Mississippian (Lower Carboniferous) Miospores from the Cuyahoga and Logan Formations of Northeastern Ohio, USA

Total Page:16

File Type:pdf, Size:1020Kb

Mississippian (Lower Carboniferous) Miospores from the Cuyahoga and Logan Formations of Northeastern Ohio, USA Journal of Micropalaeontology, 17: 183-1 9 1. 0262-821)</98 $10.00 0 1998 British Micropalaeontological Society. Mississippian (Lower Carboniferous) miospores from the Cuyahoga and Logan formations of northeastern Ohio, USA GEOFFREY CLAYTON,' WALTER L. MANGER & BERNARD OWENS ' Department of Geology, Trinity College, Dublin 2, Ireland. *Department of Geology, University of Arkansas, Fayetteville, AR 72701, USA. British Geological Survey, Keyworth, Nottingham NG12 5GG, UK. ABSTRACT - Well-preserved Lower Mississippian (Dinantian) miospore assemblages have been recovered from the upper Cuyahoga Formation (type Wooster Member) and overlying lower Logan Formation (Byer Member) at two localities in Wayne County, northeastern Ohio, USA. All six samples were productive and yielded assemblages that represent the middle Tournaisian Spelaeotriletes preriosus- Raistrickia clavata (PC) Miospore Biozone of Western Europe including a new species of trilete, acamerate miospore, Mooreisporites streelii, described from the Wooster Shale. Significant numbers of latest Devonian and earlier Carboniferous miospores are reworked into all assemblages. The palynological evidence is consistent with a late Kinderhookian age for most of the Cuyahoga Formation, including its well known ammonoid fauna. However, the position of the boundary between the Kinderhoohan and Osagean Series remains uncertain. J. Micropalueontol. 17(2): 183-191, December 1998. INTRODUCTION The stratigraphic interval extending from the Ohio Shale to the base of the Sharon Conglomerate of the Pottsville Group, has I I been referred historically to the Waverly Group (Briggs, 1838) America FORMATIONS / Members and divided, in ascending order, into the Bedford Shale, Berea Sandstone, Sunbury Shale, Cuyahoga Formation, Logan For- RUSHVILLE SHALE mation and Maxville Limestone (Collins, 1979). In spite of considerable recent progress, the age and correlation of this succession, particularly surrounding the Bedford-Berea and Cuyahoga-Logan formations, remain controversial. Contra- dictory statements concerning assignments for the component formations permeate the literature. This situation is well illustrated by Waverly Group correlations on the charts produced for the Correlation of Stratigraphic Units of North America Project (COSUNA). The Northern Appalachian Region Chart (Patchen et al., 1985a), which includes eastern Ohio, places the entire Waverly succession in the Lower Mississippian (columns 15, 16 & 20), and locates the Kinder- hookianasagean boundary within the upper Logan Forma- II' I tion, or at its top, where erosion has removed the younger II SUNBURY SHALE I Logan interval. A similar age assignment and correlation is recorded for the interval on the Southern Appalachian Region Chart (Patchen et al., 19856, column 16), which includes a small DEVONIAN. UPPER BEDFORD portion of south central Ohio that comprises the drainage basin SHALE I Famennian of the Scioto River. In contrast, the conterminous Midwestern I OHIO SHALE Basin and Arches Region COSUNA chart (Shaver, 1985, columns 16 & 18) includes adjacent western Ohio and places Fig. 1. Stratigraphic summary of the Upper Devonian and Lower Mississippian in northeastern Ohio. the Devonian-Mississippian boundary within the Bedford Shale and the Kinderhookian-Osagean boundary within the upper Cuyahoga Formation. In none of these charts is there any Formation (Newberry, 1870) is a deltaic complex, characterized suggestion that any of the lithostratigraphic boundaries of by prodeltaic and interdistributary shales and siltstones, and Waverly formations are time transgressive. The stratigraphy of coeval distributary channel quartz sandstones and conglomer- the region is summarized in Fig. 1. ates. A plethora of lithostratigraphic members has been proposed to differentiate laterally equivalent shale and siltstone LITHOSTRATIGRAPHY successions that were deposited between, but occasionally Lower Mississippian rocks crop out in an arcuate band across eroded by, lobes of conglomeratic sandstone (Holden, 1942; central and northeastern Ohio. The sections in Wayne County, Collins, 1979). In Wayne County, the upper Cuyahoga Ohio investigated in this study are restricted to the upper distributary channel facies is referred to the Black Hand Cuyahoga and lower Logan formations (Fig. 2). The Cuyahoga Sandstone (Hicks, 1878) and the interdistributary facies is called 183 Clayton et al. 'LITTLE ARLZONA' ROADCUT I WAYNE COUNTY I MEDAL BRlCKANDTUE QUARRY* WOOSTER*k .) L..-..I 'LITTLE ARaON ROADCUT MEDAL BRICK AND TILE QUARRY (ABANDONED) DATUM -BASE OF LOGAN FORMATION . =BERNE CONGLOMERATE ..-.. DITCH AT ROAD LEVEL Fig. 2. Location and stratigraphy of the sections investigated. the Wooster Shale (Szmuc, 1957, 1970). Black Hand lithologies of the underlying Black Hand Member, which supports its lack marine fossils, while the Wooster Shale has a normal recognition as the base of the Logan Formation (Szmuc, 1970; marine invertebrate assemblage usually associated with sideritic Manger, 1971a). Thus, there is an unconformable boundary concretionary intervals in this dark gray, silty shale. Maximum between the Cuyahoga and Logan formations, particularly at thickness and coarsest grain sizes of the Black Hand Member localities where the Black Hand Member is developed, but the occur in its type area, central Ohio, where the member contact is diastematic and below biostratigraphic resolution. approaches 70 m. It thins to less than 13 m throughout most Maximum thickness of the Logan Formation may exceed lOOm of Wayne County, and is only c. 3.25 m at the Medal Brick and in southern Ohio, where both the Berne and Allensville Tile Quarry (Locality 2). Elsewhere, the Black Hand Member conglomerates pinch-out, and the Logan is not subdivided. pinches out and is represented by interdistributary shales. Logan deposition represents establishment of a shallow marine Maximum thicknesses for the Wooster Member vary from 2G shelf over the drowned Cuyahoga delta. 30 m, and it is persistent throughout most of northeastern Ohio. The overlying Logan Formation (Andrews, 1870) is an PREVIOUS BIOSTRATIGRAPHIC WORK alternation of fine sandstone-siltstone intervals with thin Mississippian Series chronostratigraphy is based on exposures (< 1m), but persistent, quartz pebble conglomerates and lacks along the Mississippi River where it separates Missouri and significant shales. Lithostratigraphic nomenclature recognizes Illinois in the North American mid-continent, with the exception the Berne (basal) and Allensville conglomerate members of the Osagean Series, which has been derived from exposures in separating the Byer and Vinton members of essentially identical, southwestern Missouri. Stratotype sections have not been fine-grained lithology. The conglomeratic Berne Member has designated and the biostratigraphic framework supporting this been included in the Cuyahoga Formation (Collins, 1979), but classification is based primarily on conodont zonations devel- its thickness and lithologic variation can be related to reworking oped during the decade of the 1960s (Collinson et al., 1971). 184 Mississippian miospores -- /I /I MIOSPORE N ZONATION AND CHRONOSTRATIGRAPHY\ 9 ;S. claviger .A. macro I I Anapkanisporites atheticus 2 I x I Aratrismrites saharaensis 3 Auroraspora macra 4 S. prerwsus - R. clavata Auroraspora solisorta 5 .- x 6 .- Ill Calamospora paUida baizeam - R. poiyptycha X I x I Convolutistwramaior 71 s. Convolutispora cf: mellita 8 HD x x Convohtispora vermifonnis 9 K. hibernicus - U. distincnu Crasismm maculosa 10 viI! vemosus - R. incohatus I x I x I Grandisporaechinata 14 R. lepidophyta - I! nilidus I x I Gr~katismritcsmicronranifer 15 -9 w .- I x I Knoxisporites literatus 161 R. iepidophyta - H. explanatus x x Knoxisporites cf. triradiatus 17 5 x Lewm'letes inermis 18 x Mooreispontes streelii sp. nov. 19 R. kpidophyta ~ K. lireranu ILL 201 I I Neoraiskickia mmsa x Neorairkickia Iogani 21 Fig. 3. Stratigraphic ranges in Western Europe of selected miospore x Mooreisjmrites sp. cf: N. logani 22 species recorded in the Ohio samples (key taxa not recorded in the Ohio Perotriiites ~IUQIUS 23 samples are shown by dashed lines: * = in part). tt x I I Plicatispora quarilabrata 24 x I I Punctativmritesminutus 2s Ammonoid cephalopods are notably absent in these sections 1 x I Punctatisporitespka~ 26 and the predominance of carbonate lithologies has precluded x I x I ~urtuIatismritcsdolbii 27 palynomorph recovery, although a zonal scheme based on X x 1 x I Raism'ckia ckavata 28 calcareous foraminifers is well known. Mississippian biostrati- X I1 x I x I Rairtrickia ct: stnunosa 29 graphic correlations from those same sections were accom- lxlxlxlx x x Retisporakpidopiyta 30 x x Retusotriktesincohatus 31 plished mainly by brachiopods earlier in this century (e.g. Weller x RetusoMlctes trianpuhtur 32 et al., 1948) and more recently the COSUNA program has ~ hgospora radiata reviewed and revised many of these assignments, although the t 1 1 Spelueotriletes hiteatus - Spelueobiletes crenulutus X Spelaeokiletes pretiosur 36 Table 1. Distribution of miospore taxa and other selected palynomorphs. x x Spinozonotriktes uncatus 37 The authors of the taxa listed are: 1. Playford, 2. Neves & Ioannides, 3. Twnulispora malevkemis 38 Loboziak, Clayton & Owens, 4. Sullivan, 5. Hoffmeister, Staph & - x Tumulismra rarituberculata 39 Malloy, 6. (Loose) Schopf, Wilson & Bentall, 7. (Kedo) Turnau, 8. X UmboMtiSporitCS abSh4.W.S Hoffmeister, Staph & Malloy, 9. Hughes & Playford, 10. (Knox) &I- 40 X
Recommended publications
  • Lower Carboniferous) of Puech De La Suque (Montagne Noire, France) Louise Souquet, Carlo Corradini, Catherine Girard
    Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France) Louise Souquet, Carlo Corradini, Catherine Girard To cite this version: Louise Souquet, Carlo Corradini, Catherine Girard. Siphonodella leiosa (Conodonta), a new un- ornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France). Geobios, Elsevier Masson, 2020, 61, pp.55-60. 10.1016/j.geobios.2020.06.004. hal- 02934218 HAL Id: hal-02934218 https://hal.archives-ouvertes.fr/hal-02934218 Submitted on 6 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript File Click here to view linked References 1 1 Siphonodella leiosi (Conodonta), a new unornamented species from the 2 Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, 3 France) 4 5 Louise Souqueta, b, Carlo Corradinic and Catherine Girardd, * 6 7 a Centre de Recherche en Paléontologie - Paris, UMR CNRS 7207, CP 38, Muséum National 8 d’Histoire Naturelle, 75005 Paris, France 9 b Mécanismes Adaptatifs et Evolution, UMR CNRS 7179, Bâtiment Anatomie Comparée, CP 10 55, Muséum National d’Histoire Naturelle, 75005 Paris, France 11 c Dipartimento di Matematica e Geoscienze, Università di Trieste, via Weiss 2, 34128 Trieste, 12 Italy 13 d ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • A New Species of the Conodont Genus Siphonodella Branson & Mehl
    Estonian Journal of Earth Sciences, 2017, 66, 4, 188–192 https://doi.org/10.3176/earth.2017.15 A new species of the conodont genus Siphonodella Branson & Mehl (late Tournaisian) Andrey V. Zhuravlev Institute of Geology Komi SC, UrB RAS, Pervomayskaya 54, 167000 Syktyvkar, Russia; [email protected] Received 3 April 2017, accepted 6 June 2017, available online 16 October 2017 Abstract. A new upper Tournaisian (Lower Carboniferous) siphonodellid conodont species Siphonodella carinata n. sp. is described. The material comes from the shallow-water carbonate sediments of the Pechora Swell (Timan-Pechora region or NE of European Russia). The co-occurrence of conodonts Hindeodus cristulus (Youngquist & Miller), Bispathodus stabilis (Branson & Mehl) Morphotype 1, Polygnathus longiposticus Branson & Mehl and Pseudopolygnathus nodomarginatus (Branson) suggests the late Tournaisian (Lower Siphonodella crenulata Zone) age of the deposits. Morphologically the new species is similar to Siphonodella semichatovae Kononova & Lipnjagov and S. ludmilae Zhuravlev & Plotitsyn, but differs in possessing three rostral ridges at the late stages of ontogeny and Class III symmetry. The presence of the shallow-water siphonodellids Siphonodella bella Kononova & Migdisova and S. quasinuda Gagiev, Kononova & Pazuhin in the upper part of the Tournaisian is detected for the first time. Key words: Conodonta, new species, Siphonodella carinata n. sp., Lower Carboniferous, Tournaisian. INTRODUCTION platform and a wide pseudokeel or depressed keel at the aboral side of Pa elements. Traditionally species of the genus Siphonodella are used The shallow-water siphonodellids of the Chinese for biostratigraphy of the lower part of the Tournaisian branch appeared in the earliest Tournaisian and ranged (Sandberg et al. 1978; Ji 1985; Ji & Ziegler 1992; up to the late Tournaisian (Ji & Ziegler 1992).
    [Show full text]
  • Tournaisian and Viséan Lophophyllum of Gorskiy (1932)
    Geologos 23, 3 (2017): 215–221 doi: 10.1515/logos-2017-0022 Tournaisian and Viséan Lophophyllum of Gorskiy (1932) from the Kirghiz Steppe and a possible ancestor of a new Bashkirian rugose coral genus from the Donets Basin (Ukraine) Jerzy Fedorowski Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland; e-mail: [email protected] Abstract All specimens assigned by Gorskiy (1932) to the genus Lophophyllum Milne Edwards and Haime, 1850 are revised, rede- scribed and reillustrated. The corallite identified by him as a second, specifically indeterminate species ofLophophyllum is here questionably included in Amygdalophyllum Dun and Benson, 1920. For the reminding specimens two new, un- named genera are suggested. ”Lophophyllum” subtortuosum Gorskiy, 1932 belongs to a new, non-dissepimented genus of an unknown family. A possible relationship between gen. nov. 1, sp. nov. 1 and the new Bashkirian genus from the Donets Basin (Ukraine) is proposed. Key words: Kyrgyzstan, “Lophophyllum”, Rugosa, Lower Carboniferous, revision 1. Introduction applied by him cannot be adopted without revision. In addition, his conclusions concerning the relation- The rugose corals redescribed in the present note ships of the Kirghiz Steppe coral fauna cannot be ac- form a small part of the diversified coral fauna cepted without such a revision. The close similarity described by Gorskiy (1932) from the Devonian/ or relationship of the coral fauna from the Kirghiz Carboniferous passage beds and from Tournaisian Steppe to corals from the United States mentioned to lower Viséan strata of the Kirghiz Steppe of the by Gorskiy (1932, p. 58) is particularly doubtful.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Taxonomy and Evolutionary Significance of Some Gnathodus Species (Conodonts) from the Mississippian of the Northern Iberian Peninsula
    Draft post-refereeing from Revista Española de Micropaleontología, 36 (2), 2004, 215-230. ISSN: 0556-655X. Abstract in www.igme.es/internet/Serv_Publications/Indexc.htm TAXONOMY AND EVOLUTIONARY SIGNIFICANCE OF SOME GNATHODUS SPECIES (CONODONTS) FROM THE MISSISSIPPIAN OF THE NORTHERN IBERIAN PENINSULA J. SANZ-LÓPEZa, S. BLANCO-FERRERAb, c and S. GARCÍA-LÓPEZc aFac. Ciencias de la Educación, Campus de Elviña s/n, 15071 A Coruña, España. E-mail: [email protected] bMuseo Geominero, Instituto Geológico y Minero de España, Ríos Rosas, 23, 28003, Madrid, España. cDepartamento de Geología, Universidad de Oviedo, Arias de Velasco s/n, 33005, Oviedo, España. E- mails: [email protected]; [email protected] Abstract A new species of Gnathodus, G. joseramoni, is defined and Gnathodus cantabricus Belka & Lehmann is revised from the study of some new conodont associations and analysis of previous data from the Cantabrian Mountains and the Pyrenees, North Iberian Peninsula. G. cantabricus is regarded as a junior synonym of Gnathodus kiensis Pazukhin from the Urals. Other occasional European findings of both taxa are indicated and stratigraphic middle Viséan to Arnsbergian ranges are established. Finally, the phylogenetic relations with other Gnathodus species are also outlined. Key words: Conodont, Systematic Palaeontology, Mississippian, Cantabrian Mountains, Pyrenees. Resumen Se define una especie nueva de Gnathodus, G. joseramoni, y se revisa a Gnathodus cantabricus Belka & Lehmann, a partir de nuevas asociaciones de conodontos y el análisis de los datos previos en la Cordillera Cantábrica y los Pirineos, Norte de la Península Ibérica. G. cantabricus se considera un taxón sinónimo más moderno que Gnathodus kiensis Pazukhin de los Urales.
    [Show full text]
  • Recent Information Maxville Lime.Stone
    .·-~ . f GEOLOGICAL SURVEY OF OHIO WILBER STOUT, State Geologist Fourth Series Information Circular No. 3 RECENT INFORMATION ON THE MAXVILLE LIME.STONE by RAYMONDE. LAMBORN COLUMBUS 1945 Reprinted 1961 HOOK I\(..• OHIO GEOL. SURVEY. LAKE ERIE SECTION LIBRARY CARD NO. ·7 STATE CF OHIO Michael V. DiSalle Governor DEPARTMENT CF NATURAL RESOURCES Herbert B. Eagon Director NATURAL RESOURCES CCMMISSION C. D. Blubaugh Joseph E. Hunt Herbert B. Eagon Roy M. Kottman Byron Frederick DemClB L. Sean Forrest G. Hl1ll Myron T. Sturgeon Willian• Hoyne DIVISION OF GEQ.OGICAL SURVEY Ralph j. Bernhagen Chief COLUMBUS 1945 Reprinted 1961 Heer ptg. Co., Cols., O. INTRODUCTION The Maxville has been an important source of limestone for more than 100 years in southern and east central Ohio where it was first utilized for mortar and for furnace flux. Probably for this rea~on outcrops of a limestone later shown to be Maxville in age were described by Briggs in 1838 who noted occurrences near Maxville, Perry County; on Three Mile Run near Logan in Hocking County; near Reeds Mills near Wellston, Jackson County; and at the Canter Quarry in Hamilton Township, Jack- son County.1 Further obser.vations of this limestone were made by E. B. Andrews of the Second Geological Survey of Ohio and his report was published in the Report of Progress in 1869. Andrews named the lime- stone the Maxville for its occurrence near Maxville, Hocking County, noted its patchy distribution on the outcrop, described its stratigraphic position as immediately overlying the Logan sandstones ana shales, and declared the limestone to be of sub-Carboniferous (Mississippian) age.
    [Show full text]
  • Geological Controls on Stratigraphy and Sedimentation of the Mississippian Marshall Formation, Michigan Basin, U.S.A
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-2015 Geological Controls on Stratigraphy and Sedimentation of the Mississippian Marshall Formation, Michigan Basin, U.S.A. Joseph G. Adducci Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geology Commons, Geomorphology Commons, and the Sedimentology Commons Recommended Citation Adducci, Joseph G., "Geological Controls on Stratigraphy and Sedimentation of the Mississippian Marshall Formation, Michigan Basin, U.S.A." (2015). Master's Theses. 617. https://scholarworks.wmich.edu/masters_theses/617 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. GEOLOGICAL CONTROLS ON STRATIGRAPHY AND SEDIMENTATION OF THE MISSISSIPPIAN MARSHALL FORMATION, MICHIGAN BASIN, U.S.A by Joseph G. Adducci A thesis Submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science Geosciences Western Michigan University August 2015 Thesis Committee: David A. Barnes, Ph.D. (Chair) William B. Harrison, III, Ph.D. Peter J. Voice, Ph.D. GEOLOGICAL CONTROLS ON STRATIGRAPHY AND SEDIMENTATION OF THE MISSISSIPPIAN MARSHALL FORMATION, MICHIGAN BASIN, U.S.A. Joseph G. Adducci, M.S. Western Michigan University, 2015 An understanding of regional orogenic, climatic, and eustatic processes is critical to the interbasinal correlation of Paleozoic strata in eastern North America. Tectonic activity associated with the culmination of Appalachian Orogenic events has been shown to have regional influence on paleostructure and sediment dispersal in the Appalachian foreland basin and adjacent intracratonic Illinois and Michigan basins.
    [Show full text]
  • Description of the Hollidaysburg and Huntingdon Quadrangles
    DESCRIPTION OF THE HOLLIDAYSBURG AND HUNTINGDON QUADRANGLES By Charles Butts INTRODUCTION 1 BLUE RIDGE PROVINCE topography are therefore prominent ridges separated by deep SITUATION The Blue Ridge province, narrow at its north end in valleys, all trending northeastward. The Hollidaysburg and Huntingdon quadrangles are adjoin­ Virginia and Pennsylvania, is over 60 miles wide in North RELIEF ing areas in the south-central part of Pennsylvania, in Blair, Carolina. It is a rugged region of hills and ridges and deep, The lowest point in the quadrangles is at Huntingdon, Bedford, and Huntingdon Counties. (See fig. 1.) Taken as narrow valleys. The altitude of the higher summits in Vir­ where the altitude of the river bed is about 610 feet above sea ginia is 3,000 to 5,700 feet, and in western North Carolina 79 level, and the highest point is the southern extremity of Brush Mount Mitchell, 6,711 feet high, is the highest point east of Mountain, north of Hollidaysburg, which is 2,520 feet above the Mississippi River. Throughout its extent this province sea level. The extreme relief is thus 1,910 feet. The Alle­ stands up conspicuously above the bordering provinces, from gheny Front and Dunning, Short, Loop, Lock, Tussey, Ter­ each of which it is separated by a steep, broken, rugged front race, and Broadtop Mountains rise boldly 800 to 1,500 feet from 1,000 to 3,000 feet high. In Pennsylvania, however, above the valley bottoms in a distance of 1 to 2 miles and are South Mountain, the northeast end of the Blue Ridge, is less the dominating features of the landscape.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]