[email protected]

Total Page:16

File Type:pdf, Size:1020Kb

0915882372M@Gmail.Com Fundamentals of mechanical engineering [email protected] MOHAMMED ABASS ALI What is thermodynamics Thermodynamics is the branch of physics that studies the effects of temperature and heat on physical systems at the macroscopic scale. In addition, it also studies the relationship that exists between heat, work and energy. Thermal energy is found in many forms in today’s society including power generation of electricity using gas, coal or nuclear, heating water by gas or electric. THE BASICS OF THERMODYNAMICS Basic concepts Properties are Features of a system which include mass, volume, energy, pressure and temperature. Thermodynamics also considers other quantities that are not physical properties, such as mass flow rates and energy transfers by work and heat. Energy forms Fluids and solids can possess several forms of energy. All fluids possess energy due to their temperature and this is referred to as ‘internal energy’. They will also possess ‘ potential energy’ (PE) due to distance (z) above a datum level and if the fluid is moving at a velocity (v), it will also possess ‘kinetic energy’. If the fluid is pressurised, it will possess ‘flow energy’ (FE). Pressure and temperature are the two governing factors and internal energy can be added to FE to produce a single property called ‘enthalpy’. Internal energy The molecules of a fluid possess both kinetic energy (KE) and PE relative to an internal datum. Generally, this is regarded simply as the energy due to its temperature and the change in internal energy in a fluid that undergoes a temperature change is given by ΔU = mcΔT The total internal energy is denoted by the symbol ‘U’, which has values of J, kJ or MJ; also the specific internal energy ‘u’ has the values of kJ/kg. Note: The change in temperature is in either degrees Celsius or Kelvin. potential energy When a mass ‘m’ kg is raised to a height of ‘z’ metres above a datum level, a lifting force is required. The work done in raising the mass is force × distance moved, so PE = mgz = Work where g is the gravity constant Kinetic energy Energy has been expended in doing this work and has therefore been stored in the mass and will be carried along with it. This energy is called ‘kinetic energy’. KE = m.v2/2 Enthalpy, Enthalpy (H) requires both pressure and temperature; it therefore must possess both flow (FE) and internal energy (U). These two energies are added together FE=PV H = FE + U The units are J for the total enthalpy or kJ/kg for the specific enthalpy. Boyle’s law Boyle’s law states that provided the temperature ‘T’ of a perfect gas remains constant, the volume ‘V’ of a given mass of gas is inversely proportional to its pressure ‘P’ of the gas, that is, P∝1/V or P × V = constant if the temperature remains constant. If the gas experiences a change in state during an isothermal process, then P1V1 = P2V2 = constant EXAMPLE 1 A certain perfect gas is heated at a constant temperature from an initial state of 0.22 m3 and 325 kN/m2 to a final state of 170 kN/m2. Determine the final volume of the gas. 2 solution State 1: P1 = 325 kN/m and V1 = 0.22 m3. 2 State 2: P2 = 170 kN/m and V2 = ? From the equation, P1 ⋅ V1 = P2 ⋅ V2 P1 ⋅ V1 = P2 ⋅ V2 P2= P1. V1/V2 V2 = 0.4206 m3 Charles’s law Charles’s law states that provided the pressure ‘P’ of a given mass of gas remains constant, the volume ‘V’ of the gas will be directly proportional to the absolute temperature ‘T’ of the gas, that is, V ∞ T, or V = constant × ‘T’. Therefore, V/T constant = for a constant pressure ‘P’. If the gas experiences a change in state during a constant pressure process, then V1/T1 = V2/T2 = constant EXAMPLE 2 A quantity of gas is subjected to a constant pressure process causing the volume of gas to reduce from 0.54 m3 at a temperature of 345°C to 0.32 m3. Calculate the final temperature of the gas at the end of this process. solution From the question V1 = 0.54 m3 T1 = 345 + 273 K V2 = 0.32 m3 V1/T1 = V2/T2 = constant T2= 366.22K Universal gas law The universal gas equation combines pressure, volume and temperature and the relation between Boyle’s and Charles’s laws is expressed in Equation P . V/ T = R (constant) where R is known as the universal gas constant. That is P1V1/T1 = P2V2/T2 or for ‘m’ kg, occupying V m3 PV = mRT From the definition of the kilogramme-mole, for ‘m’ kg of the gas m = nM where n is the number of moles where M is the molecular weight of the gas. Oxygen has a molecular weight of 32 EXAMPLE A volume of gas at a pressure of 325 kN/m2 is 0.22 m3 and temperature of 618 K is compressed to a volume 0.16 m3 and a pressure of 380 kn/m2. Determine the final temperature of the gas. Solution State 1: P1 = 325 kN/m3, V1 = 0.22 m3 and T1 = 618 K. State 2: P2 = 380 kN/m3, V2 = 0.16 m3 and T2 = ? From Equation P1V1/T1 = P2V2/T2 T2 = 525.52 K. SPECIFIC HEAT CAPACITY The specific heat capacity of any substance is defined as the amount of energy required to raise a unit mass through one degree temperature rise. In thermodynamics, there are two specified conditions used: 1. Constant volume (Cv) 2. Constant pressure (Cp) The two specific heat capacities do not have the same value, and it is very important to distinguish between them. specific heat capacity at constant volume (cv) Consider one kg of a gas supplied with an amount of heat energy sufficient to raise its temperature by 1 K while the volume of the gas constant, the amount of heat energy supplied, is known as the specific heat capacity at constant volume and is denoted by Cv. The basic unit of Cv is J/kg K. For a reversible non- flow process at constant volume: dQ = mCvdT For a perfect gas, the value of Cv will be constant for any one gas at all pressures and temperatures. From equation can be expanded as follows. Heat flow in a constant volume process between two states: Q12 = mCv(T2 − T1) From the non-flow energy equation: Q − W = (U2 − U1) mCv(T2 − T1) − 0 = (U2 − U1) (U2 − U1) = mCv(T2 − T1) that is dU = Q Note: In a reversible constant volume process, there will be no work energy transfer as the piston will be unable to move; therefore, W = 0 EXAMPLE A quantity of 4.5 kg of gas is heated at a constant volume of 1.5 m3 and temperature 20°C until the temperature rose to 150°C. If the gas is assumed to be perfect, determine 1. The heat flow during the process 2. The pressure at the beginning of the cycle 3. The final pressure Given: Cv = 0.72 kJ/kg K and R = 0.287 kJ/kg K. solution m = 4.5 kg V1 = 1.5 m3 V2 = 1.5 m3 T1 = 20 + 273 = 293 K T2 = 150 + 273 = 423 K Cv = 0.72 kJ/kg K R = 0.287 kJ/kg K Q12 = mCv(T2 − T1) = 4.5 kg × 0.72 kJ/kg K × (423 – 293) K = 421.2 kJ 2. From Equation, PV = mRT For state 1: P1V1 = mRT P1=mRT 1/V1 4.5kg0.287kJ/kg K 293K/ 1.5m1 3= P1 = 252.27 kN/m2 3. For state 2: P2V2 = mRT2 P2= 4.5kg0.287kJ/kg K 423K/ 1.5m3 P2 = 364.20 kN/m2 specific heat capacity at constant pressure (cp) When 1 kg of a gas is supplied with an amount of heat energy sufficient to raise the temperature by 1 K while the pressure of the gas remains constant, the amount of heat energy that is supplied is known as the specific heat capacity at constant pressure and is denoted by Cp. The unit of Cp is J/ kg K. For a reversible non-flow process at constant pressure: dQ = mCpdT For a perfect gas, the value of Cp is constant for any one gas at all pressures and temperatures. Equation dQ = mCpdT can be expanded as follows: In a reversible constant pressure process, the heat flow Q = mCp(T2 − T1) relationship Between the specific heats Consider a perfect gas being heated at constant pressure from T1 to T2. Referring to the non-flow equation, Q = U2 – U1 + W and the equation for a perfect gas, U2 – U1 = mCv(T2 – T1), combining will give Q = mCv(T2 – T1) + W In a constant pressure process, the work done by the fluid is given by W = P . ΔV that is W = P(V2 – V1) Using the equation PV = mRT: W = mR(T2 – T1) Substituting: Q = mCv(T2 – T1) + mR(T2 – T1) = m(Cv + R)(T2 – T1) mCp(T2 – T1) = m(Cv + R)(T2 – T1) Therefore, Cp = Cv + R This equation may also be written as R = Cp − Cv specific heat ratio ‘γ’ The ratio of specific heat at constant pressure to the specific heat at constant volume is given by the symbol ‘γ’ (gamma). γ= Cp/ Cv From Equation Cp = Cv + R , it is clear that Cp has to be greater than Cv for a perfect gas. It follows, therefore, that the ratio Cp/Cv = γ is always greater than unity. In general, ‘γ’ is 1.4 for diatomic gases such as carbon monoxide (CO), hydrogen (H2), nitrogen (N2) and oxygen (O2).
Recommended publications
  • Fundamentals of Hypersonic Flow - Aerothermodynamics
    FUNDAMENTALSOFHYPERSONICFLOW- AEROTHERMODYNAMICS D. G. Fletcher von Karman Institute, Belgium 1. Introduction To aid in understanding the different topics discussed in the current Lecture Series and to provide background material for interested participants who may not have specialized training in this field, a brief summary of the fundamental attributes of hypersonic flows is given. Many of the topics that are introduced in this section will be elaborated further in contributions related to specific subjects related to sustained hypersonic flight. The differencesbetweenthethermalandchemicalaspectsofhypersonicflowandsupersonic flow are therefore highlighted. The age of some of the figures used in the subsequent discussion reflect the fact that the problems of hypersonic flight are not newly discovered! Fig. 1.1 Flight trajectories for different hypersonic vehicles comparing sustained atmo- spheric flight with re-entry. The hypersonic flight regime includes atmospheric entry and re-entry, ground testing, and flight for both powered and unpowered vehicles. In the present Lecture Series, the main interest is on sustained and controlled hypersonic flight, whether for military or civil transport application. Even though it is not currently certified for flight, there is one operational hypersonic vehicle: the space shuttle of NASA. At least 20 years before the development of the shuttle a significant activity in hypersonic flight research was conducted by the US Air Force in their X-15 program. This vehicle has reached a flight Mach number of 6.7 on its final flight, which also used to test a hypersonic ramjet engine. Direct shock impingement on the pylon holding a dummy engine caused severe heating and structural damage, and this was one of many lessons learned from the program.
    [Show full text]
  • The Perfect Gas
    LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE 2 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING ALPHA 2016-17 ENGR. ALIYU, S.J. Course code: MCE 211 Course title: INTRODUCTION TO MECHANICAL ENGINEERING. Course Units: 2 UNITS. Course status: compulsory THE PERFECT GAS. The characteristic equation of state. At temperatures that are considerably in excess of the critical temperature of a fluid, and also at very low pressures, the vapour of the fluid tends to obey the equation; . No gases in practice obey this law rigidly, but many gases tend towards it. An imaginary ideal gas which obey the law is called a perfect gas, and the equation , pv/T = R, is called the characteristic of state of a perfect gas. The constant R, is called the gas constant. The unit of R are N m/kg K or kJ/kg K. Each perfect gas has a different gas constant. The characteristic equation is usually written; pv = RT……1 or for m kg. occupying V m3, pV = mRT ……………..2 Another form of the characteristic equation can be derived using the kilogram-mole as a unit. The kilogram-mole is defined as a quantity of gas equivalent to M kg. of the gas, where M is the molecular weight of the gas (e.g since the molecular weight of oxygen is 32, then 1 kg. mole of oxygen is equivalent 32 kg of oxygen). From the definition of kilogram-mole, for m kg of a gas we have, m = nM ………………3 (where n is the number of moles) Note: Since the standard of mass is the kg.
    [Show full text]
  • 4 Pressure and Viscosity
    4 Pressure and Viscosity Reading: Ryden, chapter 2; Shu, chapter 4 4.1 Specific heats and the adiabatic index First law of thermodynamics (energy conservation): d = −P dV + dq =) dq = d + P dV; (28) − V ≡ ρ 1 = specific volume [ cm3 g−1] dq ≡ T ds = heat change per unit mass [ erg g−1] − s ≡ specific entropy [ erg g−1 K 1]: The specific heat at constant volume, @q −1 −1 cV ≡ [ erg g K ] (29) @T V is the amount of heat that must be added to raise temperature of 1 g of gas by 1 K. At constant volume, dq = d, and if depends only on temperature (not density), (V; T ) = (T ), then @q @ d cV ≡ = = : @T V @T V dT implying dq = cV dT + P dV: 1 If a gas has temperature T , then each degree of freedom that can be excited has energy 2 kT . (This is the equipartition theorem of classical statistical mechanics.) The pressure 1 ρ P = ρhjw~j2i = kT 3 m since 1 1 3kT h mw2i = kT =) hjw~j2i = : 2 i 2 m Therefore kT k P V = =) P dV = dT: m m Using dq = cV dT + P dV , the specific heat at constant pressure is @q dV k cP ≡ = cV + P = cV + : @T P dT m Changing the temperature at constant pressure requires more heat than at constant volume because some of the energy goes into P dV work. 19 For reasons that will soon become evident, the quantity γ ≡ cP =cV is called the adiabatic index. A monatomic gas has 3 degrees of freedom (translation), so 3 kT 3 k 5 k 5 = =) c = =) c = =) γ = : 2 m V 2 m P 2 m 3 A diatomic gas has 2 additional degrees of freedom (rotation), so cV = 5k=2m, γ = 7=5.
    [Show full text]
  • AA210A Fundamentals of Compressible Flow
    AA210A Fundamentals of Compressible Flow Chapter 2 -Thermodynamics of dilute gases 9/29/20 1 2.1 Introduction The power of thermodynamics comes from the fact that the change in the state of a fluid is independent of the actual physical process by which the change is achieved; thermodynamic theory is expressed in terms of perfect differentials. 2.2 Thermodynamics Piston-cylinder combination. First law of thermodynamics. 9/29/20 2 The work done by the system is the mechanical work by a force acting over a distance. When dealing with fluid flows it is convenient to work in terms of intensive (per unit mass) variables. If there is an equation of state for the substance inside the cylinder the first law is 9/29/20 3 According to Pfaff’s theorem there must exist an integrating factor such that the first law becomes a perfect differential. Once one accepts the first law and the existence of an equation of state then two new variables of state are implied; an integrating factor, the temperature, and an associated integral called entropy. The final result is the famous Gibbs equation which is the starting point for the field of thermodynamics The partial derivatives of the entropy are 9/29/20 4 2.3 The Carnot Cycle 9/29/20 5 Thermodynamic efficiency of the cycle First Law Over the cycle the change in internal energy is zero and the work done is So the efficiency is Since the temperature is constant during the heat interaction δq Q Q ds = = 1 + 2 = 0 Finally !∫ !∫ T T1 T2 9/29/20 6 2.3.1 The absolute scale of temperature For any Carnot cycle regardless of the working fluid This relation enables an absolute scale of temperature to be defined that is independent of the properties of any particular substance.
    [Show full text]
  • On Classical Ideal Gases
    Entropy 2013, 15, 960-971; doi:10.3390/e15030960 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article On Classical Ideal Gases Jacques Arnaud 1, Laurent Chusseau 2;* and Fabrice Philippe 3 1 Mas Liron, F30440 Saint Martial, France; E-Mail: [email protected] (J.A.) 2 IES, UMR n◦5214 au CNRS, Université Montpellier II, F34095 Montpellier, France 3 LIRMM, UMR n◦5506 au CNRS, 161 rue Ada, F34392 Montpellier, France; E-Mail: [email protected] (F.P.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-467414-975; Fax: +33-467547-134. Received: 12 December 2012; in revised form: 15 January 2013 / Accepted: 21 February 2013 / Published: 27 February 2013 Abstract: We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced. Keywords: ideal gas law; relativistic gases submitted to gravity; corpuscular concepts; classical gas theory; Democritus physics; canonical single-corpuscle thermodynamics 1. Introduction This paper is devoted to an alternative derivation of the ideal gas law, which agrees with the accepted postulates of statistical mechanics, and may present pedagogical and scientific interest.
    [Show full text]
  • Molecular Theory of Ideal Gases March 1, 2021
    1 Statistical Thermodynamics Professor Dmitry Garanin Molecular theory of ideal gases March 1, 2021 I. PREFACE Molecular theory can be considered as a preliminary to statistical physics. While the latter employs a more sophisti- cated formalism encompassing quantum-mechanical systems, the former operates with a classical ideal gas. Molecular theory studies the relation between the temperature of the gas and the kinetic energy of the molecules, pressure on the walls due to the impact of the molecules, distribution of molecules over velocities etc. All these results can be obtained in a more formal way in statistical physics. However, it is convenient to first study molecular theory at a more elementary level. On the other hand, molecular theory includes kinetics of classical gases that studies nonequilibrium phenomena such as heat conduction and diffusion (not a part of this course) II. BASIC ASSUMPTIONS OF THE MOLECULAR THEORY 1. Motion of atoms and molecules is described by classical mechanics 2. The number of particles in a considered macroscopic volume is very large. As there are about 1019 molecules in 1 cm3 at normal conditions, this assumption holds down to high vacuums. Because of the large number of particles, the impacts of individual particles on the walls merge into time-independent pressure. 3. The characteristic distance between the molecules largely exceeds the molecular size and the typical radius of intermolecular forces. This assumption allows to consider the gas as ideal, with the internal energy dominated by the kinetic energy of the molecules. In describing equilibrium properties of the ideal gas collisions between the molecules can be neglected.
    [Show full text]
  • Thermodynamics.Pdf
    1 Statistical Thermodynamics Professor Dmitry Garanin Thermodynamics February 24, 2021 I. PREFACE The course of Statistical Thermodynamics consist of two parts: Thermodynamics and Statistical Physics. These both branches of physics deal with systems of a large number of particles (atoms, molecules, etc.) at equilibrium. 3 19 One cm of an ideal gas under normal conditions contains NL = 2:69×10 atoms, the so-called Loschmidt number. Although one may describe the motion of the atoms with the help of Newton's equations, direct solution of such a large number of differential equations is impossible. On the other hand, one does not need the too detailed information about the motion of the individual particles, the microscopic behavior of the system. One is rather interested in the macroscopic quantities, such as the pressure P . Pressure in gases is due to the bombardment of the walls of the container by the flying atoms of the contained gas. It does not exist if there are only a few gas molecules. Macroscopic quantities such as pressure arise only in systems of a large number of particles. Both thermodynamics and statistical physics study macroscopic quantities and relations between them. Some macroscopics quantities, such as temperature and entropy, are non-mechanical. Equilibruim, or thermodynamic equilibrium, is the state of the system that is achieved after some time after time-dependent forces acting on the system have been switched off. One can say that the system approaches the equilibrium, if undisturbed. Again, thermodynamic equilibrium arises solely in macroscopic systems. There is no thermodynamic equilibrium in a system of a few particles that are moving according to the Newton's law.
    [Show full text]
  • Case File Cd
    CASE FILE CD cY z 0 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 3226 SOME POSSIBILITIES OF USING GAS MIXTURES OTHER THAN AIR IN AERODYNAMIC RESEARCH By Dean R. Chapman Ames Aeronautical Laboratory Moffett Field, Calif. WASHINGTON bi August 1954 1 a i NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TECHNICAL NOTE 3226 .SOME POSSIBILITIES OF USING GAS MIXTURES OTHER THAN AIR IN AERODYNAMIC RESEARCH By Dean R. Chapman SUMMARY A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. Heavy gases considered in previous investigations are either toxic, chemically active, or (as in the case of the Freons) have a ratio of specific heats greatly different from air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is non- toxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and xenon). For a given Mach number, Reynolds number, and tunnel pressure, a gas-mixture wind tunnel having the same specific-heat ratio as air wou1d. be appreciably smaller and would require substantially less power than the corresponding air wind tunnel. Very roughly the results are as follows: Mixtures Argon Krypton Xenon Power required relative to air tunnel .
    [Show full text]
  • High Accuracy Numerical Methods for Thermally Perfect Gas Flows with Chemistry
    JOURNAL OF COMPUTATIONAL PHYSICS 132, 175±190 (1997) ARTICLE NO. CP965622 High Accuracy Numerical Methods for Thermally Perfect Gas Flows with Chemistry Ronald P. Fedkiw, Barry Merriman, and Stanley Osher1 Department of Mathematics, University of California, 405 Hilgard Avenue, Los Angeles, California 90095-1555 Received July 25, 1996 sider the total mixture as a single compressible ¯uid, with The compressible Navier Stokes equations can be extended to the species-averaged density, momentum, and energy model multi-species, chemically reacting gas ¯ows. The result is a evolving according to the corresponding conservation laws. large system of convection-diffusion equations with stiff source In addition, the mass fraction of each species evolves ac- terms. In this paper we develop the framework needed to apply cording to a separate continuity equation. These continuity modern high accuracy numerical methods from computational gas dynamics to this extended system. We also present representative equations are strongly coupled through the chemical reac- computational results using one such method. The framework de- tions, and they also couple strongly to the equations for veloped here is useful for many modern numerical schemes. We the mixture via the effect of reactions on temperature ®rst present an enthalpy based form of the equations that is well and pressure. suited both for physical modeling and for numerical implementa- Since chemical reactions can cause large localized tem- tion. We show how to treat the stiff reactions via time splitting, and in particular how to increase accuracy by avoidng the common perature variations during combustion, it is important to practice of approximating the temperature.
    [Show full text]
  • A Perfect Gas James Joule, William Thomson and the Concept Of
    Downloaded from rsnr.royalsocietypublishing.org on March 12, 2013 James Joule, William Thomson and the concept of a perfect gas J. S. Rowlinson Notes Rec. R. Soc. 2010 64, doi: 10.1098/rsnr.2009.0038 first published online October 14, 2009 Receive free email alerts when new articles cite this article - sign up Email alerting service in the box at the top right-hand corner of the article or click here To subscribe to Notes Rec. R. Soc. go to: http://rsnr.royalsocietypublishing.org/subscriptions Downloaded from rsnr.royalsocietypublishing.org on March 12, 2013 Notes Rec. R. Soc. (2010) 64, 43–57 doi:10.1098/rsnr.2009.0038 Published online 14 October 2009 JAMES JOULE, WILLIAM THOMSON AND THE CONCEPT OF A PERFECT GAS by J. S. ROWLINSON* Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK In the early 1850s Joule and Thomson measured the cooling experienced by a flowing gas on passing an obstacle that caused a decrease in pressure. The mythical ‘perfect gas’, which conforms exactly to Boyle’s and Charles’s laws, would show no such cooling. They used their results to put the new theory of thermodynamics on a more secure foundation and to establish a practical route for converting the measurement of temperature on a gas scale to an absolute temperature based on the second law of thermodynamics. Their experiments were sound but their calculations were in error. Later in the century William Hampson and Carl von Linde independently devised a simple method of liquefying air based on Joule–Thomson cooling, but whereas Linde understood the theory, Hampson, and many chemists, confused the process with the cooling of a gas doing external work, which is an effect that would occur also with a perfect gas.
    [Show full text]
  • Problem Set #3 Assigned September 6, 2013 – Due Friday, September
    Problem Set #3 Assigned September 6, 2013 – Due Friday, September 13, 2013 Please show all work for credit To “warm up” or practice try the Atkins Exercises, which are generally simple one step problems Partial Derivatives 1. Engle – P. 3.2 (First and second partial derivatives) f 2x2 5 x y Cos5x y Sin 5x 12 x e Cos y 2 x y lny . x y 2 2 f x x lny 2x 2 x Sin5x 3 e Siny y x y 2 y 2 f 2 2 10 y Cos 5x 25 x y Sin 5x 12 e2x Cos y 48 e2x x 2 Cos y 2 y lny 2 x y 2 2 f 2x 2 x lny 3 e Cosy - 3 2 2 y x 4y f f 2 x x lny 2 Sin5x 5 x Cos 5 x 12 e2x x Sin y x y x y y y 2 f f 2x 2 x x lny f f a) 5 x Cos5 x 12 e x Sin y Sin5x y x y y x y y x x y f f 2x 2 df dx dy 5 x y Cos5x y Sin 5x 12 x e Cos y 2 x y lny dx x y b) y x 2 2 x x lny 2 x Sin 5x 3 e 2x Sin y dy y 2 y 2. Atkins – P. 2.22 (Exact differentials) Show that the following functions have exact diffreentials: (a) x2y+3y2, (b) xcos(xy), (c) x3y2, (d) t(t+es)+s Real Gases 3.
    [Show full text]
  • Digital Notes Thermodynamics
    DIGITAL NOTES THERMODYNAMICS (R18A0303) B.Tech II Year I Semester DEPARTMENT OF MECHANICAL ENGINEERING MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution – UGC, Govt.of India) Recognizes under 2(f) and 12(B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE –Accredited by NBA & NAAC-“A” Grade-ISO 9001:2015 Certified) DEPATMENT OF MECHANICAL ENGINEERING,MRCET THERMODYNAMICS B.TECH II YEAR I SEM R18 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY II Year B. Tech ME-I Sem L T/P/D C 4 1 4 (R17A0303) THERMODYNAMICS Objectives: To understand the concepts of energy transformation, conversion of heat into work. To understand the fundamentals of Differences between work producing and work consuming cycles. To apply the concepts of thermodynamics to basic energy systems. UNIT-I Basic Concepts : System - Types of Systems - Control Volume - Macroscopic and Microscopic viewpoints - Thermodynamic Equilibrium- State, Property, Process, Cycle – Reversibility – Quasi static Process, Irreversible Process, Causes of Irreversibility – Work and Heat, Point and Path functions. Zeroth Law of Thermodynamics – Principles of Thermometry –Constant Volume gas Thermometer – Scales of Temperature – PMM I - Joule’s Experiment – First law of Thermodynamics – Corollaries – First law applied to a Process – applied to a flow system – Steady Flow Energy Equation. UNIT-II Limitations of the First Law - Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot’s principle, Carnot cycle and its specialties, Clausius Inequality, Entropy, Principle of Entropy Increase – Energy Equation, Availability and Irreversibility – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics.
    [Show full text]