PREFACE Meyer's Parrot Project

Total Page:16

File Type:pdf, Size:1020Kb

PREFACE Meyer's Parrot Project THE ECOLOGY OF MEYER’S PARROT (Poicephalus meyeri ) IN THE OKAVANGO DELTA, BOTSWANA RUTLEDGE STEPHEN BOYES Submitted in fulfilment of the academic requirements for the degree of DOCTOR OF PHILOSOPHY in the Discipline of Zoology School of Biological and Conservation Sciences Faculty of Science and Agriculture University of KwaZulu-Natal Pietermaritzburg 2008 i PREFACE The data described in this thesis were collected in the Okavango Delta, Botswana, from January 2004 to January 2006, and February 2007 to July 2007. Experimental work was carried out in the School of Biological and Conservation Sciences, University of KwaZulu-Natal, Pietermaritzburg, under the supervision of Professor Michael R. Perrin. This thesis, submitted for the degree of Doctor of Philosophy in the Faculty of Science and Agriculture, University of KwaZulu-Natal, Pietermaritzburg, represents original work by the author and has not otherwise been submitted in any form for any degree or diploma to any University. Where use has been made of the work of others, it is duly acknowledged in the text. …………………………. Rutledge S. Boyes December 2008 I certify that the above statement is correct… ………………………….. Professor Michael R. Perrin Supervisor December, 2008 i Acknowledgements Firstly, I would like to thank my supervisor, Professor Mike Perrin, for his support throughout the project design, fieldwork and write-up. His contribution to African parrot conservation over the last 10 years is unparalleled, and the parrot conservation community look forward to this up-coming book. Professor Steve Beissinger at the University of California, Berkeley, is thanked for allowing me to visit with him at Berkeley for most of 2006. This was an enriching experience and interacting with his students and colleagues assisted greatly in focussing my effort in processing my extensive data set. I would also like to thank Professor Colleen Downs and Mark Brown for invaluable comment on aspects of the project. Map Ives, Kai Collins and all the staff of Wilderness Safaris Botswana are thanked for their valuable support. Tony Ruemerman and Clinton Phillips are thanked their assistance in the plant and invertebrate identification. I am indebted to volunteer field assistance from Chris Boyes, Pieter Hugo, Francois Joubert and Erica Case. Kirsten Wimberger provided invaluable commentary on and support through the final drafts. The Meyer’s Parrot Project (2004–2007) was predominantly sponsored by the Research Centre for African Parrot Conservation and British Ecological Society (Overseas Bursary). Other funding was contributed by the National Research Foundation (Doctoral scholarship), Wilderness Safaris Wildlife Trust, World Parrot Trust and Gay Langmuir Foundation (Graduate support funding). Numerous private donors made contributions through the World Parrot Trust, most notably Julie Drier. Thanks you to all of the unnamed wildlife officers, community members, Birdlife Botswana trainees and interns, community ecologists, and fellow independent researchers in northern Botswana who assisted on aspects of the project. I am also in debt to the several truck drivers and fellow travellers on backward for their assistance in breakdowns and in traversing difficult terrain driving to and from the Vundumtiki study area along the “TFC cutline”. The love and support of my parents, Rutledge and Vikki Boyes was keystone to the completion of the Meyer’s Parrot Project. ii Abstract. Meyer’s Parrot Poicephalus meyeri is the smallest of the nine Poicephalus parrots, forming the P. meyeri superspecies complex with five congeners. Their distributional range far exceeds any other African parrot, extending throughout subtropical Africa. Meyer’s Parrots had previously not been studied in the wild, and therefore, gathering high-quality empirical data on their behavioural ecology became a research and conservation priority. The primary aim of the study was to correlate environmental (e.g. rainfall, habitat availability, resource characteristics, food resource abundance and temperature) and social (e.g. inter- and intra-specific competition, predation, and human disturbance) variables with aspects of their ecology (e.g. flight activity, food item preferences, breeding activity, and group dynamics) to evaluate the degree of specialization in resource use (e.g. trophic, nesting and habitat niche metrics). African deforestation rates are the highest in the world, resulting in twelve out of the eighteen Meyer’s Parrot range states undergoing drastic loss of forest cover over the last 25 years. Most commentary on the population status of Meyer’s Parrots and other Poicephalus parrots pre-dates this period of rapid deforestation In addition, over 75 000 wild-caught Meyer’s Parrots and almost 1 million wild-caught Poicephalus parrots have been recorded in international trade since 1975. Empirical data from this study was used to identify ecological weaknesses (e.g. niche specialization or low breeding turnover) for evaluation within the context of deforestation in the African subtropics. Baseline data on the breeding biology and nest cavity requirements of Meyer’s Parrots was also necessary to assess the viability of applying the conservative sustained-harvest model to African parrots. A unifying goal of this study was to advance our knowledge of the ecology of African parrots and other Psittaciformes by assessing the validity of current hypotheses put forward in the literature. The Meyer’s Parrot Project was initiated in January 2004 on Vundumtiki Island in the north-eastern part of the Okavango Delta, Botswana. Due to high flood waters between March and July 2004, road transects were postponed till August 2004. Transects were conducted at Vundumtiki from August 2004 to July 2005 and February 2007 to August 2007, and at Mombo from August 2005 to January 2006. During 480 road transects over 24 months, food item preferences closely tracked fruiting and flowering phenology, resulting in significant positive correlations between Levins’ niche breadth, rainfall and food resource availability. Meyer’s Parrot can, therefore, be considered opportunistic generalists pre- dispersal seed predator that tracks resource availability across a wide suite of potential food items, including 71 different food items from 37 tree species in 16 families. Meyer’s Parrots were, however, found to be habitat specialists preferring established galleries of riverine forest and associated Acacia-Combretum marginal woodland. These strong habitat associations facilitate their wide distribution throughout the Kavango Basin, Linyanti Swamps, down the iii Zambezi valley, up along the Rift Valley system in associations with the great lakes, through the Upper Nile and the Sudd, and west as far as Lake Chad through the Sahel. Seventy-five nest cavities were measured during this study, including 28 nest cavities utilized by Meyer’s Parrots within the 430ha sample area at Vundumtiki. Over 1700 hours of intensive nest observations at six nest cavities was undertaken. Meyer’s Parrots formed socially monogamous pair-bonds maintained over at least four breeding seasons. Breeding pairs established breeding territories up to an estimated 160ha within which there were 1–6 nest cavities. Eggs hatched asynchronously, yet nestlings fledged synchronously with similar body size and condition. There was evidence to support the incidence of extra-pair copulations, however, mitochondrial DNA sequence data are required to confirm the incidence of extra-pair fertilizations. Meyer’s Parrots had no preferences in regard to nest tree species beyond the incidence of suitable nest cavities, which are selected and further excavated to accommodate their non-random nest cavity preferences. There was a significant non-nesting Meyer’s Parrot population during the breeding season, likely due to this long- lived cavity-nester delaying nesting until a suitable breeding territory becomes available. Meyer’s Parrots utilize communal roosts during summer and disperse from them according to the Foraging Dispersal Hypothesis. Due to the requirement to roost during the middle of the day to avoid heat stress, Meyer’s Parrots have bimodal flight and feeding activity patterns. The highest probability of locating Meyer’s Parrots is between 08h30 and 11h00 during summer when both adults are feeding on the seeds of fleshy-fruits in riverine forest communities. Due to the paucity of data on the current distribution and population status of Meyer’s Parrots and other African parrots, a continent-wide survey of all African parrots represents a conservation priority. Current deforestation rates in several Meyer’s Parrot range, their specialist habitat associations, and lack of evidence to support adaptability to a changing landscape mosaic necessitate the re-classification of Meyer’s Parrots as data deficient or near- threatened. Based on low breeding population due to limited breeding opportunities, the CITES Appendix II wild-caught bird trade should also be halted until the sustainability of this trade has been evaluated and the relevant information made available. iv Table of Contents PREFACE ............................................................................................... i ACKNOWLEDGEMENTS ................................................................... ii ABSTRACT .......................................................................................... iii CHAPTER 1: Introduction to the Meyer’s Parrot Project (2004–2008) .................... 1 Abstract ............................................................................................................................
Recommended publications
  • TRUSTVETASSISTSSURVIVAL of WORLD'srarestparrot New Clues to Echo Parakeet Problem Bypallia Harris
    News about parrot conservation, aviculture and welfare from qg&%rld q&rrot~t TRUSTVETASSISTSSURVIVAL OF WORLD'SRARESTPARROT New clues to Echo Parakeet problem ByPallIa Harris When the World Parrot Trust was The World Parrot Trust has project, contributing funds and of the World Parrot Trust and a launched in 1989, our first consistently provided funding for parrot expertise to both the member of the International Zoo priority was to help the world's the Echo Parakeet and maintained captive breeding programme and Veterinary Group. When the rarest parrot, the Echo Parakeet, close relations with the project's wild population management captive population of parrots which still numbers less than 20 director, Carl Jones, and the efforts. This new opportunity became ill this spring, Andrew birds in the wild. With your Jersey Wildlife Preservation provides the World Parrot Trust advised project staff in Mauritius generous donations, the Trust Trust, which finances and with one of the greatest by telephone and by fax. was proud to present the Echo manages the project with the co- challenges in parrot conservation Subsequently, at the request of Parakeet project with a badly operation of the Mauritius today. the Jersey Wildlife Preservation needed four wheel drive vehicle government's Conservation Unit. The followingstory is drawn, Trust, the World Parrot Trust sent to enable field researchers to Recently, the World Parrot Trust in part, from a veterinary report Andrew to Mauritius to reach the remote forest in which was invited to become a major by Andrew Greenwood,MAVetMB investigate tragic mortalities the parrot struggles to survive. partner in the Echo Parakeet MIBiolMRCVS,a founder Trustee among the Echo Parakeets.
    [Show full text]
  • Plant Common Name Scientific Name Description of Plant Picture of Plant
    Plant common name Description of Plant Picture of Plant Scientific name Strangler Fig The Strangler Fig begins life as a small vine-like plant Ficus thonningii that climbs the nearest large tree and then thickens, produces a branching set of buttressing aerial roots, and strangles its host tree. An easy way to tell the difference between Strangle Figs and other common figs is that the bottom half of the Strangler is gnarled and twisted where it used to be attached to its host, the upper half smooth. A common tree on kopjes and along rivers in Serengeti; two massive Fig trees near Serengeti; the "Tree Where Man was Born" in southern Loliondo, and the "Ancestor Tree" near Endulin, in Ngorongoro are significant for the local Maasai peoples. Wild Date Palm Palms are monocotyledons, the veins in their leaves Phoenix reclinata are parallel and unbranched, and are thus relatives of grasses, lilies, bananas and orchids. The wild Date Palm is the most common of the native palm trees, occurring along rivers and in swamps. The fruits are edible, though horrible tasting, while the thick, sugary sap is made into Palm wine. The tree offers a pleasant, softly rustling, fragrant-smelling shade; the sort of shade you will need to rest in if you try the wine. Candelabra The Candelabra tree is a common tree in the western Euphorbia and Northern parts of Serengeti. Like all Euphorbias, Euphorbia the Candelabra breaks easily and is full of white, candelabrum extremely toxic latex. One drop of this latex can blind or burn the skin.
    [Show full text]
  • Cape Parrot Big Birding Day Report
    16th Annual Parrot Count- Report on the 2013 Cape Parrot Big Birding Day. Colleen T. Downs* and Lorinda Hart School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa. Email: [email protected] *Cape Parrot Working Group Chairperson. “Cape Parrots rock!!”- EW 10 year old observer 2013 Quote from datasheet Forests are one of the most important and biologically diverse ecosystems. However, worldwide continued land conversion and transformation is posing a serious threat to their survival. In South Africa the forest biome is the smallest. As these forests are patchily distributed, conservation of them is difficult to implement. Many were extensively logged in the past. Generally the conservation of large fragments in the afromontane mistbelt forests is highlighted, but conserving smaller fragments is important in terms of maintaining landscape processes. For many remaining forest patches where forest fragmentation is prevalent, the matrix habitat has also been transformed from grasslands to commercial plantations. Such changes have important implications for forest fragment connectivity and ecological processes. The Cape Parrot, Poicephalus robustus, (Fig. 1) is the only parrot species endemic to South Africa and is one of its endangered birds with less than 1600 in the wild. Factors contributing to the parrots decline vary in their effects at different locations and include: the loss or change in the quality of their preferred forest habitat; food and nest-site shortages; illegal poaching for the pet trade; disease (especially Psittacine Beak and Feather Virus); avian predators; and accelerated climate change. Previously the Cape Parrot, a forest specialist, had a more extensive distribution, but it is now mainly restricted to patches in a mosaic of afromontane southern mistbelt forests from Hogsback in the Eastern Cape through to the Balgowan and Karkloof areas of KwaZulu-Natal; with a disjunct population in the Magoeboeskloof region of Limpopo Province (Fig.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • When and How to Study the Nesting Biology of Indian Birds: Research Needs, Ethical Considerations, and Best Practices
    BARVE ET AL.: Nesting biology of Indian birds 1 When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices Sahas Barve, T. R. Shankar Raman, Aparajita Datta & Girish Jathar Barve, S., Raman, T. R. S, Datta, A., & Jathar, G., 2020. When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices. Indian BIRDS 16 (1): 1–9. Sahas Barve, Smithsonian National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, D.C. 20560. E-mail: [email protected]. [Corresponding author.] T. R. Shankar Raman, Nature Conservation Foundation, 1311, ‘Amritha’, 12th A Main, Vijayanagar 1st Stage, Mysore 570017, Karnataka, India. Aparajita Datta, Nature Conservation Foundation, 1311, ‘Amritha’, 12th A Main, Vijayanagar 1st Stage, Mysore 570017, Karnataka, India. Girish Jathar, Bombay Natural History Society, Hornbill House, Dr Salim Ali Chowk, Shaheed Bhagat Singh Road, Mumbai 400001, Maharashtra, India. Manuscript received on 03 February 2020. Abstract The nesting biology of a bird species is likely the most important component of its life history and it is affected by several ecological and environmental factors. Various components of avian nesting biology have proved to be important traits for testing fundamental ecological and evolutionary hypotheses, and for monitoring the efficacy of biological conservation programs. Despite its significance, the nesting biology of most Indian bird species is still poorly understood. The past few years have, however, seen a significant increase in the number of submissions to Indian BIRDS, of observational studies of avian nesting biology, which promises an exciting new wave of ornithological natural history research in India.
    [Show full text]
  • TAG Operational Structure
    PARROT TAXON ADVISORY GROUP (TAG) Regional Collection Plan 5th Edition 2020-2025 Sustainability of Parrot Populations in AZA Facilities ...................................................................... 1 Mission/Objectives/Strategies......................................................................................................... 2 TAG Operational Structure .............................................................................................................. 3 Steering Committee .................................................................................................................... 3 TAG Advisors ............................................................................................................................... 4 SSP Coordinators ......................................................................................................................... 5 Hot Topics: TAG Recommendations ................................................................................................ 8 Parrots as Ambassador Animals .................................................................................................. 9 Interactive Aviaries Housing Psittaciformes .............................................................................. 10 Private Aviculture ...................................................................................................................... 13 Communication ........................................................................................................................
    [Show full text]
  • History of Species Reviewed Under Resolution Conf
    AC17 Inf. 3 (English only/ Solamente en inglés/ Seulement en anglais) HISTORY OF SPECIES REVIEWED UNDER RESOLUTION CONF. 8.9 (Rev.) PART 1: AVES Species Survival Network 2100 L Street NW Washington, DC 20037 July 2001 AC17 Inf. 3 – p. 1 SIGNIFICANT TRADE REVIEW: PHASE 1 NR = none reported Agapornis canus: Madagascar Madagascar established an annual export quota of 3,500 in 1993, pending the results of a survey of the species in the wild (CITES Notification No. 744). Year 1994 1995 1996 1997 1998 1999 2000 2001 Quota 3500 3500 3500 3500 3500 3500 3500 3200 Exports 4614 5495 5270 3500 6200 • Export quota exceeded in 1994, 1995, 1996 and 1998. From 1994 - 1998, export quota exceeded by a total of 7,579 specimens. • Field project completed in 2000: R. J. Dowsett. Le statut des Perroquets vasa et noir Coracopsis vasa et C. nigra et de l’Inséparable à tête grise Agapornis canus à Madagascar. IUCN. Agapornis fischeri: Tanzania Trade suspended in April 1993 (CITES Notification No. 737). Year 1994 1995 1996 1997 1998 1999 2000 2001 Quota NR NR NR NR NR NR Exports 300 0 0 2 0 • Field project completed in 1995: Moyer, D. The Status of Fischer’s Lovebird Agapornis fischeri in the United Republic of Tanzania. IUCN. • Agapornis fischeri is classified a Lower Risk/Near Threatened by the IUCN. Amazona aestiva: Argentina 1992 status survey underway. Moratorium on exports 1996 preliminary survey results received quota of 600. Year 1994 1995 1996 1997 1998 1999 2000 2001 Chick Quota 1036 2480 3150 Juvenile Quota 624 820 1050 Total Quota NR 600 NR 1000 Exports 19 24 130 188 765 AC17 Inf.
    [Show full text]
  • The Birds (Aves) of Oromia, Ethiopia – an Annotated Checklist
    European Journal of Taxonomy 306: 1–69 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.306 www.europeanjournaloftaxonomy.eu 2017 · Gedeon K. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:A32EAE51-9051-458A-81DD-8EA921901CDC The birds (Aves) of Oromia, Ethiopia – an annotated checklist Kai GEDEON 1,*, Chemere ZEWDIE 2 & Till TÖPFER 3 1 Saxon Ornithologists’ Society, P.O. Box 1129, 09331 Hohenstein-Ernstthal, Germany. 2 Oromia Forest and Wildlife Enterprise, P.O. Box 1075, Debre Zeit, Ethiopia. 3 Zoological Research Museum Alexander Koenig, Centre for Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:F46B3F50-41E2-4629-9951-778F69A5BBA2 2 urn:lsid:zoobank.org:author:F59FEDB3-627A-4D52-A6CB-4F26846C0FC5 3 urn:lsid:zoobank.org:author:A87BE9B4-8FC6-4E11-8DB4-BDBB3CFBBEAA Abstract. Oromia is the largest National Regional State of Ethiopia. Here we present the first comprehensive checklist of its birds. A total of 804 bird species has been recorded, 601 of them confirmed (443) or assumed (158) to be breeding birds. At least 561 are all-year residents (and 31 more potentially so), at least 73 are Afrotropical migrants and visitors (and 44 more potentially so), and 184 are Palaearctic migrants and visitors (and eight more potentially so). Three species are endemic to Oromia, 18 to Ethiopia and 43 to the Horn of Africa. 170 Oromia bird species are biome restricted: 57 to the Afrotropical Highlands biome, 95 to the Somali-Masai biome, and 18 to the Sudan-Guinea Savanna biome.
    [Show full text]
  • The First Complete Mitogenome of Red-Bellied Parrot (Poicephalus Rufiventris) Resolves Phylogenetic Status Within Psittacidae
    Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: http://www.tandfonline.com/loi/tmdn20 The first complete mitogenome of red-bellied parrot (Poicephalus rufiventris) resolves phylogenetic status within Psittacidae Subir Sarker, Shubhagata Das, Seyed A. Ghorashi, Jade K. Forwood, Karla Helbig & Shane R. Raidal To cite this article: Subir Sarker, Shubhagata Das, Seyed A. Ghorashi, Jade K. Forwood, Karla Helbig & Shane R. Raidal (2018) The first complete mitogenome of red-bellied parrot (Poicephalus rufiventris) resolves phylogenetic status within Psittacidae, Mitochondrial DNA Part B, 3:1, 195-197, DOI: 10.1080/23802359.2018.1437818 To link to this article: https://doi.org/10.1080/23802359.2018.1437818 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 10 Feb 2018. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmdn20 MITOCHONDRIAL DNA PART B: RESOURCES, 2018 VOL. 3, NO. 3, 195–197 https://doi.org/10.1080/23802359.2018.1437818 MITOGENOME ANNOUNCEMENT The first complete mitogenome of red-bellied parrot (Poicephalus rufiventris) resolves phylogenetic status within Psittacidae Subir Sarkera , Shubhagata Dasb, Seyed A. Ghorashib, Jade K. Forwoodc, Karla Helbiga and Shane R. Raidalb aDepartment of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia; bSchool of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Albury, Australia; cSchool of Biomedical Sciences, Charles Sturt University, Albury, Australia ABSTRACT ARTICLE HISTORY This paper describes the genomic architecture of a complete mitogenome from a red-bellied parrot Received 18 January 2018 (Poicephalus rufiventris).
    [Show full text]
  • Report on the 2021 Cape Parrot Big Birding Day
    24th Annual Parrot Count- Report on the 2021 Cape Parrot Big Birding Day Colleen T. Downs*, Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 3209, South Africa. Email: [email protected] *Cape Parrot Working Group Chairperson Figure 1. A pair of Cape Parrots in a snag near iNgeli, KwaZulu-Natal, on the day of the annual count in 2021 (Photographs© Sascha Dueker). Background The annual Cape Parrot Big Birding Day (CPBBD) was initiated in 1998 and held annually since. This is a conservation effort to quantify the numbers of Cape Parrot (Poicephalus robustus) (Figure 1) in the wild and involves citizen scientists. In the first few years, the coverage of the distribution range of the parrots was inadequate but improved with time. In 2020 unfortunately, because of the COVID-19 restrictions, a total count was not possible. One of the problems with a national count is choosing a day with suitable weather across the area to be covered by the count. Unfortunately, in 2021 a major cold front brought rain and wind to the Eastern Cape and KwaZulu-Natal Provinces on the CPBBD, making observations difficult. So although a total count 1 was conducted, it is likely an underestimate. In addition, despite reduced COVID-19 restrictions (Figure 2), some of the older stalwarts of CPBBD were unable to participate because of the slow vaccination rollout, so as in earlier days of CPPBD, the distribution range was not covered adequately. Figure 2. Following COVID-19 protocols, some of the University of KwaZulu-Natal participants in the annual count in 2021 who counted Cape Parrots in the iNgeli area near Kokstad, KwaZulu- Natal.
    [Show full text]
  • South Africa: Magoebaskloof and Kruger National Park Custom Tour Trip Report
    SOUTH AFRICA: MAGOEBASKLOOF AND KRUGER NATIONAL PARK CUSTOM TOUR TRIP REPORT 24 February – 2 March 2019 By Jason Boyce This Verreaux’s Eagle-Owl showed nicely one late afternoon, puffing up his throat and neck when calling www.birdingecotours.com [email protected] 2 | TRIP REPORT South Africa: Magoebaskloof and Kruger National Park February 2019 Overview It’s common knowledge that South Africa has very much to offer as a birding destination, and the memory of this trip echoes those sentiments. With an itinerary set in one of South Africa’s premier birding provinces, the Limpopo Province, we were getting ready for a birding extravaganza. The forests of Magoebaskloof would be our first stop, spending a day and a half in the area and targeting forest special after forest special as well as tricky range-restricted species such as Short-clawed Lark and Gurney’s Sugarbird. Afterwards we would descend the eastern escarpment and head into Kruger National Park, where we would make our way to the northern sections. These included Punda Maria, Pafuri, and the Makuleke Concession – a mouthwatering birding itinerary that was sure to deliver. A pair of Woodland Kingfishers in the fever tree forest along the Limpopo River Detailed Report Day 1, 24th February 2019 – Transfer to Magoebaskloof We set out from Johannesburg after breakfast on a clear Sunday morning. The drive to Polokwane took us just over three hours. A number of birds along the way started our trip list; these included Hadada Ibis, Yellow-billed Kite, Southern Black Flycatcher, Village Weaver, and a few brilliant European Bee-eaters.
    [Show full text]
  • The Avifauna of Two Woodlands in Southeast Tanzania
    Scopus 25: 2336, December 2005 The avifauna of two woodlands in southeast Tanzania Anders P. Tøttrup, Flemming P. Jensen and Kim D. Christensen In Tanzania Brachystegia or miombo woodland occupies about two-thirds of the country including the central plateau to the north and the south eastern plateau (Lind & Morrison 1974). Along the coast more luxuriant woodlands are found in what White (1983) terms the Zanzibar-Inhambane regional mosaic floristic region. This highly complex vegetation comprises unique types of forest, thicket, woodland, bushland and grassland, interspersed with areas presently under cultivation and fallow (Hawthorne 1993). The coastal woodlands are usually deciduous or semi-deciduous but contain some evergreen species and often merge with coastal thickets, scrub forest and coastal forest (Hawthorne 1993, Vollesen 1994). The avifauna of miombo woodlands has been described for Zambia (e.g. Benson & Irwin 1966) and Zimbabwe (e.g. Vernon 1968, 1984, 1985), while little has been published on the birds of the coastal woodlands. An exception is Stjernstedt (1970) who reported on the birds in lush and dense Brachystegia microphylla vegetation in a sea of miombo in southeast Tanzania. Here we report our observations of birds in two woodlands in coastal southeast Tanzania, one of which harboured miombo trees. We present information on the number of species encountered during the fieldwork, and compare the avifauna of the two sites. We discuss possible causes for the differences observed and provide new information on habitat preferences for some of the species we recorded at these sites. Study sites Field work was carried out in two coastal woodlands in the Lindi Region, southeast Tanzania in September and October 2001.
    [Show full text]