A History of Duality in Algebraic Topology James C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics People
Mathematics People symmetric spaces, L²-cohomology, arithmetic groups, and MacPherson Awarded Hopf the Langlands program. The list is by far not complete, and Prize we try only to give a representative selection of his contri- bution to mathematics. He influenced a whole generation Robert MacPherson of the Institute for Advanced Study of mathematicians by giving them new tools to attack has been chosen the first winner of the Heinz Hopf Prize difficult problems and teaching them novel geometric, given by ETH Zurich for outstanding scientific work in the topological, and algebraic ways of thinking.” field of pure mathematics. MacPherson, a leading expert Robert MacPherson was born in 1944 in Lakewood, in singularities, delivered the Heinz Hopf Lectures, titled Ohio. He received his B.A. from Swarthmore College in “How Nature Tiles Space”, in October 2009. The prize also 1966 and his Ph.D. from Harvard University in 1970. He carries a cash award of 30,000 Swiss francs, approximately taught at Brown University from 1970 to 1987 and at equal to US$30,000. the Massachusetts Institute of Technology from 1987 to The following quotation was taken from a tribute to 1994. He has been at the Institute for Advanced Study in MacPherson by Gisbert Wüstholz of ETH Zurich: “Singu- Princeton since 1994. His work has introduced radically larities can be studied in different ways using analysis, new approaches to the topology of singular spaces and or you can regard them as geometric phenomena. For the promoted investigations across a great spectrum of math- latter, their study demands a deep geometric intuition ematics. -
Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X). -
The Fundamental Group and Seifert-Van Kampen's
THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence. -
Algebraic Topology
Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry. -
Duality, Part 1: Dual Bases and Dual Maps Notation
Duality, part 1: Dual Bases and Dual Maps Notation F denotes either R or C. V and W denote vector spaces over F. Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Examples: Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). Examples: Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. -
New Ideas in Algebraic Topology (K-Theory and Its Applications)
NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems. -
INTRODUCTION to ALGEBRAIC TOPOLOGY 1 Category And
INTRODUCTION TO ALGEBRAIC TOPOLOGY (UPDATED June 2, 2020) SI LI AND YU QIU CONTENTS 1 Category and Functor 2 Fundamental Groupoid 3 Covering and fibration 4 Classification of covering 5 Limit and colimit 6 Seifert-van Kampen Theorem 7 A Convenient category of spaces 8 Group object and Loop space 9 Fiber homotopy and homotopy fiber 10 Exact Puppe sequence 11 Cofibration 12 CW complex 13 Whitehead Theorem and CW Approximation 14 Eilenberg-MacLane Space 15 Singular Homology 16 Exact homology sequence 17 Barycentric Subdivision and Excision 18 Cellular homology 19 Cohomology and Universal Coefficient Theorem 20 Hurewicz Theorem 21 Spectral sequence 22 Eilenberg-Zilber Theorem and Kunneth¨ formula 23 Cup and Cap product 24 Poincare´ duality 25 Lefschetz Fixed Point Theorem 1 1 CATEGORY AND FUNCTOR 1 CATEGORY AND FUNCTOR Category In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, ··· , and ‘arrows‘ between them denoted by f , g, ··· , as in the examples f f1 A / B X / Y g g1 f2 h g2 C Z / W We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the composite paths between two objects ultimately compose to give the same arrow. For the above examples, they are commutative if h = g ◦ f f2 ◦ f1 = g2 ◦ g1. Definition 1.1. A category C consists of 1◦. A class of objects: Obj(C) (a category is called small if its objects form a set). We will write both A 2 Obj(C) and A 2 C for an object A in C. -
Classification of Compact 2-Manifolds
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2016 Classification of Compact 2-manifolds George H. Winslow Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Geometry and Topology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4291 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Abstract Classification of Compact 2-manifolds George Winslow It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup. The surfaces of the two objects, viewed as topological spaces, are homeomorphic to each other, which is to say that they are topologically equivalent. In this thesis, we acknowledge some of the most well-known examples of surfaces: the sphere, the torus, and the projective plane. We then ob- serve that all surfaces are, in fact, homeomorphic to either the sphere, the torus, a connected sum of tori, a projective plane, or a connected sum of projective planes. Finally, we delve into algebraic topology to determine that the aforementioned sur- faces are not homeomorphic to one another, and thus we can place each surface into exactly one of these equivalence classes. Thesis Director: Dr. Marco Aldi Classification of Compact 2-manifolds by George Winslow Bachelor of Science University of Mary Washington Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mathematics Virginia Commonwealth University 2016 Dedication For Lily ii Abstract It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup. -
Notes for Math 227A: Algebraic Topology
NOTES FOR MATH 227A: ALGEBRAIC TOPOLOGY KO HONDA 1. CATEGORIES AND FUNCTORS 1.1. Categories. A category C consists of: (1) A collection ob(C) of objects. (2) A set Hom(A, B) of morphisms for each ordered pair (A, B) of objects. A morphism f ∈ Hom(A, B) f is usually denoted by f : A → B or A → B. (3) A map Hom(A, B) × Hom(B,C) → Hom(A, C) for each ordered triple (A,B,C) of objects, denoted (f, g) 7→ gf. (4) An identity morphism idA ∈ Hom(A, A) for each object A. The morphisms satisfy the following properties: A. (Associativity) (fg)h = f(gh) if h ∈ Hom(A, B), g ∈ Hom(B,C), and f ∈ Hom(C, D). B. (Unit) idB f = f = f idA if f ∈ Hom(A, B). Examples: (HW: take a couple of examples and verify that all the axioms of a category are satisfied.) 1. Top = category of topological spaces and continuous maps. The objects are topological spaces X and the morphisms Hom(X,Y ) are continuous maps from X to Y . 2. Top• = category of pointed topological spaces. The objects are pairs (X,x) consisting of a topological space X and a point x ∈ X. Hom((X,x), (Y,y)) consist of continuous maps from X to Y that take x to y. Similarly define Top2 = category of pairs (X, A) where X is a topological space and A ⊂ X is a subspace. Hom((X, A), (Y,B)) consists of continuous maps f : X → Y such that f(A) ⊂ B. -
Recent Developments in the Theory of Duality in Locally Convex Vector Spaces
[ VOLUME 6 I ISSUE 2 I APRIL– JUNE 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 RECENT DEVELOPMENTS IN THE THEORY OF DUALITY IN LOCALLY CONVEX VECTOR SPACES CHETNA KUMARI1 & RABISH KUMAR2* 1Research Scholar, University Department of Mathematics, B. R. A. Bihar University, Muzaffarpur 2*Research Scholar, University Department of Mathematics T. M. B. University, Bhagalpur Received: February 19, 2019 Accepted: April 01, 2019 ABSTRACT: : The present paper concerned with vector spaces over the real field: the passage to complex spaces offers no difficulty. We shall assume that the definition and properties of convex sets are known. A locally convex space is a topological vector space in which there is a fundamental system of neighborhoods of 0 which are convex; these neighborhoods can always be supposed to be symmetric and absorbing. Key Words: LOCALLY CONVEX SPACES We shall be exclusively concerned with vector spaces over the real field: the passage to complex spaces offers no difficulty. We shall assume that the definition and properties of convex sets are known. A convex set A in a vector space E is symmetric if —A=A; then 0ЄA if A is not empty. A convex set A is absorbing if for every X≠0 in E), there exists a number α≠0 such that λxЄA for |λ| ≤ α ; this implies that A generates E. A locally convex space is a topological vector space in which there is a fundamental system of neighborhoods of 0 which are convex; these neighborhoods can always be supposed to be symmetric and absorbing. Conversely, if any filter base is given on a vector space E, and consists of convex, symmetric, and absorbing sets, then it defines one and only one topology on E for which x+y and λx are continuous functions of both their arguments. -
Arxiv:0704.1009V1 [Math.KT] 8 Apr 2007 Odo References
LECTURES ON DERIVED AND TRIANGULATED CATEGORIES BEHRANG NOOHI These are the notes of three lectures given in the International Workshop on Noncommutative Geometry held in I.P.M., Tehran, Iran, September 11-22. The first lecture is an introduction to the basic notions of abelian category theory, with a view toward their algebraic geometric incarnations (as categories of modules over rings or sheaves of modules over schemes). In the second lecture, we motivate the importance of chain complexes and work out some of their basic properties. The emphasis here is on the notion of cone of a chain map, which will consequently lead to the notion of an exact triangle of chain complexes, a generalization of the cohomology long exact sequence. We then discuss the homotopy category and the derived category of an abelian category, and highlight their main properties. As a way of formalizing the properties of the cone construction, we arrive at the notion of a triangulated category. This is the topic of the third lecture. Af- ter presenting the main examples of triangulated categories (i.e., various homo- topy/derived categories associated to an abelian category), we discuss the prob- lem of constructing abelian categories from a given triangulated category using t-structures. A word on style. In writing these notes, we have tried to follow a lecture style rather than an article style. This means that, we have tried to be very concise, keeping the explanations to a minimum, but not less (hopefully). The reader may find here and there certain remarks written in small fonts; these are meant to be side notes that can be skipped without affecting the flow of the material. -
Noncommutative Stable Homotopy and Stable Infinity Categories
NONCOMMUTATIVE STABLE HOMOTOPY AND STABLE INFINITY CATEGORIES SNIGDHAYAN MAHANTA Abstract. The noncommutative stable homotopy category NSH is a triangulated category that is the universal receptacle for triangulated homology theories on separable C∗-algebras. We show that the triangulated category NSH is topological as defined by Schwede using the formalism of (stable) infinity categories. More precisely, we construct a stable presentable infinity category of noncommutative spectra and show that NSHop sits inside its homotopy category as a full triangulated subcategory, from which the above result can be deduced. We also introduce a presentable infinity category of noncommutative pointed spaces that subsumes C∗-algebras and define the noncommutative stable (co)homotopy groups of such noncommutative spaces generalizing earlier definitions for separable C∗-algebras. The tri- angulated homotopy category of noncommutative spectra admits (co)products and satisfies Brown representability. These properties enable us to analyse neatly the behaviour of the noncommutative stable (co)homotopy groups with respect to certain (co)limits. Along the way we obtain infinity categorical models for some well-known bivariant homology theories like KK-theory, E-theory, and connective E-theory via suitable (co)localizations. The stable infinity category of noncommutative spectra can also be used to produce new examples of generalized (co)homology theories for noncommutative spaces. Contents 1. Noncommutative stable homotopy NSH 5 1.1. Localization at a prime p 7 2. Noncommutative spaces and noncommutative spectra 7 2.1. An ∞-category of pointed compact metrizable noncommutative spaces 8 ∗ 2.2. A minimal stabilization of SC∞ 9 2.3. An ∞-category of pointed noncommutative spaces 11 arXiv:1211.6576v5 [math.OA] 4 Jun 2017 2.4.