The Millennium Prize Problems

Total Page:16

File Type:pdf, Size:1020Kb

The Millennium Prize Problems CMI Clay Mathematics Institute AMS American Mathematical Society On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an infl uential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a The Millennium Prize Problems US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientifi c Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. The Millennium Their aim was somewhat different than that of Hilbert: not to defi ne new challenges, but to record some of the most diffi cult issues with which mathematicians were struggling at the turn of the second millennium; to Prize Problems recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to J. Carlson, A. Jaffe, and A. Wiles, Editors emphasize the importance of working towards a solution of the deepest, most diffi cult problems. The present volume sets forth the offi cial description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics. J. Carlson, A. Jaffe, and A. Wiles, Editors Wiles, A. and Jaffe, A. Carlson, J. For additional information and updates on this book, visit www.ams.org/bookpages/mprize A History of Prizes in Mathematics Jeremy Gray Birch and Swinnerton-Dyer Conjecture Andrew Wiles Hodge Conjecture Pierre Deligne Navier–Stokes Equation Charles L. Fefferman Poincaré Conjecture John Milnor P versus NP Problem Stephen Cook www.claymath.org Riemann Hypothesis Enrico Bombieri www.ams.org Quantum Yang–Mills Theory Arthur Jaffe and Edward Witten MPRIZE 4-color process 184 pages on 70# matte text • Backspace: 1 7/16 inches The Millennium Prize Problems Contents Introduction vii Landon T. Clay xi Statement of the Directors and the Scientific Advisory Board xv A History of Prizes in Mathematics Jeremy Gray 3 The Birch and Swinnerton-Dyer Conjecture Andrew Wiles 31 The Hodge Conjecture Pierre Deligne 45 Existence and Smoothness of the Navier–Stokes Equation Charles L. Fefferman 57 The Poincar´eConjecture John Milnor 71 The P versus NP Problem Stephen Cook 87 The Riemann Hypothesis Enrico Bombieri 107 Quantum Yang–Mills Theory Arthur Jaffe and Edward Witten 129 Rules for the Millennium Prizes 153 Authors’ Biographies 157 Picture Credits 161 v Introduction The Clay Mathematics Institute (CMI) grew out of the longstanding belief of its founder, Mr. Landon T. Clay, in the value of mathematical knowledge and its centrality to human progress, culture, and intellectual life. Discussions over some years with Professor Arthur Jaffe helped shape Mr. Clay’s ideas of how the advancement of mathematics could best be sup- ported. These discussions resulted in the incorporation of the Institute on September 25, 1998, under Professor Jaffe’s leadership. The primary objec- tives and purposes of the Clay Mathematics Institute are “to increase and disseminate mathematical knowledge; to educate mathematicians and other scientists about new discoveries in the field of mathematics; to encourage gifted students to pursue mathematical careers; and to recognize extraordi- nary achievements and advances in mathematical research.” CMI seeks to “further the beauty, power and universality of mathematical thinking.” Very early on, the Institute, led by its founding scientific board — Alain Connes, Arthur Jaffe, Edward Witten, and Andrew Wiles — decided to establish a small set of prize problems. The aim was not to define new challenges, as Hilbert had done a century earlier when he announced his list of twenty-three problems at the International Congress of Mathematicians in Paris in the summer of 1900. Rather, it was to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that, in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working toward solutions of the deepest, most difficult problems. After consulting with leading members of the mathematical community, a final list of seven problems was agreed upon: the Birch and Swinnerton- Dyer Conjecture, the Hodge Conjecture, the Existence and Uniqueness Prob- lem for the Navier–Stokes Equations, the Poincar´eConjecture, the P ver- sus NP problem, the Riemann Hypothesis, and the Mass Gap problem for Quantum Yang–Mills Theory. A set of rules was established, and a prize fund of US$7 million was set up, this sum to be allocated in equal parts to the seven problems. No time limit exists for their solution. vii viii MILLENNIUM PRIZE PROBLEMS The prize was announced at a meeting on May 24, 2000, at the Coll`ege de France. On page xv we reproduce the original statement of the Directors and the Scientific Advisory Board. John Tate and Michael Atiyah each spoke about the Millennium Prize Problems: Tate on the Riemann Hypothesis, the Birch and Swinnerton-Dyer Problem, and the P vs NP problem; Atiyah on the Existence and Uniqueness Problem for the Navier–Stokes Equations, the Poincar´eConjecture, and the Mass Gap problem for Quantum Yang– Mills Theory. In addition, Timothy Gowers gave a public lecture, “On the Importance of Mathematics”. The lectures — audio, video, and slides — can be found on the CMI website: www.claymath.org/millennium. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics. The editors gratefully acknowledge the work of Candace Bott (editorial and project management), Sharon Donahue (photo and photo credit re- search), and Alexander Retakh (TEX, technical, and photo editor) for their care and expert craftsmanship in the preparation of this manuscript. James Carlson, Arthur Jaffe, and Andrew Wiles Landon T. Clay Founder Clay Mathematics Institute Landon T. Clay Landon T. Clay Landon T. Clay has played a leadership role in a variety of business, sci- ence, cultural, and philanthropic activities. With his wife, Lavinia D. Clay, he founded the Clay Mathematics Institute and has served as its only Chair- man. His past charitable activities include acting as Overseer of Harvard College, as a member of the National Board of the Smithsonian Institute, and as Trustee of the Middlesex School. He is currently a Great Benefac- tor and Trustee Emeritus of the Museum of Fine Arts in Boston and for 30 years has been Chairman of the Caribbean Conservation Corporation, which operates a turtle nesting station in Costa Rica. He donated the Clay Tele- scope to the Magellan program of Harvard College in Chile. The Clay family built the Clay Science Centers at Dexter School and Middlesex School. He received an A.B. in English, cum laude, from Harvard College. xi Board of Directors and Scientific Advisory Board Board of Directors and Scientific Advisory Board Landon T. Clay, Lavinia D. Clay, Finn M.W. Caspersen, Alain Connes, Edward Witten, Andrew Wiles, Arthur Jaffe (not present: Randolph R. Hearst III and David R. Stone) Statement of the Directors and the Scientific Advisory Board In order to celebrate mathematics in the new millennium, the Clay Math- ematics Institute of Cambridge, Massachusetts, has named seven “Millen- nium Prize Problems”. The Scientific Advisory Board of CMI selected these problems, focusing on important classic questions that have resisted solu- tion over the years. The Board of Directors of CMI have designated a US$7 million prize fund for the solution to these problems, with US$1 million allo- cated to each. During the Millennium meeting held on May 24, 2000, at the Coll`egede France, Timothy Gowers presented a lecture entitled “The Impor- tance of Mathematics”, aimed for the general public, while John Tate and Michael Atiyah spoke on the problems. CMI invited specialists to formulate each problem. One hundred years earlier, on August 8, 1900, David Hilbert delivered his famous lecture about open mathematical problems at the second Interna- tional Congress of Mathematicians in Paris. This influenced our decision to announce the millennium problems as the central theme of a Paris meeting. The rules that follow for the award of the prize have the endorsement of the CMI Scientific Advisory Board and the approval of the Directors. The members of these boards have the responsibility to preserve the nature, the integrity, and the spirit of this prize. Directors: Finn M.W. Caspersen, Landon T. Clay, Lavinia D. Clay, Randolph R. Hearst III, Arthur Jaffe, and David R. Stone Scientific Advisory Board: Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten Paris, May 24, 2000 xv xvi MILLENNIUM PRIZE PROBLEMS Coll`egede France Paris meeting Alain Connes, Coll`egede France, and David Ellwood, Clay Mathematics Institute, undertook the planning and organization of the Paris meeting, assisted by the generous help of the Coll`ege de France and the CMI staff. The videos of the meeting, available at www.claymath.org/millennium, were shot and edited by Fran¸coisTisseyre. MILLENNIUM PRIZE PROBLEMS xvii Poster of the Paris meeting A History of Prizes in Mathematics Jeremy Gray A History of Prizes in Mathematics Jeremy Gray 1.
Recommended publications
  • 2006 Annual Report
    Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson.
    [Show full text]
  • Scalar Curvature and Geometrization Conjectures for 3-Manifolds
    Comparison Geometry MSRI Publications Volume 30, 1997 Scalar Curvature and Geometrization Conjectures for 3-Manifolds MICHAEL T. ANDERSON Abstract. We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After dis- cussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of these conjectures and outline an approach toward their proof. Introduction In the late seventies and early eighties Thurston proved a number of very re- markable results on the existence of geometric structures on 3-manifolds. These results provide strong support for the profound conjecture, formulated by Thur- ston, that every compact 3-manifold admits a canonical decomposition into do- mains, each of which has a canonical geometric structure. For simplicity, we state the conjecture only for closed, oriented 3-manifolds. Geometrization Conjecture [Thurston 1982]. Let M be a closed , oriented, 2 prime 3-manifold. Then there is a finite collection of disjoint, embedded tori Ti 2 in M, such that each component of the complement M r Ti admits a geometric structure, i.e., a complete, locally homogeneous RiemannianS metric. A more detailed description of the conjecture and the terminology will be given in Section 1. A complete Riemannian manifold N is locally homogeneous if the universal cover N˜ is a complete homogenous manifold, that is, if the isometry group Isom N˜ acts transitively on N˜. It follows that N is isometric to N=˜ Γ, where Γ is a discrete subgroup of Isom N˜, which acts freely and properly discontinuously on N˜.
    [Show full text]
  • Algebraic Cycles from a Computational Point of View
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 392 (2008) 128–140 www.elsevier.com/locate/tcs Algebraic cycles from a computational point of view Carlos Simpson CNRS, Laboratoire J. A. Dieudonne´ UMR 6621, Universite´ de Nice-Sophia Antipolis, 06108 Nice, France Abstract The Hodge conjecture implies decidability of the question whether a given topological cycle on a smooth projective variety over the field of algebraic complex numbers can be represented by an algebraic cycle. We discuss some details concerning this observation, and then propose that it suggests going on to actually implement an algorithmic search for algebraic representatives of classes which are known to be Hodge classes. c 2007 Elsevier B.V. All rights reserved. Keywords: Algebraic cycle; Hodge cycle; Decidability; Computation 1. Introduction Consider the question of representability of a topological cycle by an algebraic cycle on a smooth complex projective variety. In this paper we point out that the Hodge conjecture would imply that this question is decidable for varieties defined over Q. This is intuitively well-known to specialists in algebraic cycles. It is interesting in the context of the present discussion, because on the one hand it shows a relationship between an important question in algebraic geometry and the logic of computation, and on the other hand it leads to the idea of implementing a computer search for algebraic cycles as we discuss in the last section. This kind of consideration is classical in many areas of geometry. For example, the question of deciding whether a curve defined over Z has any Z-valued points was Hilbert’s tenth problem, shown to be undecidable in [10,51, 39].
    [Show full text]
  • The Integral Hodge Conjecture for Two-Dimensional Calabi-Yau
    THE INTEGRAL HODGE CONJECTURE FOR TWO-DIMENSIONAL CALABI–YAU CATEGORIES ALEXANDER PERRY Abstract. We formulate a version of the integral Hodge conjecture for categories, prove the conjecture for two-dimensional Calabi–Yau categories which are suitably deformation equivalent to the derived category of a K3 or abelian surface, and use this to deduce cases of the usual integral Hodge conjecture for varieties. Along the way, we prove a version of the variational integral Hodge conjecture for families of two-dimensional Calabi–Yau categories, as well as a general smoothness result for relative moduli spaces of objects in such families. Our machinery also has applications to the structure of intermediate Jacobians, such as a criterion in terms of derived categories for when they split as a sum of Jacobians of curves. 1. Introduction Let X be a smooth projective complex variety. The Hodge conjecture in degree n for X states that the subspace of Hodge classes in H2n(X, Q) is generated over Q by the classes of algebraic cycles of codimension n on X. This conjecture holds for n = 0 and n = dim(X) for trivial reasons, for n = 1 by the Lefschetz (1, 1) theorem, and for n = dim(X) − 1 by the case n = 1 and the hard Lefschetz theorem. In all other degrees, the conjecture is far from being known in general, and is one of the deepest open problems in algebraic geometry. There is an integral refinement of the conjecture, which is in fact the version originally proposed by Hodge [Hod52]. Let Hdgn(X, Z) ⊂ H2n(X, Z) denote the subgroup of inte- gral Hodge classes, consisting of cohomology classes whose image in H2n(X, C) is of type (n,n) for the Hodge decomposition.
    [Show full text]
  • A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
    A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered.
    [Show full text]
  • Hodge-Theoretic Invariants for Algebraic Cycles
    HODGE-THEORETIC INVARIANTS FOR ALGEBRAIC CYCLES MARK GREEN∗ AND PHILLIP GRIFFITHS Abstract. In this paper we use Hodge theory to define a filtration on the Chow groups of a smooth, projective algebraic variety. Assuming the gen- eralized Hodge conjecture and a conjecture of Bloch-Beilinson, we show that this filtration terminates at the codimension of the algebraic cycle class, thus providing a complete set of period-type invariants for a rational equivalence class of algebraic cycles. Outline (1) Introduction (2) Spreads; explanation of the idea p (3) Construction of the filtration on CH (X)Q (4) Interpretations and proofs (5) Remarks and examples (6) Appendix: Reformation of the construction 1. Introduction Some years ago, inspired by earlier work of Bloch, Beilinson (cf. [R]) proposed a series of conjectures whose affirmative resolution would have far reaching conse- quences on our understanding of the Chow groups of a smooth projective algebraic variety X. For any abelian group G, denoting by GQ the image of G in G⊗Z Q, these P conjectures would have the following implications for the Chow group CH (X)Q: (I) There is a filtration p 0 p 1 p (1.1) CH (X)Q = F CH (X)Q ⊃ F CH (X)Q p p p+1 p ⊃ · · · ⊃ F CH (X)Q ⊃ F CH (X)Q = 0 whose successive quotients m p m p m+1 p (1.2) Gr CH (X)Q = F CH (X)Q=F CH (X)Q may be described Hodge-theoretically.1 The first two steps in the conjectural filtration (??) are defined classically: If p 2p 0 : CH (X)Q ! H (X; Q) is the cycle class map, then 1 p F CH (X)Q = ker 0 : Setting in general m p p m p F CH (X) = CH (X) \ F CH (X)Q ; ∗Research partially supported by NSF grant DMS 9970307.
    [Show full text]
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
    MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work.
    [Show full text]
  • Determining Large Groups and Varieties from Small Subgroups and Subvarieties
    Determining large groups and varieties from small subgroups and subvarieties This course will consist of two parts with the common theme of analyzing a geometric object via geometric sub-objects which are `small' in an appropriate sense. In the first half of the course, we will begin by describing the work on H. W. Lenstra, Jr., on finding generators for the unit groups of subrings of number fields. Lenstra discovered that from the point of view of computational complexity, it is advantageous to first consider the units of the ring of S-integers of L for some moderately large finite set of places S. This amounts to allowing denominators which only involve a prescribed finite set of primes. We will de- velop a generalization of Lenstra's method which applies to find generators of small height for the S-integral points of certain algebraic groups G defined over number fields. We will focus on G which are compact forms of GLd for d ≥ 1. In the second half of the course, we will turn to smooth projective surfaces defined by arithmetic lattices. These are Shimura varieties of complex dimension 2. We will try to generate subgroups of finite index in the fundamental groups of these surfaces by the fundamental groups of finite unions of totally geodesic projective curves on them, that is, via immersed Shimura curves. In both settings, the groups we will study are S-arithmetic lattices in a prod- uct of Lie groups over local fields. We will use the structure of our generating sets to consider several open problems about the geometry, group theory, and arithmetic of these lattices.
    [Show full text]
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • What's Inside
    Newsletter A publication of the Controlled Release Society Volume 32 • Number 1 • 2015 What’s Inside 42nd CRS Annual Meeting & Exposition pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device Interview with Paolo Colombo Patent Watch Robert Langer Awarded the Queen Elizabeth Prize for Engineering Newsletter Charles Frey Vol. 32 • No. 1 • 2015 Editor Table of Contents From the Editor .................................................................................................................. 2 From the President ............................................................................................................ 3 Interview Steven Giannos An Interview with Paolo Colombo from University of Parma .............................................. 4 Editor 42nd CRS Annual Meeting & Exposition .......................................................................... 6 What’s on Board Access the Future of Delivery Science and Technology with Key CRS Resources .............. 9 Scientifically Speaking pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting ............................. 10 Arlene McDowell Editor In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device ........................................................................................................ 12 Patent Watch ................................................................................................................... 14 Special
    [Show full text]
  • Sir Andrew J. Wiles
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM.
    [Show full text]