HOMOTOPY THEORY an Introduction to Algebraic Topology

Total Page:16

File Type:pdf, Size:1020Kb

HOMOTOPY THEORY an Introduction to Algebraic Topology HOMOTOPY THEORY An Introduction to Algebraic Topolopy Pure and Applied Mathematics A Series of Monographs and Textbooks Editors =emuel Ellenberg and Hyman Bass Columbia University, New York RECENT TITLES XIA DAO-XING.Measure and Integration Theory of Infinite-Dimensional Spaces : Abstract Harmonic Analysis RONALDG. DOUGLAS.Banach Algebra Techniques in Operator Theory WILLARDMILLER, JR. Symmetry Groups and Their Applications ARTHURA. SACLEAND RALPHE. WALDE.Introduction to Lie Groups and Lie Algebras T. BENNYRUSHING. Topological Embeddings JAMES W. VICK.Homology Theory : An Introduction to Algebraic Topology E. R. KOLCHIN.Differential Algebra and Algebraic Groups GERALDJ. JANUSZ. Algebraic Number Fields A. S. B. HOLLAND.Introduction to the Theory of Entire Functions WAYNEROBERTS AND DALEVARBERG. Convex Functions A. M. OSTROWSKI.Solution of Equations in Euclidean and Banach Spaces, Third Edition of Solution of Equations and Systems of Equations H. M. EDWARDS.Riemann's Zeta Function SAMUELEILENBERG. Automata, Languages, and Machines : Volume A. In pueparation: Volume B MORRISHIRSCH ANU STEPHENSMALE. Differential Equations, Dynamical Systems, and Linear Algebra WILHELMMAGNUS. Noneuclidean Tesselations and Their Groups J. DIEUDONN~.Treatise on Analysis, Volume IV FRANCOISTREVES. Basic Linear Partial Differential Equations WILLIAMM. BOOTHBY.An Introduction to Differentiable Manifolds and Riemannian Geometry BRAYTONGRAY. Homotopy Theory : An Introduction to Algebraic Topology ROBERTA. ADAMS.Sobolev Spaces Iit preparation D. v. WIDDER. The Heat Equation IRVINGE. SEGAL.Mathematical Cosmology and Extragalactic Astronomy WERNERGREUB, STEPHEN HALPERIN, AND RAYVANSTONE. Connections, Curvature, and Cohomology : Volume 111, Cohomology of Principal Bundles and Homogeneous Spaces J. DIEUDONN~.Treatise on Analysis, Volume 11, enlarged and corrected printing JOHNJ. BENEDETTO.Spectral Synthesis 1. MARTINISAACS. Character Theory of Finite Groups HOMOTOPY THEORY An Introduction to Algebraic Topology BRAYTO& GRAY Department of Mathematics University of Illinois at Chicago Circle Chicago, Illinois ACADEMIC PRESS New York San Francisco London 1975 A Subsidiary of Harcourt Brace Jovanovich, Publishers COPYRIGHT 0 1975, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWl Library of Congress Cataloging in Publication Data Gray, Brayton. Homotopy theory. (Pure and applied mathematics series, 64) Bibliography: p. 1. Homotopy theory. I. Title. 11. Series: Pure and applied mathematics; a series of monographs and textbooks. QA3.PI1 IQA612.71 510'.8s [514'.24] 74-5686 ISBN 0-12-296050-5 PRINTED IN THE UNITED STATES OF AMERICA Contents Preface vii List of Symbols xi 0 Preliminaries 1 1 Some Simple Topological Spaces 4 2 Some Simple Topological Problems 9 3 Homotopy Theory 13 4 Category Theory 17 5 The Fundamental Group 22 6 More on the Fundamental Group 29 7 Calculating the Fundamental Group 34 8 A Convenient Category of Topological Spaces 50 9 Track Groups and Homotopy Groups 62 10 Relative Homotopy Groups 70 11 Locally Trivial Bundles 77 12 Simplicia1 Complexes and Linearity 90 13 Calculating Homotopy Groups : The Blakers-Massey Theorem 99 14 The Topology of CW Complexes 113 15 Limits 122 16 The Homotopy Theory of CW Complexes 130 17 K(n, n)’s and Postnikov Systems 157 18 Spectral Reduced Homology and Cohomology Theories 168 19 Spectral Unreduced Homology and Cohomology Theories 183 20 Ordinary Homology of CW Complexes 187 21 Homology and Cohomology Groups of More General Spaces 200 22 The Relation between Homotopy and Ordinary Homology 21 5 V vi Contents 23 Multiplicative Structure 22 I 24 Relations between Chain Complexes 245 25 Homological Algebra over a Principal Ideal Domain : Kunneth and Universal Coefficient Theorems 256 26 Orientation and Duality 269 27 Cohomology Operations 294 28 Adem Relations 310 29 K-Theories 324 30 Cobordism 342 Table 1 Adem Relations Sg" Sgb .for a < 2b 12 358 References 360 Index 363 Preface This book is an exposition of elementary algebraic topology from the point of view of a homotopy theorist. The only prerequisite is a good foun- dation in point set topology. In particular, homology theory is not assumed. Both homology and cohomology are developed as examples of (generalized) homology and cohomology theories. The idea of developing algebraic topology in this fashion is not new, but to my knowledge this is the first detailed exposition from this viewpoint. One pedagogical advantage of a course developed in this way is that it may be studied before or after a course in classical homology theory (e.g. [71] or [28]); alternatively homology and cohomology could first be introduced, as they are here, as examples of a more general theory. The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology. The first few sections are introductory in nature. These are followed by a discussion of the fundamental group, covering spaces, and Van Kampen’s theorem. The fundamental group serves as a model of a functor that can be calculated. In Section 8 we introduce the category of compactly generated spaces. This seems to be the most appropriate category for algebraic topology. Many results which are most often stated in the category of CW complexes are valid in this generality. The key result we use to make calculations is the Blakers-Massey theorem. This is strong enough to imply the suspension theorem and the Serre exact sequences. The Blakers-Massey theorem is proved by linear approximation vii ... Vlll Preface techniques in Section 13 (after J. M. Boardman) in the case of a pair of relative cells. This allows one to calculate IT,(S").The more general form of the Blakers-Massey theorem is proved in Section 16. In Section 18 reduced " spectral " homology and cohomology theories are defined from arbitrary spectra on compactly generated spaces. They satisfy the usual axioms in this generality. It is more complicated to show that unreduced theories satisfy the usual axioms; this is done in Section 21. Spectral homology theories agree with their " singular approximations." Spectral cohomology theories on paracompact spaces have all the properties usually associated with cech theory. Calculations in the ordinary homology of CW complexes are studied in Section 20. We develop axioms for the chain complex of a CW complex. These are strong enough to make all the usual calculations based on ad hoc decompositions. In particular a proof of the algorithm for the homology of a simplicia1 complex is given. (The algorithm for singular homology follows from the functorial singular complex construction which is included as an appendix to Section 16.) The Hurewicz theorem follows quite easily from the Blakers-Massey theorem. Duality in manifolds in its full generality for an arbitrary ring spectrum follows from the usual inductive approach using " spectral " homology and cohomology. In Section 27 we introduce Steenrod operations geometrically via the quadratic construction. We learned this approach from J. Milgram. The Adem relations are proven in Section 29 by a method due to L. Kristensen. This necessitates calculating H*(K(Z,, n); 2,) for which we state, without proof, the Bore1 transgression theorem. Spectral sequences have been omitted for several reasons : their introduc- tion would increase the length of the book considerably; they are more difficult to write about than to explain; there already exist expositions which we feel we cannot improve upon ([21, 41, 311). In the last two sections we sketch K-theory and cobordism. This serves as an introduction to some of the more powerful functors which have been utilized in algebraic topology. Applications of K-theory to the Hopf invari- ant and the vector field problem are discussed. In the last section x,(MO) is calculated. We have used throughout the symbol 1 whenever we have finished the proof of some theorem, proposition, corollary, or claim made earlier. Sometimes these symbols pile up-for example, if one statement is reduced to another. The exercises are an integral part of the development. No exercise requires outside reading, or the utilization of techniques not previously developed (usually in the relevant section). A * on an exercise indicates that its under- Preface ix standing is necessary for further study-not that it is difficult. Often termi- nology used later is first introduced in such an exercise. Many exercises are used later in only a few places. In such cases it is indicated in parentheses at the end of the exercise where the result is used. A one-quarter introductory course could easily be based on Sections 0-13. Section 8 could be skipped if an independent proof of adjointness is given. Section 8 is used essentially in Section 18 unless one restricts the homology and cohomology theories to finite complexes. Occasionally seminar problems are given at the end of a section. These are topics peripheral to the material in the section and not used elsewhere. They are
Recommended publications
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • New Ideas in Algebraic Topology (K-Theory and Its Applications)
    NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems.
    [Show full text]
  • The Seifert-Van Kampen Theorem Via Covering Spaces
    Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona The Seifert-Van Kampen theorem via covering spaces Autor: Roberto Lara Martín Director: Dr. Javier José Gutiérrez Marín Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, 29 de juny de 2017 Contents Introduction ii 1 Category theory 1 1.1 Basic terminology . .1 1.2 Coproducts . .6 1.3 Pushouts . .7 1.4 Pullbacks . .9 1.5 Strict comma category . 10 1.6 Initial objects . 12 2 Groups actions 13 2.1 Groups acting on sets . 13 2.2 The category of G-sets . 13 3 Homotopy theory 15 3.1 Homotopy of spaces . 15 3.2 The fundamental group . 15 4 Covering spaces 17 4.1 Definition and basic properties . 17 4.2 The category of covering spaces . 20 4.3 Universal covering spaces . 20 4.4 Galois covering spaces . 25 4.5 A relation between covering spaces and the fundamental group . 26 5 The Seifert–van Kampen theorem 29 Bibliography 33 i Introduction The Seifert-Van Kampen theorem describes a way of computing the fundamen- tal group of a space X from the fundamental groups of two open subspaces that cover X, and the fundamental group of their intersection. The classical proof of this result is done by analyzing the loops in the space X and deforming them into loops in the subspaces. For all the details of such proof see [1, Chapter I]. The aim of this work is to provide an alternative proof of this theorem using covering spaces, sets with actions of groups and category theory.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6.
    [Show full text]
  • Algebraic Topology - Homework 6
    Algebraic Topology - Homework 6 Problem 1. Let X be the space obtained by removing two points from the torus T 2. (a) Deformation retract X as much as possible. What do you get? (b) Compute π1(X). Draw generators of the fundamental group as loops in X. Problem 2. Let G be a group. Show that the commutator subgroup of G is a normal subgroup. Problem 3. Let ϕ : G ! H be a homomorphism. Show that ker ϕ is a normal subgroup of G. Problem 4. (a) Determine the commutator subgroup of Z. (b) What is the commutator subgroup of any abelian group? (c) Determine the commutator subgroup of the symmetric group S3. Problem 5. Let P 2 be the projective plane. Use the Seifert-van Kampen Theorem to deter- 2 mine π1(P ). Problem 6. A single group can have many different group presentations. Even using the same generators, the relations can be expressed in different ways, and it is not always easy to see that two different presentations describe the same group. In the area of abstract algebra, the word problem for a group is the problem of deciding whether two different words in the generators represent the same element or whether two different presentations represent the same group. (a) Let x; y; z be elements in a group such that x2 = y2 = 1 and yz = zxy. Show that xy = yx. 5 2 2 (b) Show that ha; b j a = 1; b = 1; ba = a bi is isomorphic to Z2. 1 Problem 7. Let K2 be the Klein bottle.
    [Show full text]
  • The Fundamental Group of Topological Spaces an Introduction to Algebraic Topology
    Basic Topology The Fundamental Group Examples Seifert-van Kampen Theorem The Fundamental Group of Topological Spaces An Introduction To Algebraic Topology Thomas Gagne Department of Mathematics University of Puget Sound May 4, 2015 Basic Topology The Fundamental Group Examples Seifert-van Kampen Theorem An Introduction To Point-Set Topology Definition of Topological Spaces Definition: A topological space is a nonempty set X paired with a collection of subsets of X called open sets satisfying: • X and ? are both open sets. • The finite or infinite union of any collection of open sets is itself an open set. • The finite intersection of any collection of open sets is itself an open set. Basic Topology The Fundamental Group Examples Seifert-van Kampen Theorem An Introduction To Point-Set Topology Examples of Topological Spaces Example: n We can define a topology on R to be the set of all possible arbitrary unions and finite intersections of open sets of the form: n U = fx 2 R : d(x; y) < "g n for any y 2 R ; " > 0, where d is the Euclidean distance function. Example: We can define a topology on the set I = [0; 1] as a subset of R1 by letting a set U be open in I if and only if there exists an open set V in R1 such that I \ V = U. Basic Topology The Fundamental Group Examples Seifert-van Kampen Theorem An Introduction To Point-Set Topology Definition of Product Spaces Definition: The product space of two topological spaces X and Y is the topological space X × Y.
    [Show full text]
  • The Seifert-Van Kampen Theorem
    1 SMSTC Geometry and Topology 2011{2012 Lecture 5 The Seifert { van Kampen Theorem Andrew Ranicki (Edinburgh) 10th November, 2011 2 Introduction I Topology and groups are closely related via the fundamental group construction π1 : fspacesg ! fgroupsg ; X 7! π1(X ) : I The Seifert - van Kampen Theorem expresses the fundamental group of a union X = X1 [Y X2 of path-connected spaces in terms of the fundamental groups of X1; X2; Y . I The Theorem is used to compute the fundamental group of a space built up using spaces whose fundamental groups are known already. I The Theorem is used to prove that every group G is the fundamental group G = π1(X ) of a space X . I Lecture follows Section I.1.2 of Hatcher's Algebraic Topology, but not slavishly so. 3 Revision : the fundamental group I The fundamental group π1(X ; x) of a space X at x 2 X is the group of based homotopy classes [!] of pointed loops ! :(S1; 1) ! (X ; x) : I The group law is by the concatenation of loops: [!1][!2] = [!1 • !2] : I The inverse is by the reversal of loops: [!]−1 = [!] with !(t) = !(1 − t). I A path α : I ! X induces an isomorphism of groups α# : π1(X ; α(0)) ! π1(X ; α(1)) ; ! 7! [α • ! • α] : I Will mainly consider path-connected spaces X : the fundamental group π1(X ; x) is independent of the base point x 2 X , and may be denoted π1(X ). 4 Three ways of computing the fundamental group I. By geometry I For an infinite space X there are far too many loops 1 ! : S ! X in order to compute π1(X ) from the definition.
    [Show full text]
  • A Study in Homology
    A STUDY IN HOMOLOGY _____________________________________ A Thesis Presented to The Honors Tutorial College Ohio University _____________________________________ In Partial Fulfillment of The Requirements from the Honors Tutorial College With the degree of Bachelor of Science Mathematics _____________________________________ by Michael Schnurr April 2013 Table of Contents 1. Topology: Basic Ideas ................................................................ 1 2. Algebraic Topology and Homology: An Overview .................. 3 3. Algebraic Background ................................................................ 6 4. Geometric Independence and Simplices .................................. 12 5. Oriented Complexes ................................................................. 18 6. Defining Homology Groups ..................................................... 22 7. Examples of Homology Groups and Computation Shortcuts . 27 8. Homology Groups of Surfaces, Part I ...................................... 35 9. Homology Groups of Surfaces, Part II ..................................... 45 10. Finding Spaces with Certain Homology Groups ..................... 51 11. Closing Comments ................................................................... 53 1 Topology: Basic Ideas Topology is a field of mathematics that studies basic properties of a space or object, such as connectedness or the presence of “holes” in the space, that are preserved under continuous deformation. In a sense, topology can be thought of as an abstract geometry that
    [Show full text]
  • Introduction to Algebraic Topology and Algebraic
    INTERNATIONAL SCHOOL FOR ADVANCED STUDIES Trieste U. Bruzzo INTRODUCTION TO ALGEBRAIC TOPOLOGY AND ALGEBRAIC GEOMETRY Notes of a course delivered during the academic year 2002/2003 La filosofia `escritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli occhi (io dico l'universo), ma non si pu`o intendere se prima non si impara a intender la lingua, e conoscer i caratteri, ne' quali `escritto. Egli `escritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche, senza i quali mezi `eimpossibile a intenderne umanamente parola; senza questi `eun aggirarsi vanamente per un oscuro laberinto. Galileo Galilei (from \Il Saggiatore") i Preface These notes assemble the contents of the introductory courses I have been giving at SISSA since 1995/96. Originally the course was intended as introduction to (complex) algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for doing research in algebraically integrable systems and in the geometry of quantum field theory and string theory. This motivation still transpires from the chapters in the second part of these notes. The first part on the contrary is a brief but rather systematic introduction to two topics, singular homology (Chapter 2) and sheaf theory, including their cohomology (Chapter 3). Chapter 1 assembles some basics fact in homological algebra and develops the first rudiments of de Rham cohomology, with the aim of providing an example to the various abstract constructions. Chapter 5 is an introduction to spectral sequences, a rather intricate but very pow- erful computation tool.
    [Show full text]