Photographing Bioluminescence, Ethics, and Lessons from a Misguided Ethnographer Josephine N

Total Page:16

File Type:pdf, Size:1020Kb

Photographing Bioluminescence, Ethics, and Lessons from a Misguided Ethnographer Josephine N Regis University ePublications at Regis University All Regis University Theses Spring 2019 Photographing Bioluminescence, Ethics, and Lessons from a Misguided Ethnographer Josephine N. Gruber Regis University Follow this and additional works at: https://epublications.regis.edu/theses Recommended Citation Gruber, Josephine N., "Photographing Bioluminescence, Ethics, and Lessons from a Misguided Ethnographer" (2019). All Regis University Theses. 930. https://epublications.regis.edu/theses/930 This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact [email protected]. i PHOTOGRAPHING BIOLUMINESCENCE, ETHICS, AND LESSONS FROM A MISGUIDED ETHNOGRAPHER A thesis submitted to Regis College The Honors Program in partial fulfillment of the requirements for Graduation with Honors By Josephine N. Gruber May 2019 ii HONORS THESIS APPROVAL PAGE Thesis written by Josephine N. Gruber Approved By Thesis Advisor z,, Accepted By Director, University Honors Program iii iv TABLE OF CONTENTS List of Figures & Tables…………………………….………………………...…….vi Acknowledgements………………….......…….…..…………………………...…...vii Preface…………………………………………….…………………………….…...viii Introduction………………………………………………………………………..….1 I. Morphology of the bioluminescent organ in glowbellies (Teleostei: Acropomatidae) in phylogenetic context…………………………..…..….....7 II. Gut morphology and diet analysis of two glowbellies (Teleostei: Acropomatidae) and evolutionary implications……….…………………….26 III. Historical context and ethical implications of the photography of Edward S. Curtis……...……..………………………………………..…..46 IV. Ethical usage of photography in scientific literature and lessons From a misguided ethnographer…………..……………………….....……..93 v LIST OF FIGURES & TABLES Chapter One Figure 1 A-F: Histology of the ventral light organ of A. japonicum………………….14 Figure 2 A-G: Histology of the ventral light organ of A. hanedai…………...……….15 Figure 3: Phylogeny of acropomatiforms and bioluminescence…...…………...…….16 Chapter Two Figure 1: Pyloric ceca orientation numbering scheme………….…………………….33 Figure 2: Dietary composition summary………………...…………………………...35 Figure 3: Total intestinal length compared to standard length…….……....………....36 Figure 4: Shortest caeca length compared to standard length…...……………..…….36 Figure 5: Longest caeca length compared to standard length ….………………….…37 Table 1: Summary of pyloric c..eca morphology and Pearson’s Chi-Square test…....37 Chapter Three Figure 1: A Vanishing Race (1914) – Dixon and Wanamaker…………………….…53 Figure 2: End of the Trail (1918) – James Earle Fraser…………………………...…55 Figure 3: Lodge Interior (1911) - E.S.C. The North American Indian………….…...70 Figure 4: In a Piegan Lodge (1911) – E.S.C. The North American Indian………....71 Figure 5: Lodge Interior (1911) – E.S.C. Library of Congress………………..…….72 Figure 6: The Vanishing Race (1904) – E.S.C. The North American Indian…..……80 Figure 7: Adoration of the Magi (ca. 435CE)…………………………………….…..81 Figure 8: Yellow Bull - Nez Perce (1905) & Nez Perce Warrior (1905) – E.S.C. The North American Indian..….……....87 Figure 9: A.B. Upshaw (1898) – unknown & Upshaw – Apsaroke (1905) – E.S.C. The North American Indian……….…..88 vi ACKNOWLEDGEMENTS I would like to thank Dr. Mike Ghedotti for his constant support, tutelage, and guidance throughout my collegiate experience and while writing this thesis, as well as collecting samples in Taiwan used in the first and second chapter of this thesis. Funding from the Regis University Research and Scholarship Council and National Science Foundation were imperative to this project. Specimens used in this study were loaned from the Field Museum of Natural History, IL and John Francis Bell Museum of Natural History, MN. I would also like to thank J. Egan for his consultation on this project and assistance in collecting samples in Taiwan. I would like to thank Dr. Cath Kleier for her valuable insight to the project, without which this thesis may have never come to fruition. I would like to thank Dr. Barbara Coleman for her immediate faith in what may have seemed like an outlandish union of art history and contemporary scientific research that she supported from the very beginning. Additional thanks to the Regis University Biology department for use of materials and laboratory facility, as well as the University and Research Scholarship Council (URSC) for providing funding primary research related to this thesis. Thanks to the Dayton Memorial Library, especially Elizabeth Cook with the Thomas J. Tracy Family Foundation Archives and Special Collections for access to primary Curtis materials, as well as her council and support for this thesis. Most importantly, I would like to dedicate this thesis to my family who have supported me through my college journey and have been my sounding board for every page written hereafter. vii Preface Like most people, I had never heard of Edward S. Curtis when I began an art history class about the history of photography. I had never heard of his prolific work: The North American Indian or the dynamic portraits it included. Four months and hundreds of pages of research later, I realized that was a lie. I did know who Edward Curtis and was; and, in fact, I was very familiar with his work. I had done a project in the third grade on the Kwakiutl people of northwestern America. My mom and I cut out the people from a Curtis photograph as part of a diorama, tirelessly making small Play-Doh foods one may find at a Kwakiutl winter potlatch meal. I had completely dedicated myself to that project, constructing mock homes and clothing and even providing my classmates with colorable masks to replicate those often worn at potlatches. Large portions of this effort were based on passages from The North American Indian that I had read while researching the Kwakiutl. It seems like fate now that Curtis would find a place in my thesis. At the same time I was studying Curtis in art history, I was also compiling and creating figures for a biology research publication I had begun as a Freshman. I immediately fell in love with the visual nature of morphological biology and subsequently became fascinated with evolutionary biology by way of this research. My lab notebook quickly filled with anatomical measurements and observations of specimens as I prepared to remove tissue samples for closer analysis. It became an inside joke among my friends that I could always be found in the lab while working on a tissue sample preparation and staining protocol. When complete, I had the opportunity to use viii my experience with graphic design and photography to create attractive figures by photographing the slides I had prepared. I worked to create the perfect figure for the publication, tirelessly tweaking the colors and contrast until what I saw through the microscope matched what I saw on my computer screen. In that moment, I could see the ghost of Curtis meticulously arranging the scene of a photograph, removing and replacing items to recreate a vision he wanted to capture on those beautiful glass-plate negatives. To him, it would have seemed like we were the same. Scientists. Photographers. Trying to show the world what we see. He would not have seen the longstanding ramifications that his edits would make. He did not see that removing an alarm clock in one photo and giving his subjects the same feather headdress time and again was actually constructing an image to suit his own preconceived ideas - one that would follow millions of Native Americans through to the present. He did not know that his views followed a Social Darwinist agenda that would prompt society then, as now, to use his work to falsely justify exploitation and injurious treatment of Native Americans. Despite the efforts of scientists today to debunk the pseudoscience of Social Darwinism, evidence of its subliminal influence is not difficult to find in modern politics and popular culture. To someone Like Curtis, who was steeped in the prevailing assumptions of Social Darwinism, it would have seemed the expected result of evolutionary processes that native cultures faced obsolescence and decline in the face of white, colonial conquest. As deplorable as this conclusion seems to most people now, almost everyone around Curtis saw Native Americans simply as living fossils of a bygone American era that must pass into history, as all organisms must when individuals with genes better suited to the environment are present. Removing a small alarm clock, ix by that logic, was a small-scale choice just as serious to Curtis as decreasing color saturation was a small-scale choice for me. He did not see that such a choice was perpetuating the notion that Native American culture was stuck in the past and its extinction, therefore, was imminent. Curtis himself wrote in the figure description for The Vanishing Race, the very first photograph in Folio I of The North American Indian that, “The Indians, as a race...are passing into the darkness of an unknown future,” and goes on to say that this sentiment was the primary motivator for the entirety of his work (Curtis, 1907). I hope the reader will, at times, have as much difficulty reading the words of Curtis as I did in writing them. Regrettably, this idea about ‘the Vanishing Race’, as he put it, was pervasive the world over at the time he was working. It is hard to see how people once
Recommended publications
  • (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 633–661. © Pleiades Publishing, Ltd., 2018. An Annotated List of the Marine and Brackish-Water Ichthyofauna of Aniva Bay (Sea of Okhotsk, Sakhalin Island): 2. Cyclopteridae−Molidae Families Yu. V. Dyldina, *, A. M. Orlova, b, c, d, A. Ya. Velikanove, S. S. Makeevf, V. I. Romanova, and L. Hanel’g aTomsk State University (TSU), Tomsk, Russia bRussian Federal Research Institute of Fishery and Oceanography (VNIRO), Moscow, Russia cInstitute of Ecology and Evolution, Russian Academy of Sciences (IPEE), Moscow, Russia d Dagestan State University (DSU), Makhachkala, Russia eSakhalin Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia fSakhalin Basin Administration for Fisheries and Conservation of Aquatic Biological Resources—Sakhalinrybvod, Aniva, Yuzhno-Sakhalinsk, Russia gCharles University in Prague, Prague, Czech Republic *e-mail: [email protected] Received March 1, 2018 Abstract—The second, final part of the work contains a continuation of the annotated list of fish species found in the marine and brackish waters of Aniva Bay (southern part of the Sea of Okhotsk, southern part of Sakhalin Island): 137 species belonging to three orders (Perciformes, Pleuronectiformes, Tetraodon- tiformes), 31 family, and 124 genera. The general characteristics of ichthyofauna and a review of the commer- cial fishery of the bay fish, as well as the final systematic essay, are presented. Keywords: ichthyofauna, annotated list, conservation status, commercial importance, marine and brackish waters, Aniva Bay, southern part of the Sea of Okhotsk, Sakhalin Island DOI: 10.1134/S0032945218050053 INTRODUCTION ANNOTATED LIST OF FISHES OF ANIVA BAY The second part concludes the publication on the 19.
    [Show full text]
  • Exploring Seagrass Ecosystems Distance Learning Module Grades 3-8
    Exploring Seagrass Ecosystems Distance Learning Module Grades 3-8 Smithsonian Marine Ecosystems Exhibit Word Search: Seagrass Just like finding animals in an actual seagrass bed, finding words in this word search will be a little tricky! See if you can search and find all the words! Snapping Shrimp: A small species of burrowing shrimp. When they open and close their specialized claws, it sounds like a human's snap! Nursery: Many juvenile fish and invertebrates utilize this habitat as they grow. Seagrass provides complex protection from predators and many food sources. Turtle Grass: A thick bladed species of seagrass that is the preferred snack of Green Sea Turtles! Seagrasses are related to land plants. Nutrients: Many nutrients are important for seagrass habitats. The two most important are Nitrogen and Phosphorous. Mullet: An herbivorous fish that you can often see jumping or swimming in schools near the surface of the water in tidal estuaries. Brackish: Brackish water is a combination of both fresh water from rivers and salt water from the ocean. When these bodies of water meet and mix, we call it an estuary. Manatee Grass: A thin, and round bladed species of seagrass. Manatees can often be found grazing on this species. Oxygen: Did you know that as a byproduct of photosynthesis, seagrass is a huge producer of the oxygen we breath? Boxfish: These unique box-shaped fish are one of the juvenile species you can find in the seagrass beds. Sunlight: Sunlight is required for photosynthesis, the process where plants convert sunlight to food. Aerobic Zone: Depth to which oxygen diffuses down into the substrate.
    [Show full text]
  • <I>Malakichthys</I> (Teleostei: Perciformes)
    BULLETIN OF MARINE SCIENCE, 69(3): 1139–1147, 2001 NEW TAXA PAPER DESCRIPTIONS OF TWO NEW ACROPOMATID SPECIES OF THE GENUS MALAKICHTHYS (TELEOSTEI: PERCIFORMES) FROM AUSTRALIA Yusuke Yamanoue and Keiichi Matsuura ABSTRACT Two new species of acropomatid fishes, Malakichthys levis and M. mochizuki, are described on the basis of specimens collected from the waters around northern Australia. The two species are easily distinguishable from other species of Malakichthys by no paired spines on the chin. Although the new species are very similar to each other, they are differentiated by the lamellar septum of first anal-fin pterygiophore (absent in M. levis, present in M. mochizuki), the counts of the gill rakers on the lower arm (20–22 in M. levis, 23–25 in M. mochizuki) and the transverse scale rows above the lateral line (6– 7 in M. levis, 4–5 in M. mochizuki). The genus Malakichthys was established by Döderlein in Steindachner and Döderlein (1883) on the basis of M. griseus Döderlein, 1883 from Tokyo, Japan. Over the years, Malakichthys was considered to include three species, M. griseus, M. wakiyae Jordan and Hubbs, 1925, M. elegans Matsubara and Yamaguti, 1943, and M. barbatus Yamanoue and Yoseda, 2001. These species had been recorded only from the western North Pacific (e.g., Matsubara, 1955; Katayama, 1960; Okamura et al., 1985), but an undescribed spe- cies of Malakichthys was recorded from the eastern Indian Ocean by Gloerfelt-Tarp and Kailola (1984) and Sainsbury et al. (1985). In this study, we formally describe their undescribed species under the name of Malakichthys levis and another new species, M.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • Quantitative Species-Level Ecology of Reef Fish Larvae Via Metabarcoding
    ARTICLES https://doi.org/10.1038/s41559-017-0413-2 Quantitative species-level ecology of reef fish larvae via metabarcoding Naama Kimmerling1,2, Omer Zuqert3, Gil Amitai3, Tamara Gurevich2, Rachel Armoza-Zvuloni2,8, Irina Kolesnikov2, Igal Berenshtein1,2, Sarah Melamed3, Shlomit Gilad4, Sima Benjamin4, Asaph Rivlin2, Moti Ohavia2, Claire B. Paris 5, Roi Holzman 2,6*, Moshe Kiflawi 2,7* and Rotem Sorek 3* The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distribu- tions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggest- ing a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allow- ing Lessepsian migration into the Mediterranean Sea.
    [Show full text]
  • Fish Assemblage Structure Comparison Between Freshwater and Estuarine Habitats in the Lower Nakdong River, South Korea
    Journal of Marine Science and Engineering Article Fish Assemblage Structure Comparison between Freshwater and Estuarine Habitats in the Lower Nakdong River, South Korea Joo Myun Park 1,* , Ralf Riedel 2, Hyun Hee Ju 3 and Hee Chan Choi 4 1 Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science and Technology, Uljin 36315, Korea 2 S&R Consultancy, Ocean Springs, MS 39564, USA; [email protected] 3 Ocean Policy Institute, Korea Institute of Ocean Science and Technology, Busan 49111, Korea; [email protected] 4 Fisheries Resources and Environment Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-54-780-5344 Received: 6 June 2020; Accepted: 3 July 2020; Published: 5 July 2020 Abstract: Variabilities of biological communities in lower reaches of urban river systems are highly influenced by artificial constructions, alterations of flow regimes and episodic weather events. Impacts of estuary weirs on fish assemblages are particularly distinct because the weirs are disturbed in linking between freshwater and estuarine fish communities, and migration successes for regional fish fauna. This study conducted fish sampling at the lower reaches of the Nakdong River to assess spatio-temporal variations in fish assemblages, and effects of estuary weir on structuring fish assemblage between freshwater and estuary habitats. In total, 20,386 specimens comprising 78 species and 41 families were collected. The numerical dominant fish species were Tachysurus nitidus (48.8% in total abundance), Hemibarbus labeo (10.7%) and Chanodichthys erythropterus (3.6%) in the freshwater region, and Engraulis japonicus (10.0%), Nuchequula nuchalis (7.7%) and Clupea pallasii (5.2%) in the estuarine site.
    [Show full text]
  • Digenea: Opecoelidae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Scott aG rdner Publications & Papers Parasitology, Harold W. Manter Laboratory of 2017 Pseudopecoelus mccauleyi n. sp. and Podocotyle sp. (Digenea: Opecoelidae) from the Deep Waters off Oregon and British Columbia with an Updated Key to the Species of Pseudopecoelus von Wicklen, 1946 and Checklist of Parasites from Lycodes cortezianus (Perciformes: Zoarcidae) Charles K. Blend Corpus Christi, Texas, [email protected] Norman O. Dronen Texas A & M University, [email protected] Gábor R. Rácz University of Nebraska - Lincoln, [email protected] Scott yL ell Gardner FUonilvloerwsit ythi of sN aendbras akdda - Litiionncolaln, slwg@unlorks a.etdu: http://digitalcommons.unl.edu/slg Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Marine Biology Commons, and the Parasitology Commons Blend, Charles K.; Dronen, Norman O.; Rácz, Gábor R.; and Gardner, Scott yL ell, "Pseudopecoelus mccauleyi n. sp. and Podocotyle sp. (Digenea: Opecoelidae) from the Deep Waters off Oregon and British Columbia with an Updated Key to the Species of Pseudopecoelus von Wicklen, 1946 and Checklist of Parasites from Lycodes cortezianus (Perciformes: Zoarcidae)" (2017). Scott aG rdner Publications & Papers. 3. http://digitalcommons.unl.edu/slg/3 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Scott aG rdner Publications & Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Blend, Dronen, Racz, & Gardner in Acta Parasitologica (2017) 62(2). Copyright 2017, W. Stefański Institute of Parasitology.
    [Show full text]
  • 2008 Board of Governors Report
    American Society of Ichthyologists and Herpetologists Board of Governors Meeting Le Centre Sheraton Montréal Hotel Montréal, Quebec, Canada 23 July 2008 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 31 May 2008 The ASIH Board of Governor's is scheduled to meet on Wednesday, 23 July 2008 from 1700- 1900 h in Salon A&B in the Le Centre Sheraton, Montréal Hotel. President Mushinsky plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. We will cover the proposed consititutional changes following discussion of reports. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Montreal. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Montréal on 20 July 2008 so try to contact me before that date if possible. I will arrive late on the afternoon of 22 July 2008. The Annual Business Meeting will be held on Sunday 27 July 2005 from 1800-2000 h in Salon A&C. Please plan to attend the BOG meeting and Annual Business Meeting. I look forward to seeing you in Montréal. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2008 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W.
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • Global Progress in Ecosystem-Based Fisheries Management
    26th Lowell Wakefield Fisheries Symposium Global Progress in Ecosystem-Based Fisheries Management editors gordon h. kruse • howard i. browman • kevern l. cochrane diana evans • glen s. jamieson • patricia a. livingston douglas woodby • chang ik zhang university of alaska fairbanks Global Progress in Ecosystem-Based Fisheries Management editors gordon h. kruse • howard i. browman • kevern l. cochrane diana evans • glen s. jamieson • patricia a. livingston douglas woodby • chang ik zhang Alaska university of alaska fairbanks Elmer E. Rasmuson Library Cataloging in Publication Data: Global progress in ecosystem-based fisheries management / editors : G.H. Kruse … [et al.] – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2012. p. : ill. ; cm. – (Alaska Sea Grant College Program, University of Alaska Fairbanks ; AK-SG-12-01) Proceedings of the symposium Ecosystems 2010 : global progress on ecosystem- based fisheries management, November 8-11, 2010, Anchorage, Alaska. Includes bibliographical references. 1. Fishery management—Congresses. 2. Sustainable fisheries—Congresses. 3. Marine ecosystem management—Congresses. I. Title. II. Kruse, Gordon H. III. Series: Lowell Wakefield Fisheries symposia series (26th : 2010 : Anchorage, Alaska). IV. Series: Alaska Sea Grant College Program report ; AK-SG-12-01. SH329.S89 P76 2012 ISBN 978-1-56612-166-8 doi:10.4027/gpebfm.2012 Citation Kruse, G.H., H.I. Browman, K.L. Cochrane, D. Evans, G.S. Jamieson, P.A. Livingston, D. Woodby, and C.I. Zhang, eds. 2012. Global Progress in Ecosystem-Based Fisheries Management. Alaska Sea Grant, University of Alaska Fairbanks. Credits This book is published by Alaska Sea Grant, supported by the U.S. Department of Commerce, NOAA National Sea Grant Office, grant NA10OAR4170097, project A/161- 02, and by the University of Alaska Fairbanks with state funds.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Photobacterium
    Diversification of Two Lineages of Symbiotic Photobacterium Henryk Urbanczyk1*, Yoshiko Urbanczyk1, Tetsuya Hayashi2,3, Yoshitoshi Ogura2,3 1 Interdisciplinary Research Organization, University of Miyazaki, Miyazaki, Japan, 2 Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan, 3 Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan Abstract Understanding of processes driving bacterial speciation requires examination of closely related, recently diversified lineages. To gain an insight into diversification of bacteria, we conducted comparative genomic analysis of two lineages of bioluminescent symbionts, Photobacterium leiognathi and ‘P. mandapamensis’. The two lineages are evolutionary and ecologically closely related. Based on the methods used in bacterial taxonomy for classification of new species (DNA-DNA hybridization and ANI), genetic relatedness of the two lineages is at a cut-off point for species delineation. In this study, we obtained the whole genome sequence of a representative P. leiognathi strain lrivu.4.1, and compared it to the whole genome sequence of ‘P. mandapamensis’ svers.1.1. Results of the comparative genomic analysis suggest that P. leiognathi has a more plastic genome and acquired genes horizontally more frequently than ‘P. mandapamensis’. We predict that different rates of recombination and gene acquisition contributed to diversification of the two lineages. Analysis of lineage- specific sequences in 25 strains of P. leiognathi and ‘P. mandapamensis’ found no evidence that bioluminescent symbioses with specific host animals have played a role in diversification of the two lineages. Citation: Urbanczyk H, Urbanczyk Y, Hayashi T, Ogura Y (2013) Diversification of Two Lineages of Symbiotic Photobacterium.
    [Show full text]