The Mammal-Like Reptiles of About 150 Million Plete As Gish Claims It to Be (Raup 1983), and So They Years

Total Page:16

File Type:pdf, Size:1020Kb

The Mammal-Like Reptiles of About 150 Million Plete As Gish Claims It to Be (Raup 1983), and So They Years The Mammal-like Reptiles James A. Hopson is a professor of anatomy and evolutionarybi- ology at the Univ. of Chicago, 1025 East 57th St., Chicago, IL A study of transitionalfossils 60637. He received his B.S. in Geology from Yale Univ. and his Ph.D. in Paleozoology from the Univ. of Chicago. From 1953 to 1957, he curated and did researchon fossil vertebratesin the Pea- body Museum at Yale. Since 1957, he has been teachingvertebrate paleontology and evolution at the Univ. of Chicago. His research interests have centered mainly on mammal-likereptiles and the earliest mammals, but he also has published on brain size and be- havior in dinosaurs. He is past president of the Society of Verte- James A. Hopson brate Paleontology and was editor of the journalPaleobiology. More than 500 species of mammal-like reptiles these should be rare isolated examples. Therefore, have been named on the basis of fossils found in the evolutionary prediction, to be supported satisfac- Downloaded from http://online.ucpress.edu/abt/article-pdf/49/1/16/42529/4448410.pdf by guest on 28 September 2021 rocks of all continents, including Antarctica. These torily, should have a fairly extensive sequence of in- fossil-bearing rocks date from about 320 to about 170 termediate forms. On the other hand, paleontolo- million years ago, indicating a total span of existence gists do not consider the fossil record to be as com- for the mammal-like reptiles of about 150 million plete as Gish claims it to be (Raup 1983), and so they years. My purpose in this articleis to summarize cur- expect gaps to exist between taxa, especially for rent knowledge of the reptile to mammal transition, groups with a relatively poor fossil record. However, considered by paleontologists to be the best-docu- it can be predicted that for many groups with a good mented example in the fossil record of an evolu- fossil record, numerous specimens exist which tionary sequence connecting two major structural bridge' the gap, both morphologically and tempor- grades. This treatment of the mammal-like reptiles ally, between currently-recognizedhigher categories, also serves as a case study of how paleontologists de- and, therefore, between what creationists would ac- termine that a collection of fossil specimens repre- knowledge as distinct "created kinds." A more de- sents an evolutionary series. tailed discussion of these predictions is given later. One often reads statements by "scientific creation- ists" that transitional fossils, forms intermediate be- tween higher taxonomic categories, do not exist. The creationist explanation for this is, of course, that "all What is a Mammal-like Reptile? basic animal and plant types (the created kinds) were Figure 1 is a diagram called a cladogram which brought into existence by acts of a supernaturalCre- shows current ideas as to how the living groups of ator using special processes which are not operative amniote tetrapods-reptiles, birds and mammals- today" (Gish 1979, p. 11). As a test of the conflicting are related to one another. Note that living reptiles theories, or "models," of the origins of distinct plus birds form one major subgroup, often called the groups of organisms, Gish (1973, 1979)makes the fol- Sauropsida, and the mammals form another. If fossil lowing predictions about the fossil record: forms were placed on this cladogram, the mammal- Creation Model Evolution Model like reptiles would form a series of branches between Sudden appearance of Transitional series link- the point at which the sauropsids branch off to the each created kind with ing all categories.No sys- left and the point of divergenceof the modern groups ordinal characteristics tematic gaps. of mammals. They would be placed here because complete. Sharp bound- they share many skeletal features with mammals, yet retain numerous primitive features shared with rep- aries separating major taxonomic groups. No tiles. transitional forms be- We must decide where to place the boundary be- tween higher categories. tween mammals and premammals, and, with the fossils taken into account, this is in some ways an At the outset, we must qualify these predictions to arbitrarydecision. In cases where soft-part anatomy make them realistic with respect to the actual nature cannot be used, mammals traditionallyare defined as of the fossil record. Gish (1973) acknowledges that having a lower jaw consisting of a single bone, the "apparent transitional forms," which appearto be in- dentary, which forms a joint at its back end with a termediates because of resemblances due either to bone of the skull called the squamosal (Figure2A). A chance or similar adaptation, might be found, but fossil in which the back of the dentary has a knob 16 THE AMERICAN BIOLOGY TEACHER, VOLUME 49, NO. 1, JANUARY 1987 H - SAUROPSIDAPSI - MAMMALIA- l C3~~~~~~~~~~~~~~~ C3~~~C 0 ~~fr C3~~c 0~ 4~~~b~ 0 o+C Feathers Al antoic F u I - DividdlacentaI L _Fully-Divided Heart Live Birth Downloaded from http://online.ucpress.edu/abt/article-pdf/49/1/16/42529/4448410.pdf by guest on 28 September 2021 Two Openings in Skull Behind Eye Hair, Mammary Glands, Squamosal - Dentary Jaw Joint, Uric Acid Excretion, 3 Ear Ossicles Two Systemic Aortae Amniote Egg Figure 1. Cladogramshowing the interrelationshipsof the living amniote tetrapods. A few of the features which characterizesome of the subgroups are indicated. (condyle) for articulatingwith a depression (glenoid As is well known from comparative anatomy, the cavity) on the squamosal is defined to be a mammal. quadrate and articularcan be homologized with the This seems a rather simple feature to use as a major incus (anvil) and malleus (hammer)of the middle ear taxonomic distinction. However, other important of mammals (Figure 2C). These bones lie in an air- changes in the skull are correlated with it in the filled cavity between the inner ear, which houses the known fossils, so we can be pretty secure that when sensory apparatus for hearing, and the eardrum, we encounter such an articulation we are dealing which picks up sound vibrations from the air. The with a true mammal. malleus possesses a hook-like process which extends Figure 2B depicts the skull of a moderately ad- down and forward to attach to the eardrum. Vibra- vanced, mammal-like reptile. Although strikingly tion of the drum causes the malleus and, with it, the mammalian in some features, it lacks an articulation incus to rock, which in turn causes the stapes, a between dentary and squamosal. The dentary is pro- small stirrup-shaped bone attached to the incus, to portionately larger than in typical reptiles but it does move in and out of an opening in the inner ear cap- not extend far enough back to contact the squamosal. sule. This movement sets up vibrationsof the fluid of Instead, the back part of the lower jaw is made up of the inner ear, thereby stimulatingthe sensory cells of several additional bones and the jaw joint is formed the organ of Corti. In modern reptiles, the stapes is between the rearmost of these bones, the articular, the only bone extending between the eardrum and and a bone of the skull, the quadrate.The quadrateis the inner ear capsule. connected to the squamosal. An articular-quadrate The mammalian middle ear mechanism contains jaw joint is characteristicof all nonmammalianjawed two bones in addition to the three mentioned above; vertebrates, but the dentary-squamosaljaw joint is a these are the tympanic bone which supports the specialization unique to mammals. eardum and has the form of a horseshoe in primitive In the transition to mammals, what became of the mammals, and the goniale, which is fused to the an- quadrate and articular. and the other bones of the terior part of the malleus but is a separate bone in lower jaw that are present in mammal-likereptiles? fetal mammals. MAMMAL-LIKE REPTILES 17 A MAMMAL-OPOSSUM squamosal C adult ear ossicles incus stapes tL D malleus tympanic B MAMMAL-LIKEREPTILE squamosal D pouch young dentary Downloaded from http://online.ucpress.edu/abt/article-pdf/49/1/16/42529/4448410.pdf by guest on 28 September 2021 incus stapes 4; t } td ra~~~~qudrte malleus tympanic dentary articular angular Meckel's cartilage Figure 2. A, the skull of the opossum Didelphisshowing the dentary-squamosaljaw joint characteristicof mammals. B, the skull of a mammal-likereptile, the cynodont Thrinaxodon,showing the primitive articular-quadratejaw joint. C, the middle ear bones of the adult opossum, greatly enlarged. D, internalview of the lower jaw of a pouch young opossum, showing how the elements of the middle ear are attachedto the dentaryin early development. The same patterningis used in B, C, and D to indicate homologous bones. The darkerstipple in D indicates the goniale (prearticular)which forms the anteriorprocess of the adult malleus. The tympanic bone can be homologized with the eral of our ear bones are actually part of our lower angular bone of the lower jaw of reptiles (Figure2B). jaw. Later in development the middle part of In most mammal-likereptiles the angular possesses a Meckel's cartilage atrophies, so that the set of ear free-standing process, the reflected lamina, which is bones loses its skeletal connection with the dentary notched behind. Possibly this notch held the ear- and is then connected only to the skull. To my drum as the tympanic does in mammals (Allin 1975; knowledge, this reflection of our reptilian past has Crompton & Parker 1978). The goniale is generally never been mentioned by creationists. identified with the reptilian prearticularbone. Sev- eral additional reptilian jaw bones have been lost in Are the Mammal-like Reptiles modern mammals. an Evolutionary Transition Figure 2D shows the lower jaw of the pouch young of an opposum which is still essentially a fetus.
Recommended publications
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions Gilles Didier, Michel Laurin
    Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions. 2021. hal-03258099v2 HAL Id: hal-03258099 https://hal.archives-ouvertes.fr/hal-03258099v2 Preprint submitted on 20 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1 IMAG, Univ Montpellier, CNRS, Montpellier, France 2 CR2P (\Centre de Pal´eontologie { Paris"; UMR 7207), CNRS/MNHN/SU, Mus´eumNational d'Histoire Naturelle, Paris, France September 16, 2021 Abstract Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently.
    [Show full text]
  • Reptile-Like Physiology in Early Jurassic Stem-Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Reptile-like physiology in Early Jurassic stem-mammals Authors: Elis Newham1*, Pamela G. Gill2,3*, Philippa Brewer3, Michael J. Benton2, Vincent Fernandez4,5, Neil J. Gostling6, David Haberthür7, Jukka Jernvall8, Tuomas Kankanpää9, Aki 5 Kallonen10, Charles Navarro2, Alexandra Pacureanu5, Berit Zeller-Plumhoff11, Kelly Richards12, Kate Robson-Brown13, Philipp Schneider14, Heikki Suhonen10, Paul Tafforeau5, Katherine Williams14, & Ian J. Corfe8*. Affiliations: 10 1School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. 2School of Earth Sciences, University of Bristol, Bristol, UK. 3Earth Science Department, The Natural History Museum, London, UK. 4Core Research Laboratories, The Natural History Museum, London, UK. 5European Synchrotron Radiation Facility, Grenoble, France. 15 6School of Biological Sciences, University of Southampton, Southampton, UK. 7Institute of Anatomy, University of Bern, Bern, Switzerland. 8Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 9Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland. 10Department of Physics, University of Helsinki, Helsinki, Finland. 20 11Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH Germany. 12Oxford University Museum of Natural History, Oxford, OX1 3PW, UK. 1 bioRxiv preprint doi: https://doi.org/10.1101/785360; this version posted October 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13Department of Anthropology and Archaeology, University of Bristol, Bristol, UK. 14Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
    [Show full text]
  • Osteological Connections of the Petrosal Bone of the Extant Hippopotamidae Hippopotamus Amphibius and Choeropsis Liberiensis Maeva Orliac, Franck Guy, Renaud Lebrun
    Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis Maeva Orliac, Franck Guy, Renaud Lebrun To cite this version: Maeva Orliac, Franck Guy, Renaud Lebrun. Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis. MorphoMuseum, Association Palæovertebrata, 2014, 1 (1), pp.e1. 10.18563/m3.1.1.e1. hal-01902601 HAL Id: hal-01902601 https://hal.archives-ouvertes.fr/hal-01902601 Submitted on 26 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANATOMY ATLAS Osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis ORLIAC M.J*, GUY F.†, LEBRUN R.* * Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS, UM2, IRD), c.c. 064, Université Montpellier 2, place Eugène Bataillon, F-34095 Montpellier Cedex 05, France † Université de Poitiers - UFR SFA, iPHEP UMR CNRS 7262, Bât B35 - TSA 51106, 6 rue Michel brunet, 86073, Poitiers Cedex 9, France Abstract: This project presents the osteological connections of the petrosal bone of the extant Hippopotamidae Hippopotamus amphibius and Choeropsis liberiensis by a virtual osteological dissection of the ear region.
    [Show full text]
  • A New Mid-Permian Burnetiamorph Therapsid from the Main Karoo Basin of South Africa and a Phylogenetic Review of Burnetiamorpha
    Editors' choice A new mid-Permian burnetiamorph therapsid from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha MICHAEL O. DAY, BRUCE S. RUBIDGE, and FERNANDO ABDALA Day, M.O., Rubidge, B.S., and Abdala, F. 2016. A new mid-Permian burnetiamorph therapsid from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha. Acta Palaeontologica Polonica 61 (4): 701–719. Discoveries of burnetiamorph therapsids in the last decade and a half have increased their known diversity but they remain a minor constituent of middle–late Permian tetrapod faunas. In the Main Karoo Basin of South Africa, from where the clade is traditionally best known, specimens have been reported from all of the Permian biozones except the Eodicynodon and Pristerognathus assemblage zones. Although the addition of new taxa has provided more evidence for burnetiamorph synapomorphies, phylogenetic hypotheses for the clade remain incongruent with their appearances in the stratigraphic column. Here we describe a new burnetiamorph specimen (BP/1/7098) from the Pristerognathus Assemblage Zone and review the phylogeny of the Burnetiamorpha through a comprehensive comparison of known material. Phylogenetic analysis suggests that BP/1/7098 is closely related to the Russian species Niuksenitia sukhonensis. Remarkably, the supposed mid-Permian burnetiids Bullacephalus and Pachydectes are not recovered as burnetiids and in most cases are not burnetiamorphs at all, instead representing an earlier-diverging clade of biarmosuchians that are characterised by their large size, dentigerous transverse process of the pterygoid and exclusion of the jugal from the lat- eral temporal fenestra. The evolution of pachyostosis therefore appears to have occurred independently in these genera.
    [Show full text]
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian.
    [Show full text]
  • Mammalian Origins Major Groups of Synapsida
    Mammalogy 4764 9/16/2009 Chapter 4 “Reptile” Mammalian Origins Early mammal Carnivore Amniota Herbivore Feldhamer Table 4.1 Savage and Long 1986 Major Fig. 3.2, Vaughn, Fig. 4.1, Feldhamer groups Mammalian Origins of Dimetrodon Overview Synapsida Synapsids Pelycosaurs and Therapsids First Mammals Mesozoic Era appear Feldhamer Fig. 4.2 Cenozoic Era radiate Savage and Long 1986 Pelycosaur Skull, jaw musculature, and teeth Cynodontia -- Advanced, predaceous therapsids Pelycosaur Scymnognathus Cynognathus Therapsid Early Cynodont Derived Therapsid/Mammal Primitive Late Cynodont Fig. 3.2, Vaughn Thrinaxodon Fig 4.3 & 4, Feldhamer 1 Mammalogy 4764 9/16/2009 Skeletal transition Extinction of Cynodonts Possibly competition from dinosaurs Pelycosaur Early Cynodonts were dog-size, last surviving were squirrel sized Fig. 4.15 Mammals that survived while Cynodonts went extinct (contemporary) were mouse-sized. Cynodont Thrinaxodon Modern Mammal Fig. 3.5, Vaughn Fig. 4.16c, Early Cynodont Early mammals Changes in land masses Feldhamer 4.11 200 - 250 million years ago Derived characters: Dentary/squamosal jaw articulation Diphyodont dentition 200 MYA 180 MYA Mammary glands Secondary palate Early Mid- Viviparity (loss of eggshell) When? Jurassic Jurassic 65 MYA 135 MYA Early Early Cretaceous Cenozoic Feldhamer 4.5, 4.9 Skull and teeth of mammals 2 Mammalogy 4764 9/16/2009 Teeth and Dentition of Mammals Teeth Heterodont teeth with different functions Differentiated on the basis of function, resulting in increased One of the major keys efficiency acquiring and digesting food. to success of mammals Teeth occur in 3 bones of skull: Teeth of mammals are premaxilla, maxilla, dentary extremely variable with different diets -- more than other taxa Feldhamer et al.
    [Show full text]
  • The Ear in Mammal-Like Reptiles and Early Mammals
    Acta Palaeontologica Polonica Vol. 28, No. 1-2 pp, 147-158 Warszawa, 1983 Second Symposium on Mesozoic T erre stial Ecosystems, Jadwisin 1981 KENNETH A. KERMACK and FRANCES MUSSETT THE EAR IN MAMMAL-LIKE REPTILES AND EARLY MAMMALS KERMACK, K . A. a nd MUSS ETT, F.: The ear in mammal-like r eptiles an d early mammals. Acta Palaeont. P olonica , 28, 1-2, 147-158, 1983. Th e early m embers of the Theropsida lacked a tympanic membrane. In the later theropslds, the Therapsid a, a tym p an ic membrane develop ed from thc skin on the lateral side of th e lower jaw. The tympanum is not homologous In the Therapsida and ' t he Sauropslda. The ther apsid ea r w as a poor receiver of airborne sound, both In hi gh frequency r esp onse and In the r ange of frequencies encompassed. With the radiation of the Sauropsida in the Triassic the large therapsids became extinct, the small therap si ds evolv ed In to the mammal s and became nocturnal. High frequency hearin g w as essen tial for the nocturn al mode of life; quadrate and arttcutar became diss ociated from the jaw hinge to become the m ammali an au di tory ossi cles . I n the Theria the cochlea became coil ed. The spiral cochlea could n ot have existed until there w as a middle ear w ith the n ec essary h ig h f re q uency r esp onse. This m ay n ot have been until the Cretace ous.
    [Show full text]
  • Morphology and Evolutionary Significance of the Atlas−Axis Complex in Varanopid Synapsids
    Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids NICOLÁS E. CAMPIONE and ROBERT R. REISZ Campione, N.E. and Reisz, R.R. 2011. Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids. Acta Palaeontologica Polonica 56 (4): 739–748. The atlas−axis complex has been described in few Palaeozoic taxa, with little effort being placed on examining variation of this structure within a small clade. Most varanopids, members of a clade of gracile synapsid predators, have well pre− served atlas−axes permitting detailed descriptions and examination of morphological variation. This study indicates that the size of the transverse processes on the axis and the shape of the axial neural spine vary among members of this clade. In particular, the small mycterosaurine varanopids possess small transverse processes that point posteroventrally, and the axial spine is dorsoventrally short, with a flattened dorsal margin in lateral view. The larger varanodontine varanopids have large transverse processes with a broad base, and a much taller axial spine with a rounded dorsal margin in lateral view. Based on outgroup comparisons, the morphology exhibited by the transverse processes is interpreted as derived in varanodontines, whereas the morphology of the axial spine is derived in mycterosaurines. The axial spine anatomy of Middle Permian South African varanopids is reviewed and our interpretation is consistent with the hypothesis that at least two varanopid taxa are present in South Africa, a region overwhelmingly dominated by therapsid synapsids and parareptiles. Key words: Synapsida, Varanopidae, Mycterosaurinae, Varanodontinae, atlas−axis complex, axial skeleton, Middle Permian, South Africa.
    [Show full text]
  • The Intramandibular Joint in Girella: a Mechanism for Increased Force Production?
    JOURNAL OF MORPHOLOGY 271:271–279 (2010) The Intramandibular Joint in Girella: A Mechanism for Increased Force Production? Lara A. Ferry-Graham1,3* and Nicolai Konow2 1California State University, Moss Landing Marine Labs, Moss Landing, California 95039 2Brown University, Ecology and Evolutionary Biology, Providence, Box G-B204, Rhode Island 02912 3CEAZA, Centro de Estudios Avanzados de Zonas Aridas (Center for Advanced Studies in Arid Zones), Universidad Cato´lica del Norte. Box 599, Benavente 980, La Serena, Chile ABSTRACT Intramandibular joints (IMJ) are novel Bellwood, 2002). This is likely due to the forces articulations between bony elements of the lower jaw required for obtaining food items many of which are that have evolved independently in multiple fish line- either tough or firmly attached to the substrate ages and are typically associated with biting herbivory. (Alfaro et al., 2001). In several reef fish lineages, This novel joint is hypothesized to function by augment- aspects of the feeding apparatus have been radically ing oral jaw expansion during mouth opening, which would increase contact between the tooth-bearing area altered for force production, either via hypertro- of the jaws and algal substratum during feeding, result- phied or via structurally altered musculature (Friel ing in more effective food removal from the substrate. and Wainwright, 1997), modified muscle attach- Currently, it is not understood if increased flexibility in ments (Vial and Ojeda, 1990; Konow and Bellwood, a double-jointed mandible also results in increased force 2005), or increased suturing and/or reinforcement generation during herbivorous biting and/or scraping. of bony elements and dentition (Tedman, 1980; Therefore, we selected the herbivore Girella laevifrons Streelman et al., 2002; Bellwood et al., 2003).
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Femur of a Morganucodontid Mammal from the Middle Jurassic of Central Russia
    Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia PETR P. GAMBARYAN and ALEXANDER 0.AVERIANOV Gambaryan, P.P. & Averianov, A.O. 2001. Femur of a morganucodontid mammal from the Middle Jurassic of Central Russia. -Acta Palaeontologica Polonica 46,1,99-112. We describe a nearly complete mammalian femur from the Middle Jurassic (upper Bathonian) from Peski quarry, situated some 100 km south east of Moscow, central Rus- sia. It is similar to the femora of Morganucodontidae in having a globular femoral head, separated from the greater trochanter and reflected dorsally, fovea capitis present, both trochanters triangular and located on the same plane, distal end flat, mediolaterally expanded, and somewhat bent ventrally, and in the shape and proportions of distal condyles. It is referred to as Morganucodontidae gen. et sp. indet. It is the first representa- tive of this group of mammals in Eastern Europe from the third Mesozoic mammal local- ity discovered in Russia. Exquisite preservation of the bone surface allowed us to recon- struct partial hind limb musculature. We reconstruct m. iliopsoas as inserting on the ridge, which starts at the lesser trochanter and extends along the medial femoral margin for more than half of the femur length. On this basis we conclude that the mode of loco- motion of the Peski morganucodontid was similar to that of modern echidnas. During the propulsive phase the femur did not retract and the step elongation was provided by pronation of the femur. Key words : Mammalia, Morganucodontidae, femur, anatomy, locomotion, Jurassic, Russia. Petr P. Gambaryan [[email protected]] and Alexander 0.
    [Show full text]
  • Dashankou Fauna: a Unique Window on the Early Evolution of Therapsids
    Vol.24 No.2 2010 Paleoherpetology Dashankou Fauna: A Unique Window on the Early Evolution of Therapsids LIU Jun* Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China n the 1980s, the Institute of Geology, Chinese Academy of IGeological Sciences (IGCAGS) sent an expedition to the area north of the Qilian Mountains to study the local terrestrial Permian and Triassic deposits. A new vertebrate fossil locality, later named Dashankou Fauna, was discovered by Prof. CHENG Zhengwu in Dashankou, Yumen, Gansu Province in 1981. Small-scale excavations in 1981, 1982 and 1985 demonstrated that this locality was a source of abundant and diverse vertebrate fossils. In the 1990s, supported by the National Natural Science Foundation of China, the Fig. 1 Prof. LI Jinling in the excavation of 1995. She first summarized the known IGCAGS, the Institute of Vertebrate members of the Dashankou Fauna and brought it to light as the most primitive and abundant Chinese tetrapod fauna. Paleontology and Paleoanthropology (IVPP) under CAS, and the Geological Museum of China formed a joint team IVPP were productive and have since investigations were first disseminated to work on this fauna. Three large- unveiled an interesting episode in the to the public in 1995. In 2001, Prof. scale excavations, undertaken in transition from reptiles to mammals in LI Jinling summarized the known 1991, 1992, and 1995 respectively, as evolutionary history. members of the fauna and discussed well as the subsequent ones held by The results from these their features. She pointed out that * To whom correspondence should be addressed at [email protected].
    [Show full text]