3.4 Biological Resources

Total Page:16

File Type:pdf, Size:1020Kb

3.4 Biological Resources ELDORADO–IVANPAH TRANSMISSION PROJECT 3.4 BIOLOGICAL RESOURCES 1 3.4 Biological Resources 2 3 This section describes the environmental setting, regulatory setting, and potential impacts of the construction and 4 operation of the proposed project and alternatives with respect to biological resources. Information in this section is 5 largely based on the Eldorado–Ivanpah Transmission Project Biological Technical Report (EPG 2009) and the 6 Proponent’s Environmental Assessment (PEA) dated May 28, 2009, as prepared by Southern California Edison 7 (SCE, hereafter referred to as the applicant). Details on locations of the EITP facilities, rights-of-way (ROWs), extra 8 workspaces, and staging areas can be found in Chapter 2. Chapter 2 also provides a detailed description of 9 construction, operation, and maintenance techniques used for the proposed project and alternatives to the proposed 10 project. Comments received from the general public and resource agencies during the scoping process are evaluated 11 and addressed as well in Section 3.4.3, ―Impact Analysis.‖ 12 13 3.4.1 Environmental Setting 14 15 The EITP is located within the Eldorado and Ivanpah valleys in southern Clark County, Nevada, and in southeastern 16 California. The project would cross public and privately owned lands (see Section 3.9, ―Land Use, Agricultural 17 Resources, and Special Management Areas‖). Most of the lands that would be crossed by the transmission line in 18 California are administered by the BLM. Small segments would cross private parcels at Nipton, California, and in the 19 vicinity of the Mountain Pass Substation. Similarly, the EITP in Nevada is predominantly situated on BLM lands, but 20 private lands would be crossed near the Eldorado Substation and possibly at Primm, Nevada. 21 22 Environmental analysis for biological resources is confined by the natural geographic boundaries of the region in 23 which the EITP is sited. The region is comprised of alternating valleys and abrupt mountain ranges with gently 24 sloping aprons of sediment debris spread along the slopes. The mountains drain to interior closed basins with playa 25 lakes in the valley bottoms. Specifically, environmental analysis incorporates the drainage footprint of the Eldorado, 26 Ivanpah, Roach, and Jean playa lake beds that are present in the Eldorado, Ivanpah, and Jean valleys (see Figure 27 3.8-2 in Section 3.8, ―Hydrology and Water Quality‖). These playas are typically high in evaporated salts, and plant 28 communities are usually composed of salt-tolerant species. The analysis also incorporates the seven mountain 29 ranges that surround the proposed project area. These ranges are typically rugged and characterized by cliffs, 30 ledges, and formations with small pockets and crevices. Historic abandoned mines are located in some of the 31 mountain ranges (EPG 2009). The Clark Mountains bound the far western edge of the proposed project, while the 32 Spring Mountains are to the north of the existing transmission line just above Primm, Nevada. At the eastern edge of 33 the Ivanpah Valley in Nevada, the transmission line passes between Sheep Mountain to the north and the north end 34 of the Lucy Gray Mountains, then passes through the northern McCullough Mountains. The telecommunication line 35 alternatives pass to the west of the Highland Ranges, and, further south, between the McCullough and New York 36 mountains. 37 38 The entire EITP is within the Mojave Desert biome. A generally accepted elevation range for the Mojave Desert is 39 from -479 feet in Death Valley, California, to 4,500 feet along the northern edge of the biome, and up to 5,500 feet in 40 the mountains. Elevations within the EITP corridor vary from approximately 1,800 feet at the Eldorado Substation to 41 5,305 feet at the Mountain Pass Substation. Annual precipitation for the Mojave Desert typically ranges from 2.5 to 42 7.5 inches, and is predominantly associated with winter rains, which occur from mid-December through early March. 43 44 3.4.1.1 Existing Conditions 45 46 Survey Methodology and Coverage 47 Information on biological resources within the EITP was gathered through field surveys and desktop analyses. Field 48 surveys were conducted by the applicant. As the third-party contractor charged with identifying and assessing project 49 impacts, Ecology and Environment, Inc., independently conducted desktop analyses by reviewing current regional 50 literature and accessing agency internet biological databases and resources, such as the California Natural Diversity APRIL 2010 3.4-1 DRAFT EIR/EIS ELDORADO–IVANPAH TRANSMISSION PROJECT 3.4 BIOLOGICAL RESOURCES 1 Database (CNDDB), the Nevada Natural Heritage Program (NNHP) database, and California Department of Fish and 2 Game (CDFG), Nevada Division of Environmental Protection, National Park Service (NPS), U.S. Fish and Wildlife 3 Service (USFWS), and BLM internet resources. Regional review was defined by the natural geographic boundaries in 4 which the proposed project area is present, as described in Section 3.4.1, above. 5 6 Field surveys were conducted in 2008 and 2009 for most of the project areas and in buffer zones of varying width 7 around existing and proposed project facilities. New access and spur roads as identified by the applicant will be 8 surveyed during spring 2010. Reconnaissance surveys were performed along the entire existing transmission line 9 route from the Eldorado Substation west to the proposed Ivanpah Substation site (proposed transmission line route), 10 and from the proposed Ivanpah Substation site west to the Mountain Pass Substation. The following were also 11 surveyed: 12 13 Transmission Line Alternative Routes A and B near the Eldorado Substation, and Alternatives C and D and 14 Subalternative E near Primm, Nevada; 15 The Nipton 33-kV/Earth 12-kV line from the Mountain Pass Substation south to an existing AT&T microwave 16 site; 17 The proposed fiber optic route along the existing Eldorado–Lugo transmission line from the Eldorado 18 Substation south to Nipton; and 19 The Nipton 33-kV line between Nipton and the point where the Nipton 33-kV line crosses I-15. 20 21 During field surveys, biological resources were assessed within a 250-foot-wide corridor along the transmission lines. 22 The purpose of reconnaissance surveys was to identify vegetation communities and wildlife present, to conduct 23 preliminary searches for sensitive plant and wildlife species in suitable habitats within the project limits (including 24 nests for raptors), and to identify areas that required additional protocol-level surveys for sensitive species. Protocol 25 surveys provide specific location information on sensitive species occurrences within project limits. Focused surveys 26 conducted included USFWS protocol-level presence/absence surveys (including zones of influence) for the Mojave 27 population of desert tortoise and surveys for rare plants and invasive/noxious weed species. 28 29 Protocol-level surveys for desert tortoise were conducted in spring 2008 and 2009 along the proposed transmission 30 line route between the Eldorado Substation and the Mountain Pass Substation, all transmission alternative routes, 31 the proposed telecommunications lines and all alternatives, and the proposed microwave tower site near the town of 32 Nipton. Because of the more limited potential impacts associated with placement of the fiber optic communications 33 line along existing transmission and distribution lines (Eldorado–Lugo 500-kV and Nipton 33-kV, respectively), 34 protocol surveys were not performed for the entire telecommunication route but focused on areas of ground 35 disturbance associated with cable pulling and tensioning sites, tower retrofit construction areas, and other 36 construction areas. Tower pads and spur roads associated with the existing Eldorado–Lugo transmission line (route 37 for the proposed fiber optic line, Path 2, Sections 1 and 2) were surveyed. Access roads along the Eldorado–Lugo 38 line were not surveyed. The USFWS service has agreed that data collected for the 100-foot-buffered tower sites and 39 the spur roads on the Eldorado–Lugo transmission route can be used for estimating desert tortoise densities along 40 these access roads (Burroughs 2009). The applicant plans to complete additional desert tortoise surveys in spring 41 2010. For the proposed transmission line route and alternatives, biologists surveyed a 200-foot ROW, plus five zone- 42 of-influence transects on each side. Results of the 2008 desert tortoise surveys are provided in the Desert Tortoise 43 Survey Report (Karl 2009), an appendix to the Eldorado-Ivanpah Transmission Project Biological Technical Report 44 (EPG 2009). Results of the 2009 desert tortoise surveys are provided in the DRAFT Desert Tortoise Survey Report 45 (Karl 2010), in Appendix B-2 of this document. 46 47 A rare plant and invasive/noxious weed survey was conducted by first developing target species lists after consulting 48 lists of federally and state-listed species and similar species lists maintained by the California Native Plant Society 49 (CNPS), the CNDDB, the NNHP, the Nevada Native Plant Society (NNPS), and the California and Nevada offices of 50 the BLM. Field surveys for rare plants were conducted along the proposed route and in most project areas; however, APRIL 2010 3.4-2 DRAFT EIR/EIS ELDORADO–IVANPAH TRANSMISSION PROJECT 3.4 BIOLOGICAL RESOURCES 1 some areas were not covered, including some alternative routes and existing substation facilities. Additionally, the 2 Ivanpah Dry Lake playa and disturbed ground areas and paved roads and parking lots near Primm, Nevada, were 3 not surveyed. Additional surveys for rare plants will be completed by the applicant in spring 2010. An invasive/ 4 noxious weed survey was performed along the proposed project route from the existing Eldorado Substation to the 5 proposed Ivanpah Substation site, extending west along the fiber optic communications route to the Mountain Pass 6 Substation. 7 8 Survey results for both reconnaissance and protocol-level surveys are provided in the Eldorado–Ivanpah 9 Transmission Project Biological Technical Report (EPG 2009).
Recommended publications
  • Reflectance of Sexually Dichromatic Uvblue Patches Varies During The
    bs_bs_banner Biological Journal of the Linnean Society, 2014, 113, 556–569. With 3 figures Reflectance of sexually dichromatic UV-blue patches varies during the breeding season and between two subspecies of Gallotia galloti (Squamata: Lacertidae) MARTHA L. BOHÓRQUEZ-ALONSO and MIGUEL MOLINA-BORJA* Grupo de investigación ‘Etología y Ecología del Comportamiento’, Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, Tenerife, Canary Islands, Spain Received 17 February 2014; revised 28 April 2014; accepted for publication 29 April 2014 Body coloration is sexually dimorphic in many vertebrate species, including lizards, in which males are often more conspicuous than females. A detailed analysis of the relative size of coloured patches and their reflectance, including the ultraviolet (UV) range, has rarely been performed. In the present work we quantified sexual dimorphism in body traits and surface area of all lateral patches from adult females and males of two subspecies of Gallotia galloti (G. g. galloti and G. g. eisentrauti). We also analysed the magnitude of sexual dichromatism in the UV-visible reflectance of such patches and the changes in patch size and brightness during the reproductive season (April–July). Males had significantly larger patch areas (relative to their snout-vent length) and higher brightness (mainly in the UV-blue range) than did females in both subspecies. The comparison of relative patch areas among months did not reach statistical significance. However, patch brightness significantly changed during the breeding season: that of the UV-blue (300–495 nm) range from lizards of the two subspecies was significantly larger in June than in April, while brightness in the 495–700 nm range in G.
    [Show full text]
  • A Supplemental Bibliography of Herpetology in New Mexico
    A Supplemental Bibliography of Herpetology in New Mexico --- Revised: 1 September 2005 --- Compiled by: James N. Stuart New Mexico Department of Game & Fish Conservation Services Division P.O. Box 25112 , Santa Fe, NM 87504-5112 and Curatorial Associate (Amphibians & Reptiles) Museum of Southwestern Biology University of New Mexico E-mail: [email protected] This document may be cited as: Stuart, J.N. 2005. A Supplemental Bibliography of Herpetology in New Mexico. Web publication (Revised: 1 September 2005): http://www.msb.unm.edu/herpetology/publications/stuart_supl_biblio.pdf Contents Section 1: Introduction and Acknowledgments Section 2: Alphabetical List of References Section 3: Index of References by Taxon or General Topic Appendix A: List of Standard English and Current Scientific Names for Amphibians and Reptiles of New Mexico Appendix B: List of State and Federally Protected Herpetofauna in New Mexico Section 1: Introduction and Acknowledgments The publication of Amphibians and Reptiles of New Mexico by W.G. Degenhardt, C.W. Painter, and A.H. Price in 1996 provided the first comprehensive review of the herpetofauna in New Mexico. Approximately 1,600 references were cited in the book and yet, as is the nature of scientific research, additional information continues to be published on the amphibian and reptile populations of this state. This supplemental bibliography was created to build on the information in Degenhardt et al. by compiling all pertinent references not included in their 1996 book or in their corrigenda to the book (Price et al. 1996). References include both peer-reviewed and non-reviewed (e.g., “gray literature”) sources such as journal and magazine articles, books, book chapters, symposium proceedings, doctoral dissertations, master’s theses, unpublished agency and contract reports, and on-line Web publications.
    [Show full text]
  • The Biogeography of Mitochondrial and Nuclear Discordance in Animals
    Molecular Ecology (2012) doi: 10.1111/j.1365-294X.2012.05664.x INVITED REVIEWS AND META-ANALYSES The biogeography of mitochondrial and nuclear discordance in animals DAVID P. L. TOEWS* and ALAN BRELSFORD† *Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada, †Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland Abstract Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and ⁄ or adaptive introgression.
    [Show full text]
  • Genetic Differentiation and Species Status of the Large-Bodied Leaf-Tailed Geckos Uroplatus Fimbriatus and U
    SALAMANDRA 54(2) 132–146 15 May 2018Philip-SebastianISSN 0036–3375 Gehring et al. Genetic differentiation and species status of the large-bodied leaf-tailed geckos Uroplatus fimbriatus and U. giganteus Philip-Sebastian Gehring1, Souzanna Siarabi2, Mark D. Scherz3,4, Fanomezana M. Ratsoavina5, Andolalao Rakotoarison4,5, Frank Glaw3 & Miguel Vences4 1) Faculty of Biology / Biologiedidaktik, University Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany 2) Molecular Ecology and Conservation Genetics Lab, Department of Biological Application and Technology, University of Ioannina, 45110 Ioannina, Greece 3) Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 4) Technical University of Braunschweig, Division of Evolutionary Biology, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany 5) Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo, 101 Madagascar Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 27 December 2017 Accepted: 14 February 2018 by Jörn Köhler Abstract. The taxonomy of the Malagasy leaf-tailed geckos Uroplatus fimbriatus and U. giganteus is in need of revision since a molecular study casted doubt on the species status of U. giganteus from northern Madagascar. In this study we sepa- rately analyse DNA sequences of a mitochondrial gene (12S rRNA) and of four nuclear genes (CMOS, KIAA1239, RAG1, SACS), to test for concordant differentiation in these independent markers. In addition to the molecular data we provide a comprehensive review of colour variation of U. fimbriatusand U. giganteus populations from the entire distribution area based on photographs. The molecular evidence clearly supports a two-species taxonomy, with U. fimbriatus correspond- ing to a southern clade and U.
    [Show full text]
  • THE VALLEY FEVER July 2017
    THE VALLEY FEVER July 2017 Fall 2017 Tracking Workshop Announcements Mammal Tracking Practice and Advancing Skills Weekend at River Ridge Ranch near Springville, CA, November 10-12, 2017. Jim Lowery and Mary Brooks of Earth Skills will lead this workshop that will review basic track identification, after which students will focus on abundant field practice, track and sign interpretation, and examination of habitat use. Experienced and novice trackers are welcome. More information to come! portant role as a research biologist in the SJV where Champions for Wildlife Award she studies many of our iconic protected species. She was presented with the award by then-president Kris To recognize and honor significant contributions Robison at our last Chapter board meeting on Febru- and steadfast dedication of our members to wild- ary 9th, 2017, which coincided with the Western Sec- life conservation in the San Joaquin Valley, we devel- tion annual conference in Reno, NV. If you would oped the Champions for Wildlife award to commem- like to nominate someone to receive this award, please orate deserving or otherwise dedicated members of send nominations to Kris Robison: the SJV Chapter. As we all know, the SJV has experi- [email protected] enced precipitous declines in natural habitats, native species, ecological connectivity, and ecosystem health. Because of that, we recognize that a number of indi- viduals, many of whom are members of this Chap- ter, are essential to the management and protection of the often small, remnant "islands" of natural lands that remain. Their contributions to science and un- derstanding of SJV ecology are highly valuable and deserve recognition, and this award is but an attempt to shine some light on the people who work every day to save, preserve, or otherwise protect our native spe- cies and lands.
    [Show full text]
  • Intraspecific Colour Variation Among Lizards in Distinct Island Environments Enhances Local Camouflage
    RESEARCH ARTICLE Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage Kate L. A. Marshall1*, Kate E. Philpot2, Isabel Damas-Moreira3, Martin Stevens2 1 Behavioural Ecology Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom, 2 Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom, 3 CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal * [email protected] Abstract Within-species colour variation is widespread among animals. Understanding how this OPEN ACCESS arises can elucidate evolutionary mechanisms, such as those underlying reproductive isola- Citation: Marshall KLA, Philpot KE, Damas-Moreira tion and speciation. Here, we investigated whether five island populations of Aegean wall I, Stevens M (2015) Intraspecific Colour Variation lizards (Podarcis erhardii) have more effective camouflage against their own (local) island among Lizards in Distinct Island Environments Enhances Local Camouflage. PLoS ONE 10(9): substrates than against other (non-local) island substrates to avian predators, and whether e0135241. doi:10.1371/journal.pone.0135241 this was linked to island differences in substrate appearance. We also investigated whether Editor: Daniel Osorio, University of Sussex, UNITED degree of local substrate matching varied among island populations and between sexes. In KINGDOM most populations, both sexes were better matched against local backgrounds than against Received: May 15, 2015 non-local backgrounds, particularly in terms of luminance (perceived lightness), which usu- ally occurred when local and non-local backgrounds were different in appearance.
    [Show full text]
  • Antipredator Behaviour in the Iconic Australian Frillneck Lizard
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, 129, 425–438. With 5 figures. Uncovering the function of an enigmatic display: antipredator behaviour in the iconic Australian frillneck lizard CHRISTIAN A. PEREZ-MARTINEZ1,*,†, , JULIA L. RILEY2,‡, and MARTIN J. WHITING1, 1Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia 2Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia †Current address: Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA ‡Current address: Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape 7600, South Africa Received 26 August 2019; revised 29 October 2019; accepted for publication 31 October 2019 When faced with a predator, some animals engage in a deimatic display to startle the predator momentarily, resulting in a pause or retreat, thereby increasing their chance of escape. Frillneck lizards (Chlamydosaurus kingii) are characterised by a large, pronounced frill that extends from the base of the head to beyond the neck and, when displayed, can be up to six times the width of the head. We used behavioural assays with a model avian predator to demonstrate that their display conforms to deimatic display theory. First, juveniles and adults deployed the frill in encounters with a model predator. Second, the display revealed three colour patches (white and red–orange patches on the frill; yellow mouth palate) that facilitate a transition from a cryptic to a conspicuous state as perceived by a raptor visual system. Third, the display was performed with movements that amplified its effect.
    [Show full text]
  • Adaptive Color Variation Along an Elevational Gradient. the Case of the Mediterranean Lizard Psammodromus Algirus. Universidad De Granada, Spain
    Adaptive color variation along an elevational gradient. The case of the Mediterranean lizard Psammodromus algirus. Variación adaptativa de la coloración en un gradiente altitudinal. El caso del lacértido mediterráneo Psammodromus algirus. TESIS DOCTORAL Senda Reguera Panizo, Granada, 2015 Departamento de Zoología Programa de doctorado: Biología Fundamental y de Sistemas Tesis impresa en Granada Diciembre de 2014 Como citar: Reguera S. 2015. Adaptive color variation along an elevational gradient. The case of the Mediterranean lizard Psammodromus algirus. Universidad de Granada, Spain. Foto de portada y contraportada: Senda Reguera Panizo La mayoría de las fotografías han sido tomadas por la autora de la tesis, pero algunas han sido cedidas por Laureano González y por Virve Sõber. Ilustraciones realizadas por Lina Krafel Retoque Figura 4.3: Antonio Aragón Rebollo Adaptive color variation along an elevational gradient. The case of the Mediterranean lizard Psammodromus algirus. Variación adaptativa de la coloración en un gradiente altitudinal. El caso del lacértido mediterráneo Psammodromus algirus. Memoria presentada por la Licenciada Senda Reguera Panizo para optar al Grado de Doctora en Biología por la Universidad de Granada. Tesis realizada bajo la dirección del Dr. Gregorio Moreno Rueda VB director Fdo: Dr. Gregorio Moreno Rueda La doctoranda Fdo: Lda. Senda Reguera Panizo Granada, 2014 El Dr. Gregorio Moreno Rueda, Profesor Ayudante Doctor de la Universidad de Granada CERTIFICAN: Que los trabajos de la investigación desarrollada en la Memoria de Tesis Doctoral: “Adaptive color variation along an elevational gradient. The case of the Mediterranean lizard Psammodromus algirus”, son aptos para ser presentados por la Lda. Senda Reguera Panizo ante el Tribunal que en su día se designe, para optar al Grado de Doctora por la Universidad de Granada.
    [Show full text]
  • Dry Lake Desert Tortoise Surveys Field Survey Report
    November 7, 2014 NV ENERGY Dry Lake Desert Tortoise Surveys Field Survey Report PROJECT NUMBER: 135975 PROJECT CONTACT: Alison Pruett EMAIL: [email protected] PHONE: 702-496-5629 POWER ENGINEERS, INC. Field Survey Report Dry Lake Desert Tortoise Survey Report PREPARED FOR: NV ENERGY PREPARED BY: ALISON PRUETT 702-496-5629 [email protected] POWER ENGINEERS, INC. Field Survey Report TABLE OF CONTENTS INTRODUCTION ................................................................................................................................ 1 PURPOSE ............................................................................................................................................. 1 PROJECT AREA DESCRIPTION .................................................................................................... 1 SPECIES DESCRIPTION ................................................................................................................... 1 REGULATORY STATUS ........................................................................................................................ 1 DISTRIBUTION AND POPULATION TREND ........................................................................................... 3 HABITAT AND LIFE HISTORY .............................................................................................................. 3 SURVEY METHODOLOGY.............................................................................................................. 4 SURVEY RESULTS ...........................................................................................................................
    [Show full text]
  • Inventory of Amphibians and Reptiles for Twelve National Parks in the Southern Colorado Plateau Network
    National Park Service Southern Colorado Plateau U.S. Department of the Interior Inventory and Monitoring Network Natural Resource Program Center Fort Collins, Colorado Inventory of Amphibians and Reptiles for Twelve National Parks in the Southern Colorado Plateau Network Trevor B. Persons and Erika M. Nowak USGS Southwest Biological Science Center, Colorado Plateau Research Station Northern Arizona University, Flagstaff, AZ 86011 April 2008 ON THE COVER Western Terrestrial Garter Snake from Walnut Canyon National Monument Photo by Trevor B. Persons PLEASE CITE THIS DOCUMENT AS: Nowak, E.M., and Trevor B. Persons. 2008. Inventory of Amphibians and Reptiles for Twelve National Parks in the Southern Colorado Plateau Network. Final report to the National Park Service, Southern Colorado Plateau Network, Flagstaff, AZ. Inventory of Amphibians and Reptiles for Twelve National Parks in the Southern Colorado Plateau Network Aztec Ruins National Monument Bandelier National Monument Chaco Culture National Historical Park El Malpais National Monument El Morro National Monument Glen Canyon National Recreation Area Petroglyph National Monument Salinas Pueblo Missions National Monument Sunset Crater National Monument Walnut Canyon National Monument Wupatki National Monument Yucca House National Monument Authors Trevor B. Persons and Erika M. Nowak USGS Southwest Biological Science Center, Colorado Plateau Research Station, Northern Arizona University, Flagstaff, AZ 86011 Project Manager Anne Cully National Park Service, Southern Colorado Plateau Network,
    [Show full text]
  • Chasing the Dragon: the Resilience of a Species to Climate Change in the Wet Tropics, Australia
    Chasing the Dragon: The Resilience of a Species to Climate Change in the Wet Tropics, Australia Author Bernays, Sofie Published 2015 Thesis Type Thesis (PhD Doctorate) School Griffith School of Environment DOI https://doi.org/10.25904/1912/126 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/367595 Griffith Research Online https://research-repository.griffith.edu.au Chasing the dragon: The resilience of a species to climate change in the Wet Tropics, Australia Sofie Bernays Bachelor of Environmental Management (Honours) Griffith School of Environment Griffith Sciences Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy June 2015 Summary Summary Throughout history, climatic changes have caused environmental systems to shift and have influenced biotic assemblages. Most of these changes have occurred slowly, over millions of years, enabling species to either adapt to new conditions, endure the changes, or shift distributions to maintain their habitat requirements. Due to the fast rate at which climate change is currently occurring, it is unknown if species will be able to use these mechanisms to successfully respond to this rapidly changing environment. Areas that have small geographical extents, elevated uplands and high numbers of endemic species, such as the Wet Tropics in north-eastern Queensland, are expected to be particularly vulnerable to climate change. The endemic species in this at-risk area are also expected to be more susceptible to climate change. The endemic Boyd’s forest dragon (Hypsilurus boydii, Macleay) is a highly camouflaged, large lizard that inhabits lowland and upland forests from the northern to the southern boundary of the Wet Tropics.
    [Show full text]
  • Production of Cutaneous Vitamin D3 After UVB Radiation in Reptiles and Amphibians
    Production of cutaneous vitamin D3 after UVB radiation in reptiles and amphibians Production of cutaneous vitamin D3 after UVB radiation in reptiles and amphibians Loos, B. de (Babette) Faculty of Veterinary Medicine Research Internship Department: Biochemistry and Cell Biology Author: B. de Loos Student no.: 3515737 Supervisor: Drs. R.J. Corbee Date: 6-2-2016 B. de Loos 1 Production of cutaneous vitamin D3 after UVB radiation in reptiles and amphibians Abstract The aim of this study was to investigate the differences in the ability of different reptile and amphibian species to synthesize sufficient amounts of vitamin D in the skin. Skin tissue of 32 different species where collected from dead animals from a terrarium specialist. Wistar rat skin served as a positive control. Cholesterol, 7-DHC, and vitamin D levels were determined after UVB exposure at 37°C, and compared to non-irradiated skin. Overall, there was no significant effect of UVB irradiation on 7-DHC and vitamin D concentrations of the skin in different reptile and amphibian species. The relatively low cutaneous levels of the vitamin D precursor 7-DHC observed in this study suggest that most reptiles and amphibians are unable to synthesize sufficient amounts of vitamin D. However, some reptiles and amphibians species could be capable of synthesizing sufficient amounts of vitamin D in their skin. The results have to be taken into account when appropriate husbandry and food recommendations are given for these species when held under captive conditions. B. de Loos 2 Production of cutaneous vitamin D3 after UVB radiation in reptiles and amphibians Table of Contents Introduction 4 Materials and methods 5 Data Analysis 6 Results 11 Discussion 13 Conclusion 17 Acknowledgements 17 References 18 B.
    [Show full text]