Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

Total Page:16

File Type:pdf, Size:1020Kb

Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania In cooperation with the U.S. Environmental Protection Agency Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania NORTHAMPTON COUNTY LEHIGH COUNTY BERKS COUNTY Delaware River BUCKS COUNTY LANCASTER COUNTY CHESTER COUNTY MONTGOMERY COUNTY Scientific Investigations Report 2006–5261 U.S. Department of the Interior U.S. Geological Survey Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania By Lisa A. Senior and Ronald A. Sloto In cooperation with the U.S. Environmental Protection Agency Scientific Investigations Report 2006-5261 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Meyers, Director U.S. Geological Survey, Reston, Virginia: 2006 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorse- ment by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to repro- duce any copyrighted materials contained within this report. Suggested citation: Senior, L.A., and Sloto, R.A., 2006, Arsenic, boron, and fluoride in ground water in and near diabase intrusions, Newark Basin, southeastern Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2006-5261, 105 p. iii Contents Abstract . 1 Introduction . 2 Background. 4 Purpose and Scope . 4 Study Area . 4 Previous Investigations. 4 Hydrogeologic Setting . 5 Geology. 5 Geologic Structure . 5 Geologic Units. 5 Precambrian and Paleozoic Rocks . 5 Mesozoic Rocks . 7 Stockton Formation . 7 Lockatong Formation . 7 Brunswick Group . 8 Hammer Creek Formation. 8 Limestone Fanglomerate . 8 Quartzite Fanglomerate . 8 Diabase . 9 Jacksonwald Basalt . 9 Sedimentary Strata at Jacksonwald and Aspers. 9 Effects of Thermal Metamorphism . 9 Mineral Deposits in the Newark Basin . 10 Magnetite Skarn and Skarn/Replacement Deposits . 10 Hornfels Copper Deposits . 12 Diabase-Hosted Vein and Late-Stage Igneous Segregation Deposits . 13 Sediment-Hosted and Stratabound Replacement Deposits . 13 Evaporites . 14 Ground-Water System . 14 Arsenic, Boron, and Fluoride in Ground Water . 15 Geochemical Controls on Arsenic, Boron, and Fluoride in Ground Water . 15 Review of Available Data. 15 Arsenic . 15 Boron . 21 Fluoride . 23 Methods of Data Collection and Analysis . 24 Ground-Water Sample Collection. 24 Sample Analysis. 28 Summary of Ground-Water Composition . 28 Major Ions and Characteristics . 28 Trace Elements. 32 Boron Isotopes. 36 iv Relation to Hydrogeologic Setting . 36 Congo Road Area. 37 Jacksonwald Area . 42 Kibblehouse Quarry Area. ..
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Water Resources of Oley Township, Berks County, Pennsylvania Were Studied by the U.S
    WATER RESOURCES OF OLEY TOWNSHIP, BERKS COUNTY, PENNSYLVANIA By Gary N. Paulachok and Charles R. Wood U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4065 Prepared in cooperation with the OLEY TOWNSHIP SUPERVISORS Harrisburg, Pennsylvania 1988 DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section 4th Floor, Federal Building Federal Center P.O. Box 1107 Box 25425 Harrisburg, PA 17108-1107 Denver, Colorado 80225 ii CONTENTS Page Abstract................................................................ 1 Introduction............................................................ 2 Purpose and scope................................................... 2 Description of area................................................. 2 Physical and cultural setting.................................. 2 Climate and precipitation...................................... 4 Geologic setting............................................... 5 Water supply and wastewater treatment............................... 6 We11-numbering system............................................... 7 Geologic names and aquifer codes.................................... 7 Acknowledgments..................................................... 8 Surface-water resources................................................. 8 Drainage basins and streamflow.....................................
    [Show full text]
  • DOGAMI MP-20, Investigations of Nickel in Oregon
    0 C\1 a: w a.. <( a.. en ::::> 0 w z <( __j __j w () en � INVESTIGATIONS OF NICKEL IN OREGON STATE OF OREGON DEPARTMENT OF GEOL.OGY AND MINERAL. IN OUSTRIES DONAL.D .A HUL.L. STATE GEOLOGIST 1978 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 State Office Building, Portland, Oregon 97201 MISCELLANEOUS PAPER 20 INVESTIGATIONS OF NICKEL IN OREGON Len Ramp, Resident Geologist Grants Pass Field Office Oregon Department of Geology and Mineral Industries Conducted in conformance with ORS 516.030 . •. 5 1978 GOVERNING BOARD Leeanne MacColl, Chairperson, Portland Talent Robert W. Doty STATE GEOLOGIST John Schwabe Portland Donald A. Hull CONTENTS INTRODUCTION -- - ---- -- -- --- Purpose and Scope of this Report Acknowledgments U.S. Nickel Industry GEOLOGY OF LATERITE DEPOSITS - -- - 3 Previous Work - - - - --- 3 Ultramafic Rocks - ----- --- 3 Composition - - -------- - 3 Distribution ------ - - - 3 Structure - 3 Geochemistry of Nickel ---- 4 Chemical Weathering of Peridotite - - 4 The soi I profile ------- 5 M i nero I ogy -- - ----- 5 Prospecting Guides and Techniques- - 6 OTHER TYPES OF NICKEL DEPOSITS - - 7 Nickel Sulfide Deposits- - - - - - 7 Deposits in Oregon 7 Other areas --- 8 Prospecting techniques 8 Silica-Carbonate Deposits - -- 8 DISTRIBUTION OF LATERITE DEPOSITS - ------ 9 Nickel Mountain Deposits - - ------ --------- 9 Location --------------- --- 9 Geology - ------- ----- 11 Ore deposits ----------- - -- 11 Soil mineralogy - ------- 12 Structure --- ---- ---- 13 Mining and metallurgy ------------ ---- 13 Production-
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • The Opaque Mineralogy of Metasedimentary Rocks of the Meguma Group, Beaverbank-Rawdon Area, Nova Scotia S
    Document généré le 2 oct. 2021 11:42 Atlantic Geology The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia S. J. Haysom, R. J. Horne et G. Pe-Piper Volume 33, numéro 3, fall 1997 URI : https://id.erudit.org/iderudit/ageo33_3err01 Aller au sommaire du numéro Éditeur(s) Atlantic Geoscience Society ISSN 0843-5561 (imprimé) 1718-7885 (numérique) Découvrir la revue Citer ce document Haysom, S. J., Horne, R. J. & Pe-Piper, G. (1997). The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia. Atlantic Geology, 33(3), 67–68. All rights reserved © Atlantic Geology, 1997 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. https://www.erudit.org/fr/ A tlantic Geology 249 ERRATUM The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia S. J. Haysom1, R.J. Home2 and G. Pe-Piper1 1 Department of Geology, Saint M ary’s University, Halifax, Nova Scotia B3H 3C 3, Canada 2Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2 T9, Canada Date Received January 15, 1996 Date Accepted June 13, 1997 (Ref.: 1997.
    [Show full text]
  • Evaluation of Groundwater Resources of Greenwich Township, Warren County, New Jersey
    Evaluation of Groundwater Resources of Greenwich Township, Warren County, New Jersey M2 Associates Inc. 56 Country Acres Drive Hampton, New Jersey 08827 (908) 238-0827 EVALUATION OF GROUNDWATER RESOURCES OF GREENWICH TOWNSHIP, WARREN COUNTY,NEW JERSEY NOVEMBER 8, 2005 Prepared for: Greenwich Township Planning Board 321 Greenwich Street Stewartsville, New Jersey 08886 Prepared by: Matthew J. Mulhall, P.G. M2 Associates Inc. 56 Country Acres Drive Hampton, New Jersey 08827 (908) 238-0827 EVALUATION OF GROUNDWATER RESOURCES OF GREENWICH TOWNSHIP, WARREN COUNTY,NEW JERSEY TABLE OF CONTENTS INTRODUCTION............................................................................................................. 1 GEOLOGY ...................................................................................................................... 5 LOCATION ..................................................................................................................... 5 POPULATION DENSITY.................................................................................................... 6 PHYSIOGRAPHIC PROVINCE ............................................................................................ 6 TOPOGRAPHY ................................................................................................................ 6 SURFACE WATER .......................................................................................................... 7 Watersheds............................................................................................................
    [Show full text]
  • 40Th NYSGA Annual Meeting 1968
    NEW YORK STATE GEOLOGICAL ASSOCIATION GUIDEBOOK TO FIELD EXCURSIONS 40TH ANNUAL MEETING 1968 AT QUEENS COLLEGE CITY UNIVERSITY OF NEW YO_RK FLUSHING, NEW YORK GUIDEBOOK to Field Excursions at the 40th Annual Meeting of the New York State Geological Association May 1968 Robert M. Finks, Editor Host: Department of Geology Queens College of The City University of New York Copies of this guidebook may be purchased from the Permanent Secretary, New York State Geological Association. Address Prof. Philip Hewitt, Department of Geology, State University College at Brockport, N. Y. 2 The organizer of the field trips described in this volume, and of the meeting at which they were given, is Professor Walter S. Newman President, NYSGA, 1968 3 CONTRIBUTING AUTHORS Eugene A. Alexandrov, Queens College G. D. Bennett, U. S. Geological Survey Robert M. Finks, Queens College Leo M. Hall, University of Massachusetts David H. Krinsley, Queens College David J. Leveson, Brooklyn College James P. Minard, U. S. Geological Survey Walter S. Newman, Queens College James P. Owens, U. S. Geological Survey F. J. Pearson, U. S. Geological Survey N. M. Perlmutter, U. S. Geological Survey Nicholas M. Ratcliffe, City College E. Lynn Savage, Brooklyn College Carl K. Seyfert, Buffalo State University College Leslie A. Sirkin, Adelphi University Norman F. Sohl, U. S. Geological Survey David L. Thurber, Queens College Franklyn B. Van Houten, Princeton University 4 PREFACE The papers brought together in this Guidebook merit comparative reading at leisure, for they often bring to bear upon problems of the local geology many independent lines of evidence. Some matters that come immediately to mind out of personal interest are: (1) The relation of the New York City Group to the unmetamorphosed Cambro­ Ordovician sequence (Trips A, C, E, H).
    [Show full text]
  • JPAS-11-Reduced.Pdf
    PROCEEDINGS I OF THE PENNSYLVANIA ACADEMY OF SCIENCE VOLUME XI 1 9 3 7 I HARRISBURG, PENNSYLVANIA 1937 I CONTENTS PAGE Minutes of the 1936 Summer Meeting ,_....... - ...... ., .. _,_, ___, ___ ............ _.......................................... 5 Minutes of the Thirteenth Annual Meeting ............. - ................... - ........ - ........... - .......................... -... 6 Government Aid Proj()cts in Biology, Homer C. Will and Pressley L. Crummy ......... 13 The Osteology of a 'l'eratological Goose, Marcus H. Green ........................ ................................. ... 18 The Stereids in the Petioles of Nymphea Advcna, Marcus H. Green and Warren S. Buck ....... _ - ...-- ... - ....... - ...................... - ............................. ,....................... _ ............................. -.... 20 The Respiratory Metabolism in the Larvae of the Tobacco Homworm (Phlege- OFFICERS thontius Sexta), Cla1·ence A. Horn .... -...................................................... .............. .. ... ........... ... .. ............... 22 Devonian Nomenclatmc in P ennsylvania, Bradford Willard ..................- ....... _.,,_.,,,. ......... _ 26 1937-38 The Amphibians and Reptiles of Bedford County, Pennsylvania, Thomas H. Knepp 35 ReminisceiiCes of Dr. S. S. Haldeman, George N. C. Henschen ........ _....................................... 36 Notes on Cave Ve1·tebrates, Chnrles E. Mohr ...... _ .. _.. - .. - ......................................... _,..... 38 p 1·esident ..~ : ......................................
    [Show full text]
  • The Opaque Mineralogy of Metasedimentary Rocks of the Meguma Group, Beaverbank-Rawdon Area, Nova Scotia
    A tlantic G eology 105 The opaque mineralogy of metasedimentary rocks of the Meguma Group, Beaverbank-Rawdon area, Nova Scotia S.J. Haysom1, RJ. Horne2 and G. Pe-Piper1 departm ent of Geology, Saint Mary’s University, Halifax, Nova Scotia B3H 3C 3, Canada 2Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2 T9, Canada Date Received January 15, 1996 Date Accepted June 13, 1997 Opaque mineralogy of a representative cross-section of deformed and metamorphosed turbiditic slate and metasandstone of the Meguma Group has been investigated optically and by electron microprobe. A strong strati­ graphic control over the presence and abundance of certain opaque minerals is recognized, -which may prove useful for environmental evaluation such as acid drainage potential. Abundant pyrite and pyrrhotite in the lower Halifax Formation reflect concentration of early diagenetic pyrite resulting from the reduction of seawater sulphate under anoxic conditions. Magnetite is restricted to the Goldenville Formation. Ilmenite and rutile occur through­ out the succession, and minor chalcopyrite, arsenopyrite, covellite, hematite and glaucodot were also noted. Pyrrhotite and ilmenite, as well as spessartine, chlorite and chloritoid porphyroblasts, developed during pro­ grade metamorphism before and/or during cleavage formation, which also resulted in removal of early diagenetic pyrite. Later pyrite formed by replacement or remobilization of pyrrhotite during retrograde metamorphism. Colloform pyrite, arsenopyrite and chalcopyrite are the youngest mineral phases. On a dtudid la structure mindralogique opaque d’un echantillon representatif de mdtagres et d’ardoise turbiditique deformes et metamorphises du groupe de Meguma, optiquement ainsi qu’a l’aide d’une microsonde dlectronique.
    [Show full text]
  • Cobalt, Nickel and Selenium in Tasmanian Ore Minerals
    COBALT, NICKEL ANU SELENIUM IN TASMANIAN ORE MINERALS by G. D. LOFTUS-HILLS, B.Sc. (lions.) Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. UNIVERSITY OF TASMANIA HOBART 1968 This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and, to the best of my knowledge and belief, contains no copy or paraphrase of material previously published or written by another person, except where due reference is made in the text of the thesis. G. D. LOFTUS-HILLS. University of Tasmania, November, 1968, ABSTRACT Analyses of Co, Ni and Se in pyrites and other minerals from a wide variety of Tasmanian ore deposits support a genetic relationship between the Mt. Lyell (pyritic - Cu) and Rosebery (banded In-Pb-Cu) deposits, and the Cambrian eugeosynclinal volcanic rocks in which they occur. The concentration trends for all the ores due to fundamental availability contain smaller-scale components due to depositional processes, which, except in one case, do not interfere with these trends. The components include impoverishment of Co (and Ni) during remobilization of sulphides, increase in Ni and decrease in Co away from the centre of zoned deposits, impoverishment of Ni (and Co) in replacement as compared with vein lodes, and regular and irregular partitioning of respectively Co-Ni and Se between coexisting minerals. The trends of Co-Ni in pyrite due to availability include the following: (a) The sedimentary-diagenetic pyrites generally contain Co/Ni < 0.5, but show no correlation of Co-Ni values with rock type, age, or degree of recrystallization.
    [Show full text]
  • Joint Meeting
    Joint Meeting 19. Jahrestagung der Deutschen Gesellschaft für Kristallographie 89. Jahrestagung der Deutschen Mineralogischen Gesellschaft Jahrestagung der Österreichischen Mineralogischen Gesellschaft (MinPet 2011) 20.-24. September 2011 Salzburg Referate Oldenbourg Verlag – München Inhaltsverzeichnis Plenarvorträge ............................................................................................................................................................ 1 Goldschmidt Lecture .................................................................................................................................................. 3 Vorträge MS 1: Crystallography at High Pressure/Temperature ................................................................................................. 4 MS 2: Functional Materials I ........................................................................................................................................ 7 MS 3: Metamorphic and Magmatic Processes I ......................................................................................................... 11 MS 4: Computational Crystallography ....................................................................................................................... 14 MS 5: Synchrotron- and Neutron Diffraction ............................................................................................................. 17 MS 6: Functional Materials II and Ionic Conductors ................................................................................................
    [Show full text]
  • Bedrock Geologic Map of the Chester Quadrangle, Morris County, New
    DEPARTMENT OF ENVIRONMENTAL PROTECTION Prepared in cooperation with the BEDROCK GEOLOGIC MAP OF THE CHESTER QUADRANGLE U.S. GEOLOGICAL SURVEY WATER RESOURCES MANAGEMENT (TRANQUILITY) MORRIS COUNTY, NEW JERSEY NEW JERSEY GEOLOGICAL AND WATER SURVEY NATIONAL GEOLOGIC MAPPING PROGRAM OPEN FILE MAP OFM 120 (DOVER) o 74 45' 42'30'' (STANHOPE) 40' 74 o 37'30'' ¹ o ¹ 40 52'30'' ¹ 40 o 52'30'' INTRODUCTION Folds M ¹ ECONOMIC RESOURCES New Jersey Highlands REFERENCES CITED 51 83 EXPLANATION OF MAP SYMBOLS ¹ Ypg U ¹ Sg Folds in Paleozoic rocks of the area postdate the development of bedding and formed during 67 64 Diabase dikes (Neoproterozoic) (Volkert and Puffer, 1995) – Light gray- or brown- Yk ¹ Zd D 53 27 63 ¹ The Chester 7.5-minute quadrangle is situated in the southwest part of Morris County, in the the Taconian and Alleghanian orogenies at about 450 Ma and 250 Ma, respectively. Folds in rocks of 71 ¹ Mesoproterozoic rocks in the Chester quadrangle host economic deposits of iron 82 ish-gray-weathering, dark-greenish-gray, aphanitic to fine-grained dikes. Composed Barnett, S.G., III, 1976, Geology of the Paleozoic rocks of the Green Pond outlier: New Jersey Contact - Dotted where concealed ¹ ? New Jersey Highlands physiographic province. Although the bedrock geology of the quadrangle has been the Green Pond Mountain Region and Valley and Ridge are characterized by a broad, open and upright, ¹ U ore (magnetite) mined predominantly during the 19th century, with most of the important Yd 66 U principally of plagioclase (labradorite to andesine), augite, and ilmenite and (or) Geological Survey Geologic Report Series No.
    [Show full text]