recommended Citation Wen, Hongxiu; Li, Yongjin; Malek, Sami N.; Kim, Yeong C.; Xu, Jia; Xian Chen, Pei; Xiao, Fengxia; Huang, Xin; Zhou, Xianzheng; Xuan, Zhenyu; Mankala, Shiva; Hou, Guihua; Rowley, Janet D.; Zhang, Michael Q.; and Ming Wang, San, "New fusion transcripts identified in normal karyotype acute myeloid leukemia" (2012). Journal Articles: Genetics, Cell Biology & Anatomy. 4. https://digitalcommons.unmc.edu/com_gcba_articles/4 This Article is brought to you for free and open access by the Genetics, Cell Biology & Anatomy at DigitalCommons@UNMC. It has been accepted for inclusion in Journal Articles: Genetics, Cell Biology & Anatomy by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. Authors Hongxiu Wen, Yongjin Li, Sami N. Malek, Yeong C. Kim, Jia Xu, Pei Xian Chen, Fengxia Xiao, Xin Huang, Xianzheng Zhou, Zhenyu Xuan, Shiva Mankala, Guihua Hou, Janet D. Rowley, Michael Q. Zhang, and San Ming Wang This article is available at DigitalCommons@UNMC: https://digitalcommons.unmc.edu/com_gcba_articles/4 New Fusion Transcripts Identified in Normal Karyotype Acute Myeloid Leukemia Hongxiu Wen1., Yongjin Li2., Sami N.
    [Show full text]
  • Intron Retention and Nuclear Loss of SFPQ Are Molecular Hallmarks of ALS
    ARTICLE DOI: 10.1038/s41467-018-04373-8 OPEN Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS Raphaelle Luisier1, Giulia E. Tyzack 1,2, Claire E. Hall2, Jamie S. Mitchell2, Helen Devine2,3, Doaa M. Taha2, Bilal Malik3, Ione Meyer3, Linda Greensmith3, Jia Newcombe4, Jernej Ule1,2, Nicholas M. Luscombe 1,5,6 & Rickie Patani1,2 Mutations causing amyotrophic lateral sclerosis (ALS) strongly implicate ubiquitously 1234567890():,; expressed regulators of RNA processing. To understand the molecular impact of ALS-causing mutations on neuronal development and disease, we analysed transcriptomes during in vitro differentiation of motor neurons (MNs) from human control and patient-specific VCP mutant induced-pluripotent stem cells (iPSCs). We identify increased intron retention (IR) as a dominant feature of the splicing programme during early neural differentiation. Importantly, IR occurs prematurely in VCP mutant cultures compared with control counterparts. These aberrant IR events are also seen in independent RNAseq data sets from SOD1- and FUS- mutant MNs. The most significant IR is seen in the SFPQ transcript. The SFPQ protein binds extensively to its retained intron, exhibits lower nuclear abundance in VCP mutant cultures and is lost from nuclei of MNs in mouse models and human sporadic ALS. Collectively, we demonstrate SFPQ IR and nuclear loss as molecular hallmarks of familial and sporadic ALS. 1 The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK. 3 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
    [Show full text]
  • Broadening the Phenotype of the TWNK Gene Associated Perrault
    Fekete et al. BMC Medical Genetics (2019) 20:198 https://doi.org/10.1186/s12881-019-0934-4 CASE REPORT Open Access Broadening the phenotype of the TWNK gene associated Perrault syndrome Bálint Fekete1* , Klára Pentelényi1, Gabor Rudas2, Anikó Gál1, Zoltán Grosz1, Anett Illés1, Jimoh Idris1, Gabor Csukly3, Andor Domonkos4 and Maria Judit Molnar1 Abstract Background: Perrault syndrome is a genetically heterogenous, very rare disease, characterized clinically by sensorineural hearing loss, ovarian dysfunction and neurological symptoms. We present the case of a 33 years old female patient with TWNK-associated Perrault syndrome. The TWNK gene is coding the mitochondrial protein Twinkle and currently there are only two reports characterizing the phenotype of TWNK-associated Perrault syndrome. None of these publications reported about special brain MRI alterations and neuropathological changes in the muscle and peripheral nerves. Case presentation: Our patients with TWNK-dependent Perrault syndrome had severe bilateral hypoacusis, severe ataxia, polyneuropathy, lower limb spastic paraparesis with pyramidal signs, and gonadal dysgenesis. Psychiatric symptoms such as depression and paranoia were present as well. Brain MRI observed progressive cerebellar hyperintensive signs associated with cerebellar, medulla oblongata and cervical spinal cord atrophy. Light microscopy of the muscle biopsy detected severe neurogenic lesions. COX staining was centrally reduced in many muscle fibers. Both muscle and sural nerve electron microscopy detected slightly enlarged mitochondria with abnormal cristae surrounded by lipid vacuoles. In the sural nerve, dystrophic axons had focally uncompacted myelin lamellae present. Genetic investigation revealed multiple mtDNA deletion and compound heterozygous mutations of the TWNK gene (c.1196 A > G, c.1358 G > A).
    [Show full text]