Zoltan Csiki & Dan Grigorescu, Small Theropods from the Late
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated. -
Los Restos Directos De Dinosaurios Terópodos (Excluyendo Aves) En España
Canudo, J. I. y Ruiz-Omeñaca, J. I. 2003. Ciencias de la Tierra. Dinosaurios y otros reptiles mesozoicos de España, 26, 347-373. LOS RESTOS DIRECTOS DE DINOSAURIOS TERÓPODOS (EXCLUYENDO AVES) EN ESPAÑA CANUDO1, J. I. y RUIZ-OMEÑACA1,2 J. I. 1 Departamento de Ciencias de la Tierra (Área de Paleontología) y Museo Paleontológico. Universidad de Zaragoza. 50009 Zaragoza. [email protected] 2 Paleoymás, S. L. L. Nuestra Señora del Salz, 4, local, 50017 Zaragoza. [email protected] RESUMEN La mayoría de los restos fósiles de dinosaurios terópodos de España son dientes aislados y escasos restos postcraneales. La única excepción es el ornitomimosaurio Pelecanimimus polyodon, del Barremiense de Las Hoyas (Cuenca). Hay registro de terópodos en el Jurásico superior (Oxfordiense superior-Tithónico inferior), en el tránsito Jurásico-Cretácico (Tithónico superior- Berriasiense inferior) y en todos los pisos del Cretácico inferior, con excepción del Valanginiense. En el Cretácico superior únicamente hay restos en el Campaniense y Maastrichtiense. La mayor parte de las determinaciones son demasiado generales, lo que impide conocer algunas de las familias que posiblemente estén representadas. Se han reconocido: Neoceratosauria, Baryonychidae, Ornithomimosauria, Dromaeosauridae, además de terópodos indeterminados, y celurosaurios indeterminados (dientes pequeños sin dentículos). La mayoría de los restos son de Maniraptoriformes, siendo especialmente abundantes los dromeosáuridos. Las únicas excepciones son por el momento, el posible Ceratosauria del Jurásico superior de Asturias, los barionícidos del Hauteriviense-Barremiense de Burgos, Teruel y La Rioja, el posible carcharodontosáurido del Aptiense inferior de Morella y el posible abelisáurido del Campaniense de Laño. Además hay algunos terópodos incertae sedis, como los "paronicodóntidos" (entre los que se incluye Euronychodon), y Richardoestesia. -
Onetouch 4.0 Scanned Documents
/ Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded. -
Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia. -
Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism)
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1986 Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism). Barbara R. Standhardt Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Standhardt, Barbara R., "Vertebrate Paleontology of the Cretaceous/Tertiary Transition of Big Bend National Park, Texas (Lancian, Puercan, Mammalia, Dinosauria, Paleomagnetism)." (1986). LSU Historical Dissertations and Theses. 4209. https://digitalcommons.lsu.edu/gradschool_disstheses/4209 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. -
A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1). -
A Model Based on Curvatures of Extant Avian Ungual Bones
Inferring lifestyle for Aves and Theropoda: A model based on curvatures of extant avian ungual bones A thesis submitted to the University of Manchester for the degree of Master of Science by Research in the Faculty of Science & Engineering 2019 Savannah E. Cobb School of Earth and Environmental Sciences Contents List of Figures.........................................................................................................................4-5 List of Tables..............................................................................................................................6 List of Abbreviations..............................................................................................................7-8 Abstract......................................................................................................................................9 Declaration...............................................................................................................................10 Copyright Statement...............................................................................................................11 Acknowledgements..................................................................................................................12 1 Literature Review........................................................................................................13 1.1 Avians, avialans, and theropod dinosaurs..........................................................13 1.2 Comparative study and claws............................................................................18 -
Full Text (1005.6
Osteology of the Late Cretaceous alvarezsauroid Linhenykus monodactylus from China and comments on alvarezsauroid biogeography XING XU, PAUL UPCHURCH, QINGYU MA, MICHAEL PITTMAN, JONAH CHOINIERE, CORWIN SULLIVAN, DAVID W.E. HONE, QINGWEI TAN, LIN TAN, DONG XIAO, and FENGLU HAN Xu, X., Upchurch, P., Ma, Q., Pittman, M., Choiniere, J., Sullivan, C., Hone, D.W.E., Tan, Q., Tan, L., Xiao, D., and Han, F. 2013. Osteology of the Late Cretaceous alvarezsauroid Linhenykus monodactylus from China and comments on alvarez− sauroid biogeography. Acta Palaeontologica Polonica 58 (1): 25–46. The alvarezsauroid theropod Linhenykus monodactylus from the Upper Cretaceous of Inner Mongolia, China is the first known monodactyl non−avian dinosaur, providing important information on the complex patterns of manual evolution seen in alvarezsauroids. Here we provide a detailed description of the osteology of this taxon. Linhenykus shows a number of fea− tures that are transitional between parvicursorine and non−parvicursorine alvarezsauroids, but detailed comparisons also re− veal that some characters had a more complex distribution. We also use event−based tree−fitting to perform a quantitative analysis of alvarezsauroid biogeography incorporating several recently discovered taxa. The results suggest that there is no statistical support for previous biogeographic hypotheses that favour pure vicariance or pure dispersal scenarios as explana− tions for the distributions of alvarezsauroids across South America, North America and Asia. Instead, statistically significant biogeographic reconstructions suggest a dominant role for sympatric (or “within area”) events, combined with a mix of vicariance, dispersal and regional extinction. At present the alvarezsauroid data set is too small to completely resolve the biogeographic history of this group: future studies will need to create larger data sets that encompass additional clades. -
A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats. -
Body-Size Evolution in the Dinosauria
8 Body-Size Evolution in the Dinosauria Matthew T. Carrano Introduction The evolution of body size and its influence on organismal biology have received scientific attention since the earliest decades of evolutionary study (e.g., Cope, 1887, 1896; Thompson, 1917). Both paleontologists and neontologists have attempted to determine correlations between body size and numerous aspects of life history, with the ultimate goal of docu- menting both the predictive and causal connections involved (LaBarbera, 1986, 1989). These studies have generated an appreciation for the thor- oughgoing interrelationships between body size and nearly every sig- nificant facet of organismal biology, including metabolism (Lindstedt & Calder, 1981; Schmidt-Nielsen, 1984; McNab, 1989), population ecology (Damuth, 1981; Juanes, 1986; Gittleman & Purvis, 1998), locomotion (Mc- Mahon, 1975; Biewener, 1989; Alexander, 1996), and reproduction (Alex- ander, 1996). An enduring focus of these studies has been Cope’s Rule, the notion that body size tends to increase over time within lineages (Kurtén, 1953; Stanley, 1973; Polly, 1998). Such an observation has been made regarding many different clades but has been examined specifically in only a few (MacFadden, 1986; Arnold et al., 1995; Jablonski, 1996, 1997; Trammer & Kaim, 1997, 1999; Alroy, 1998). The discordant results of such analyses have underscored two points: (1) Cope’s Rule does not apply universally to all groups; and (2) even when present, size increases in different clades may reflect very different underlying processes. Thus, the question, “does Cope’s Rule exist?” is better parsed into two questions: “to which groups does Cope’s Rule apply?” and “what process is responsible for it in each?” Several recent works (McShea, 1994, 2000; Jablonski, 1997; Alroy, 1998, 2000a, 2000b) have begun to address these more specific questions, attempting to quantify patterns of body-size evolution in a phylogenetic (rather than strictly temporal) context, as well as developing methods for interpreting the resultant patterns. -
A Short-Armed Troodontid Dinosaur from the Upper Cretaceous of Inner Mongolia and Its Implications for Troodontid Evolution
A Short-Armed Troodontid Dinosaur from the Upper Cretaceous of Inner Mongolia and Its Implications for Troodontid Evolution Xing Xu1*, Qingwei Tan2, Corwin Sullivan1, Fenglu Han1, Dong Xiao3 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China, 2 Long Hao Institute of Geology and Paleontology, Hohhot, Inner Mongolia, China, 3 Department of Land and Resources, Linhe, Inner Mongolia, China Abstract Background: The Troodontidae represents one of the most bird-like theropod groups and plays an important role in our understanding of avian origins. Although troodontids have been known for over 150 years, few known derived troodontid specimens preserve significant portions of both the forelimb and the hindlimb. Methodology/Principal Findings: Here, we report a new troodontid taxon, Linhevenator tani gen. et sp. nov., based on a partial, semi-articulated skeleton recovered from the Upper Cretaceous Wulansuhai Formation of Wulatehouqi, Inner Mongolia, China. L. tani has an unusual combination of primitive and derived character states, though our phylogenetic analysis places it in a derived clade within the Troodontidae. As a derived taxon, L. tani has a dromaeosaurid-like pedal digit II, and this species also possesses a humerus that is proportionally much shorter and more robust than those of most other troodontids. Conclusion/Significance: The combination of features present in Linhevenator indicates a complex pattern of character evolution within the Troodontidae. In particular, the discovery of Linhevenator suggests that derived troodontids have independently evolved a highly specialized pedal digit II and have significantly shortened the forelimb over the course of their evolution. -
Borogovia Gracilicrus Gen. Et Sp. N., a New Troodontid Dinosaur from the Late Cretaceous of Mongolia
Actn Falaeontologica Polonica -. -. - -- . - Vol. 32 No. 1-2 pp. 133-150, pis. 53, 54 Warszawa, 1987 HALSZKA OSMOLSKA BOROGOVIA GRACILICRUS GEN. ET SP. N., A NEW TROODONTID DINOSAUR FROM THE LATE CRETACEOUS OF MONGOLIA OSMOLSKA, H.: Borogovia gracilicrus gen. et sp. n., a new troodontid dinosaur from the Late Cretaceous of Mongolia. Acta Palaeont. Polonica, 32, 1-2, 133--150, 1987. A new theropod dinosaur Borogovia gracilicrus gen. et sp. n. assigned to Troodon- tidae is described, based on fragmentary hind limbs of one individual from the Upper Cretaceous Nemegt Formation of Gobi Desert, Mongolia. A unique feature of B. gracilicrus is a straight ungual in the second, specialized toe of the pcs. The known skeletal elements of all troodontid species are listed (Table 1). Taxonomic status of Saurornithoides junior is considered. K e y w or d s: Dinosauria, Theropda, Troodontidae, osteology, taxonomy, Cre- taceous, Mongolia. Halszka Osmdlska, Zaktad Paleobiologii, Polska Akademia Nauk, Al. Zwirki i Wtgury 92, 02-089 Warszawa, Poland. Received: October 1986. INTRODUCTION The Cretaceous theropod dinosaur family Troodontidae Gilmore, 1924 is known from very rare and mostly fragmentary remains (Table 1) found in the Upper Cretaceous deposits (?Upper Santonian - ?Lower Maastrich- tian) of Asia and North America. The only Early Cretaceous (?Albian) troodontid specimen known (see: Barsbold et al. 1987) comes from Mon- golian People's Republic, but the preserved fragments do not provide enough diagnostic features for a specific and generic assignement of this specimen. Nevertheless, its troodontid characters are evident. Since 1974, the family name Saurornithoididae Barsbold has been widely accepted. However, recently Currie, (1987) has demonstrated that Stenonychosaurus inequalis Sternberg, 1932 is a junior synonym of Troodon formosus Leidy, 1856 and Troodontidae Gilmore, 1924 is the valid family name, which has priority over the Saurornithoididae Barsbold, 1974.